Contents

A&A 402, 37-51 (2003)
DOI: 10.1051/0004-6361:20030219

UV to radio centimetric spectral energy distributions of optically-selected late-type galaxies in the Virgo cluster[*],[*]

A. Boselli 1 - G. Gavazzi 2 - G. Sanvito 2


1 - Laboratoire d'Astrophysique de Marseille, BP 8, Traverse du Siphon, 13376 Marseille Cedex 12, France
2 - Università degli Studi di Milano-Bicocca, Dipartimento di Fisica, Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy

Received 10 October 2002 / Accepted 16 December 2002

Abstract
We present a multifrequency dataset for an optically-selected, volume-limited, complete sample of 118 late-type galaxies ($\geq $S0a) in the Virgo cluster. The database includes UV, visible, near-IR, mid-IR, far-IR, radio continuum photometric data as well as spectroscopic data of H$\alpha$, CO and HI lines, homogeneously reduced, obtained from our own observations or compiled from the literature.
Assuming the energy balance between the absorbed stellar light and that radiated in the IR by dust, we calibarte an empirical attenuation law suitable for correcting photometric and spectroscopic data of normal galaxies. The data, corrected for internal extinction, are used to construct the spectral energy distribution (SED) of each individual galaxy, and combined to trace the median SED of galaxies in various classes of morphological type and luminosity. Low-luminosity, dwarf galaxies have on average bluer stellar continua and higher far-IR luminosities per unit galaxy mass than giant, early-type spirals. If compared to nearby starburst galaxies such as M 82 and Arp 220, normal spirals have relatively similar observed stellar spectra but 10-100 times lower IR luminosities. The temperature of the cold dust component increases with the far-IR luminosity, from giant spirals to dwarf irregulars. The SED are used to separate the stellar emission from the dust emission in the mid-IR regime. We show that the contribution of the stellar emission at 6.75 $\mu $m to the total emission of galaxies is generally important, from $\sim$80% in Sa to $\sim$20% in Sc.

Key words: galaxies: general - galaxies: spiral - galaxies: ISM - galaxies: stellar content


1 Introduction

An ideal tool for constraining observationally models of galaxy evolution would consist of a multi-dimensional "data-cube'': $D_{\rm imag}(\lambda, Type, Lum, z, Env)$containing imaging data of complete samples of galaxies, spanning the broadest possible wavelength ($\lambda$), redshift (z), morphological type (Type) and luminosity (Lum) ranges. Moreover, all environmental conditions (Env) should be equally represented, from the coarsest "field" to the densest cluster's cores.

Such an ideal data-base is irrealistic. First of all, multifrequency images hardly exist, at suitable resolution, even for galaxies in the Local Group. The requirement that the data-cube consists of "imaging" data must then be relaxed for the more realistic requirement that it should contain "integrated" data, as more commonly available from aperture/CCD photometry. Even with these reduced characteristics, very few such data-sets exist either for high z, or for local galaxies. The presently available samples cover a small wavelength window, such as those of Connolly et al. (1995) or Kinney et al. (1993), or they are biased towards starburst and active galaxies (Schmitt et al. 1997), thus they are not representative of "normal'' galaxies.

Within few years from now, however, when SLOAN will reach completion and the space missions GALEX (UV) and ASTRO-F (FIR) will perform their all-sky surveys, large data-sets meeting the above requirements will be at hands.

There is yet a sample which approaches the ideal requirements. The data-cube we are referring to is an optically selected (complete) one, representative of galaxy in a broad luminosity range and it is truly multifrequency (from the far-UV to the radio domains). It suffers from three limitations: it is local (z=0) and it represents only late-type galaxies in the densest environment, being composed of galaxies in the the Virgo cluster: $D_{\rm phot}(UV-radio, Late, Lum, z=0, Virgo)$. It is on this data-base that the present paper is focused.

Skipping through the details of the sample selection and of the available data that can be found in Sects. 2 and 3 of this paper respectively, it is worth spending some words on what scientific purpouses such data-base is aimed at.

Individual galaxies are represented in the data-base under the form of Spectral Energy Distributions (SEDs), such as those presented in Fig. 2. SEDs are powerful diagnostic tools for studying the energy balance between the principal constituents of galaxies. From 0.1 to 5 $\rm\mu m$ (UV, Visible, Near-IR) SEDs are dominated by the stellar thermal radiation, (but include most of the measurable recombination lines providing the diagnostics of the ISM). From 5 to 25 $\rm\mu m$ (Mid-IR) the dominant source is the radiation from very small grains of dust, but the contribution of emission lines (PAH) is relevant. From 25 to 1000 $\rm\mu m$ (Far-IR, sub-mm radio) the flux of SEDs is due to the thermal radiation from cold dust (10-100 K). Important diagnostic lines such as the [CII] ( $\lambda 158~ \mu $m) and CO are found in this interval. It is here that dust-rich objects peak their flux distributions. At wavelengths longer than 1 cm (radio) the radiation is non-thermal (synchrotron) by relativistic cosmic ray electrons and magnetic fields, but the most important ISM diagnostic line, the 21 cm line of the neutral hydrogen, lies in this domain. All these components and their complex feedback relations can be studied at once using the SEDs. First an estimate of the relative fraction of stars in the various age (temperature) classes can be obtained by fitting populations synthesis models (Bruzual & Charlot 1993) to the stellar continua (see e.g., Gavazzi et al. 2002a). Once the stellar populations are determined, by studying the ISM emission line properties (e.g. the H$\alpha$) one can learn about the ionization processes in HII regions. From the FIR properties we can study the dust heating mechanisms. Finally from the luminosity of the synchrotron radiation one can study the contribution of the various stellar populations to the cosmic ray acceleration.

Before energy balances can be quantitatively derived, however, the observed SEDs must be properly corrected for a number of effects that introduce wavelength dependent distortions to their shape. Primarily the SEDs must be rest-framed. Galaxies at large redshift require important K corrections. Their cosmic evolution can be studied by comparing their rest-frame SEDs with those of normal local galaxies. Hence the importance of obtaining template SEDs representative of normal galaxies, unlike those of starburst galaxies such as M 82 or Arp 220 (see Fig. 3), often used for such a purpouse.

Secondly comes the internal extinction correction. Stellar light is absorbed and scattered by the dust in a wavelength dependent way. Corrected SEDs can be derived if the proper amount of extinction is estimated. The amount of stellar light absorbed in the blue should equal that thermally re-emitted in the FIR by the dust. Thus the difference of the integral under the stellar continua in the SEDs before and after the extinction correction gives the energy radiated in the FIR. By reversing the argument Buat et al. (2002) derive a robust estimate of the internal extinction in normal galaxies.

Finally the comparison of SEDs of isolated and cluster galaxies can shed light on influences of the environment on the various components of galaxies. Our Virgo sample, spanning a large interval of galactocentric projected distance from M 87 (up to 6 degrees), provides a clue also on this issue.

Matter in the present paper is organized as follows The sample is described in Sect. 2; in Sect. 3 we give a new prescription for the determination of the UV, optical and near-IR internal extinction based on the FIR/UV flux ratio. The adopted extinction law is checked in Sect. 5.3 using considerations on the energy balance between the emitted far-IR radiation and the absorbed stellar light. The SEDs of the sample galaxies are presented in Sect. 4, and analyzed in Sect. 5. We construct template SEDs in bins of equal morphological type and luminosity and compare them to those of starburst galaxies (Sect. 5.1). The stellar contribution to the mid-IR emission of galaxies (Sect. 5.2) and the properties of the nonthermal radiation (Sect. 5.4) are also analyzed. The bolometric properties of the observed sample are described in Sect. 5.5.

New optical observations obtained using the 1.2 m telescope of the Observatoire de Haute Provence (OHP), the 0.9 m telescope at Kitt Peak and the 2.5 m INT telescope at el Roques de los Muchachos (La Palma) are given in the appendix.

All observations analyzed in the present paper are contained in a database that has been made available to the international community via the Word Wide Web site GOLDMine (http://goldmine.mib.infn.it) described in Gavazzi et al. (2003).

2 The sample

The sample analyzed in this work was extracted from the optically selected Virgo Cluster Catalogue (VCC) of Binggeli et al. (1985), which is complete to $B_{\rm T}\leq18$. Galaxies were selected according to the following criteria:

The sky areas from which galaxies were chosen define two contrasting subsamples to optimise the statistical evaluation of the cluster environment on observed properties (see Fig. 1). The cluster-core subsample is composed of 46 galaxies within the X-ray emitting "atmosphere'' of M 87. The cluster-periphery subsample includes 72 galaxies in the outskirts.
  \begin{figure}
\par\includegraphics[width=18cm,clip]{3180f1.eps}\end{figure} Figure 1: Plot of all VCC galaxies classified as members by Binggeli et al. (1985) taken from Fig. 1 of Sandage et al. (1985). The subsample of galaxies here analyzed (see Sect. 2) are marked with filled symbols of increasing size according to their magnitude. Empty symbols are for Virgo members not included in the ISO sample; circles for late-type galaxies ($\geq $Sa), squares for early types ($\leq $S0a). The 2.0 degree radius circle centred on M 87 contains the cluster-core subsample. The inner boundary of the cluster periphery subsample has a radius of 4 degrees about the position of maximum projected galaxy density. The 1.5 degree radius circle is centered on the position of maximum projected galaxy density of M 49 subcluster.

The resulting sample of 118 galaxies is complete to $B_{\rm T}=18$, and both the cluster-periphery and -core subsamples span the range -21 < MB< -13. Both subsamples are approximately equally divided between giant spirals on the one hand and dwarf and irregular galaxies on the other. The distribution over Hubble type is summarised in Table 1.


 

 
Table 1: Distribution of sample over Hubble type for the cluster-periphery and cluster-core subsamples.
  S0/a - Sab Sb - Sc Scd - Sm Im BCD
periphery 9 16 12 20 15
core 16 11 6 10 3
Total 25 27 18 30 18


The parameter of the sample galaxies are given in Table 2, arranged as follows:

3 The data

The SED presented in this paper have been constructed using multifrequency data available in the literature or from our own observations, treated as consistently as possible, in order to produce an homogeneous data-set.

The UV data are taken from the FAUST (Lampton et al. 1990) and the FOCA (Milliard et al. 1991) experiments. In order to be consistent with our previous works, we transformed UV magnitudes taken at 1650 Å  by Deharveng et al. (1994) to 2000 Å  assuming a constant colour index UV(2000) = UV(1650) + 0.2 mag. This relation has been obtained by comparing the FAUST 1650 Å  with the SCAP (Donas et al. 1987) 2000 Å  UV magnitudes of 17 late-type galaxies in the Virgo cluster, observed by both experiments (Deharveng et al. 1994). FOCA magnitudes are from Deharveng et al. (2002), and Donas et al., in preparation. These are total magnitudes, determined by integrating the UV emission up to the weakest detectable isophote. The estimated error on the UV magnitude is 0.3 mag in general, but it ranges from 0.2 mag for bright galaxies to 0.5 mag for weak sources observed in frames with larger than average calibration uncertainties.

U, B and V photometry is generally derived from our own CCD measurements consistently with Gavazzi & Boselli (1996), as described in the appendix. When these are not available it is derived from aperture photometry taken from the literature. The (U,B,V) D25 magnitudes, computed at the $\rm 25th~ mag~arcsec^{-2}$ isophotal B band diameter as in Gavazzi & Boselli (1996), have $\sim$10% uncertainty. They are on average 0.1 mag fainter than the total asymptotic magnitudes.

NIR data, from Nicmos3 observations, are taken mostly from Boselli et al. (1997) and Gavazzi et al. (2001). Magnitudes (J,H,K) are determined consistently with the optical magnitudes as in Gavazzi & Boselli (1996). The typical uncertainty in (J,H,K) is 10%. As for the visible magnitudes, they are on average 0.1 mag fainter than the total asymptotic magnitudes.

Mid-IR data, at 6.75 and 15 $\mu $m, are from Boselli et al. (2003). Flux densities have been extracted from ISOCAM images by integrating the emission until the weakest detectable isophote. Even if the mid-IR emission of these galaxies is less extended than in the visible and near-IR bands, ISOCAM data provide us with integrated flux denisties representative of the whole galaxy. The typic uncertainty on the ISOCAM data is $\sim$30%.

12, 25, 60 and 100 $\mu $m integrated flux densities from the IRAS survey are taken from different sources. The typical uncertainty in the IRAS data is $\sim$15%. Alternative Far-IR values at 60 and 100 $\mu $m from ISOPHOT, as well as 170 $\mu $m flux densities, are taken from Tuffs et al. (2002), with a typical nominal uncertainty of $\sim$10%. The comparison of ISO and IRAS data for the sample galaxies detected in both surveys reveals a systematic difference of $\rm ISO/IRAS=0.95$ and 0.82 at 60 and 100 $\mu $m respectively (Tuffs et al. 2002).

We collected radio continuum data at 2.8, 6.3, 12.6 and 21 cm from different sources. 21 cm radio continuum data, available for the whole sample, are mostly from the NVSS survey (Condon et al. 1998) (see Gavazzi & Boselli 1999). All radio continuum data are integrated fluxes. The typical uncertainty is $\sim$20%.

The photometric data for the whole sample are given in Table 3, arranged as follows:

All data given in Table 3 are observed quantities. The UV, optical and near-IR data are uncorrected for dust extinction, the mid-IR data for the contribution of the stellar component, the radio continuum data for the contribution of the nuclear emission.

References to the photometric data are given in Table 4.

Additional emission line data are given in Table 5, arranged as follows:

3.1 The extinction correction

UV to near-IR data have been corrected for galactic extinction according to Burstein & Heiles (1982). The galactic extinction $A_{\rm g}(B)$, taken from NED and listed in Table 7, have been transformed to $A_{\rm g}(\lambda)$ assuming a standard galactic extinction law (see Table 6): $A_{\rm g}(\lambda)=c(\lambda)$ $A_{\rm g}(B)$, where $c(\lambda)=k(\lambda)/k(B)$.


 

 
Table 6: Galactic extinction law.
Filter $\lambda$ c($\lambda$)
  Å  
UV 2000 2.10
U 3650 1.15
B 4400 1.00
V 5500 0.75
J 12 500 0.21
H 16 500 0.14
K' 21 000 0.10


The observed stellar radiation of galaxies, from UV to near-IR wavelengths, is subject to internal extinction (absorption plus scattering) by the interstellar dust. In order to quantify the emission of the various stellar populations, UV, optical and, to a lesser amount, near-IR fluxes must be corrected for dust attenuation. Furthermore, since dust extinction varies from galaxy to galaxy (according to their geometrical parameters such as the inclination, their history of star formation and metallicity), corrections appropriate to each individual galaxy must be determined.

Estimating the dust extinction at different $\lambda$ in external galaxies is however very difficult (it has been done only for the Magellanic clouds). Buat et al. (2002) have shown that, for example, the Calzetti's law calibrated on the central part of starburst galaxies (Calzetti 2001) strongly overestimates the extinction in normal, late-type objects. This difficulty is mainly due to two reasons: a) the extinction strongly depends on the relative geometry of the emitting stars and of the absorbing dust within the disc of galaxies. The young stellar population are mostly located along the disc in a thin layer, while the old populations forms a thicker layer. This point is further complicated by the fact that different dust components (very small grains, big grains etc.), which have different opacities to the UV, visible or near-IR light, have themselves different geometrical distributions both on the large and small scales. b) it is still uncertain whether the Galactic extinction law is universal, or if it changes with metallicity and/or with the UV radiation field. Detailed observations of resolved stars in the Small Magellanic Cloud by Bouchet et al. (1985) indicate that the extinction law in the optical domain is not significantly different from the Galactic one in galaxies with a UV field $\sim$10 times higher and a metallicity $\sim$10 times lower than those of the Milky Way. A steeper UV rise and a weaker 2200 Å bump than in the Galactic extinction law have been however observed in the LMC and SMC (Mathis 1990).

While the adoption of the Galactic extinction law for external galaxies seems reasonable (even though it is questionable for low-luminosity galaxies), no simple analytic functions describing the geometrical distribution of emitting stars and absorbing dust, both on small and large scales, are yet available.

The radiative transfer models of Witt & Gordon (2000) have however shown that the FIR to UV flux ratio, being mostly independent of the geometry, of the star formation history (the two radiations are produced by similar stellar populations) and of the adopted extinction law, is a robust estimator of the dust extinction at UV wavelengths. Here we will use this method to estimate the extinction correction in the UV, the wavelength most affected by dust.

We propose an internal extinction correction prescription similar to that described in Gavazzi et al. (2002a).

Our semi-empirical determination of A(UV) takes into account the scattered light. Following Buat et al. (1999), we estimate Ai(UV) from the relation:

$\displaystyle A_i({\rm UV})$ = $\displaystyle 0.466 + {\rm Log}{\rm (FIR/UV)}
+0.433 \times \left(\rm Log(FIR/UV)\right)^2 ~~~~~~~~~~~~~~~~~~~{\rm [{mag}]}$ (1)

where
$\displaystyle {\rm FIR}$ = $\displaystyle 1.26 \times (2.58 \times 10^{12} \times F_{60}
+ 10^{12} \times F_{100}) \times 10^{-26} ~~~~~~\left[{\rm Wm^{-2}}\right]$ (2)

F60 and F100 are the IRAS FIR fluxes (in Jy) and

\begin{displaymath}{\rm UV}=10^{-3} \times 2000*10^{({\rm UV}_{\rm mag}+21.175)/-2.5} ~~~~~\left[{\rm Wm^{-2}}\right].
\end{displaymath} (3)

$A_i(\lambda)$ can be derived from Ai(UV) once an extinction law and a geometry for the dust and star distribution are assumed. We adopt the sandwitch model, where a thin layer of dust of thickness $\zeta$is embedded in a thick layer of stars:
$\displaystyle A_i(\lambda)=-2.5 \cdot \log\left(\left[\frac{1-\zeta(\lambda)}{2...
...}^{-\tau(\lambda) \cdot {\rm sec}(i)}\right)\right) ~~~~~~~~~~~~~~~~[{\rm mag}]$     (4)

where the dust to stars scale height ratio $\zeta(\lambda)$ depends on $\lambda$ (in units of Å) as:

\begin{displaymath}\zeta(\lambda)=1.0867{-}5.501 \times 10^{-5} \cdot \lambda.
\end{displaymath} (5)

Relation (5) has been calibrated adopting the average between the optically thin and optically thick cases with $\lambda$ dependent dust to star scale height ratios given by Boselli & Gavazzi (1994). Observations of some edge-on nearby galaxies show that it is still unclear whether $\zeta$ depends or not on $\lambda$ (Xilouris et al. 1999). As shown in Gavazzi et al. (2002a), however, similar values of $A_i(\lambda)$are obtained in the case of a sandwitch model and of the extreme case of a slab model ($\zeta=1$), meaning that the high uncertainty on $\zeta$ is not reflected on $A_i(\lambda)$.

In the case of the UV band ( $\lambda=2000$ Å), $\zeta=1$, and Eq. (4) reduces to a simple slab model. In this case $\tau$(UV) can be derived by inverting Eq. (4):

                                              $\displaystyle \tau({\rm UV})=[1/{\rm sec}(i)] \cdot \big(
0.0259+1.2002 \times A_i({\rm UV})$  
    $\displaystyle \left.+1.5543 \times A_i({\rm UV})^2-0.7409 \times A_i({\rm UV})^3 +0.2246 \times A_i({\rm UV})^4\right)$ (6)

using the galactic extinction law $k(\lambda)$ (Savage & Mathis 1979), we than derive:

\begin{displaymath}\tau(\lambda) = \tau({\rm UV}) \cdot k(\lambda) / k({\rm UV})
\end{displaymath} (7)

and we compute the complete set of $A_i(\lambda)$ using Eq. (4).

FIR/UV is available for 44 objects. If FIR or UV measurements are unavailable we assume the average values $A_i({\rm UV}) = 1.28$; 0.85; 0.68 mag for Sa-Sbc; Sc-Scd; Sd-Im-BCD galaxies respectively, as determined when FIR and UV measurements are available.

Once corrected adopting the aformentioned prescription, we checked empirically that the SED do not contain a residual dependence on galaxy inclination. The corrected SEDs of 32 Sc galaxies, binned in 4 intervals of inclination, and their fit parameters were found very consistent one another. The galactic and internal extinction correction (in magnitude) for the observed galaxies are given in Table 7.

This empirical attenuation law gives a zeroth order estimate of the attenuation in the UV regime, the most affected by dust. We stress however that the shape of the corrected spectrum, in particular at UV wavelengths, is still uncertain. This is due not only to the lack of observational constraints other than the 2000 Å  flux, but also to the large uncertainties on the relative geometrical distributions of dust and stars and on the extinction law, which might significantely depend on the UV field and metallicity in this wavelength regime.

4 The SEDs

Figure 2 shows the SEDs of the sample galaxies obtained using the data given in Table 3 (only for those galaxies with at least 2 photometric data points). UV, optical and near-IR data are corrected for galactic and internal extinction as described in the previous section. FIR data at 60 and 100 $\mu $m are average values between IRAS and ISOPHOT data when both are available. When one of the two data is an upper limit, we take the detection[*]. To be as consistent as possible with IRAS, ISOPHOT data have been corrected for the average ISOPHOT/IRAS ratio found by Tuffs et al. (2002) for Virgo galaxies detected with both instruments, $\rm ISOPHOT/IRAS=0.95$ and 0.82 at 60 and 100 $\mu $m respectively.

The morphological type given in Table 2 and the logarithm of the H band luminosity, defined as $\log L_H = 11.36 - 0.4H_{\rm T} +2\log D$ (in solar units), where $H_{\rm T}$ is the total H band magnitude and D is the distance to the source (in Mpc), are labeled in Fig. 2. For few objects we derive the H luminosity from K band measurements assuming an average H-K colour of 0.25 mag (independent of type; see Gavazzi et al. 2000). A minority of the objects in our sample have an H band magnitude obtained from aperture photometry, thus with no asymptotic extrapolation. For these we use the H magnitude determined as in Gavazzi & Boselli (1996) at the optical radius which is on average 0.1 mag fainter than $H_{\rm T}$ (Gavazzi et al. 2000).

The continuum line in the optical domain gives the integrated spectrum obtained by Gavazzi et al. (2002a). The two dashed lines at $\lambda< 10$ $\mu $m are the Bruzual & Charlot stellar population synthesis models (GISSEL 2001). The upper curves represent the models which best fit the extinction corrected data, as determined by Gavazzi et al. (2002a). The lower curves represent the same models attenuated by dust extinction using the inverse relations of Sect. 3.1. For galaxies with insufficient photometric points for fitting a model, we adopt the Bruzual & Charlot model that best-fits a template SED of similar morphological type (Fig. 9 in Gavazzi et al. 2002a). To be consistent with Gavazzi et al. (2002a), all models are normalized to the V band photometric data when available, or to the K band. Given the poor quality of the fit, models are not shown for the galaxies VCC 1217 and VCC 1313.

We have preferred not to give fits in the Mid-IR range for two reasons: 1) because the very small grains and the carriers of the Aromatic Infrared Bands responsable for the mid-IR dust emission are not in thermal equilibrium with the radiation, but are stochastically heated (mostly) by UV photons (Boselli et al. 2003). Thus modified black-body functions cannot be used to fit the mid-IR data. 2) mid-IR spectra obtained with the CVF camera onboard ISO in various galactic and extragalactic environments has shown a variety of strong emission lines with fluxes comparable with the continuum. It is thus difficult to estimate a typic mid-IR spectrum of galaxies.

The dashed line in the FIR domain (20-2000 $\mu $m) reprsents a two dust components model. Two modified blackbodies $F(\nu)\sim\nu^{\beta}B(\nu)(T_D)$, with $\beta=2$, one with a fixed warm temperature of $T_{\rm w}=47$ K (tracing the star forming regions), the other with a (variable) cold temperature $T_{\rm c}$ (tracing the cirrus emission), were determined consistently with Popescu et al. (2002). The two components are calibrated to match the 60 and 170 $\mu $m data respectively. For galaxies not observed by PHOT but detected by IRAS at 60 and 100 $\mu $m, we adopted a modified blackbody with $T_{\rm w}=47$ K for the warm component and we assume $T_{\rm c}=18$ K (the average value of Popescu et al. 2002), for the cold component. They are calibrated to match the 60 and 100 $\mu $m fluxes respectively.

The far-IR to mm domain, from 170 $\mu $m to $\sim$1 cm, is totally unexplored. Submillimetric observation should provide constraints on the cold dust temperature and on the total dust mass of the sample galaxies. From $\sim$1 mm to 1 cm, data are needed to estimate the relative contribution of the thermal and synchrotron radio emission.

The dashed line in the centimetric domain, given for all galaxies with more than two detections, represents the power-law regression to the radio continuum data. The best-fit parameters are given in Table 8.

5 Analysis

Previous analyses, each devoted to a limited spectral domain, have attempted to interpret the SEDs of galaxies: Gavazzi et al. (2002a) for the continuum stellar radiation, Boselli et al. (1998, 2003 and in preparation) for the mid-IR emission, Popescu et al. (2002) for the FIR emission, and Niklas et al. (1997) for the radio emission. In this work, for the first time we analyze the SEDs as determined in the whole spectral range.


   
Table 9: Template dust extinction corrected SEDs.
$\lambda$ ($\mu $m) Log $(F(\nu)/F(K))$
  S0a Sa Sab-Sb Sbc-Sc Scd-Sd Im BCD $L_{\rm H}$<8.3 $8.3\leq L_{\rm H}<9$ $9\leq L_{\rm H}<9.8$ $9.8\leq L_{\rm H}<10.5$ $L_{\rm H}\geq 10.5$
0.20 -3.22(2) -2.46(5) -1.51(5) -1.04(15) -0.72(4) -0.38(7) -0.36(4) - (1) -0.37(11) -0.87(9) -1.22(12) -1.62(10)
0.37 -1.25(5) -0.96(10) -0.92(7) -0.59(16) -0.47(6) -0.26(15) -0.32(9) -0.12(3) -0.28(21) -0.58(17) -0.88(15) -1.06(16)
0.44 -0.78(6) -0.42(11) -0.45(7) -0.26(22) -0.16(6) 0.06(21) -0.10(11) 0.11(4) -0.03(27) -0.21(21) -0.40(19) -0.53(18)
0.55 -0.48(6) -0.21(11) -0.25(7) -0.13(22) -0.07(6) 0.13(21) -0.04(10) 0.23(3) 0.08(27) -0.09(21) -0.18(19) -0.28(18)
1.25 0.06(5) 0.07(9) 0.05(6) -0.02(7) -(-) 0.19(6) 0.08(2) 0.22(2) 0.19(4) 0.09(3) 0.05(12) 0.06(16)
1.65 0.13(6) 0.13(10) 0.11(6) 0.13(14) -(1) 0.15(7) 0.11(2) 0.21(2) 0.15(5) 0.14(7) 0.13(19) 0.12(16)
2.10 0.00(6) 0.00(11) 0.00(7) 0.00(22) 0.00(6) 0.00(35) 0.00(17) 0.00(20) 0.00(32) 0.00(22) 0.00(19) 0.00(18)
6.75 -0.95(5) -0.96(9) -0.46(7) -0.14(21) -0.37(5) -0.19(14) -0.57(11) -0.15(4) -0.35(18) -0.34(18) -0.16(18) -0.61(17)
12 -(1) -0.54(4) -0.24(7) 0.26(13) -(1) -(1) -(-) - (-) - (-) - (1) 0.13(13) -0.33(14)
15 -1.37(5) -1.30(10) -0.47(7) -0.13(21) -0.14(4) 0.06(9) -0.48(7) 0.02(2) -0.30(10) -0.46(18) -0.22(19) -0.63(17)
25 -(1) -(1) -0.40(7) 0.46(13) -(1) -(1) -(1) - (-) - (1) 0.72(3) 0.28(11) -0.10(12)
60 -0.19(2) 0.19(7) 0.43(7) 1.14(17) 1.29(5) 1.44(6) 1.39(6) - (-) 1.48(10) 1.18(14) 1.05(14) 0.43(15)
100 0.36(2) 1.01(6) 0.97(7) 1.63(17) 1.72(5) 1.78(7) 1.65(8) 2.00(3) 1.70(9) 1.67(14) 1.61(13) 0.97(15)
170 0.36(4) 1.15(5) 1.27(7) 1.78(11) 1.88(4) 1.89(10) 1.93(9) 2.05(4) 1.82(12) 1.83(15) 1.68(10) 1.15(11)
28000 -(1) -(1) -1.55(5) -1.46(8) -(-) -(1) -(-) - (-) - (-) - (-) -1.63(9) -1.44(9)
63000 -2.46(2) -2.09(2) -1.57(5) -1.08(11) -(-) -(1) -(-) - (-) - (-) - (1) -1.21(9) -1.40(12)
126000 -2.00(3) -1.68(6) -1.34(5) -1.01(10) -(1) -(1) -(1) - (-) - (-) - (1) -1.10(13) -1.47(14)
210000 -(1) -(1) -1.31(5) -0.81(10) -0.72(2) 0.33(4) -(1) - (-) 0.51(3) -0.72(3) -0.95(11) -1.06(10)


Note: the values in parenthesis give the total number of objects in each Hubble type and wavelength bin that were combined to form the templates.


5.1 The template SED

The template SEDs in bins of morphological type and luminosity are obtained as median combinations of the normalized (to the K band) SEDs. We used only the detected values and imposed that at least 2 photometric points were available. The resulting extinction corrected template SEDs in different classes of morphological type and luminosity are shown in Figs. 3a and c respectively. The observed (dust attenuated) SEDs of M 82 and Arp220 (from Elbaz et al. 2002), are given for comparison in Figs. 3b and 3d. The median values of $F(\lambda)/F(K)$ for the templates in the 18 bands considered in this work are given in Table 9, while the fitting models in the visible (corrected and uncorrected for dust extinction) and in the FIR are given in Tables 10, 11 and 12 respectively[*]. The values in parenthesis in Table 9 give the total number of objects in each Hubble type and wavelength bin that were combined to form the templates.


  \begin{figure}
\par\includegraphics[width=8.7cm,clip]{3180f3a.eps}\hspace*{0.4cm...
....eps}\hspace*{0.4cm}
\includegraphics[width=8.7cm,clip]{3180f3d.eps}\end{figure} Figure 3: The extinction corrected a) and dust attenuated b) template SEDs in bins of morphological type and luminosity ( c) d)). The dust attenuated SEDs of M 82 (continuum black line) and Arp 220 (dotted black line) are also given for comparison.

By analyzing Fig. 3 we can observe that: a) the relative contribution to the SED of the young stellar component, emitting in the UV, and of the relatively cold dust emitting at $\sim$60-200 $\mu $m increases from early to late-type spirals and/or from high-mass to low-mass objects; b) the 60 to 100 $\mu $m flux density ratio increases with the total FIR emission, indicating a general increase of the big grains dust temperature from massive Sa to low-luminosity Scd-Im-BCD and, to a much higher degree, in starburst galaxies. c) optically selected spirals have UV to near-IR SEDs similar to those of sturburst galaxies such as M 82 or Arp 220, despite the fact that these extreme objects have dust attenuations several order of magnitudes higher than normal galaxies, $A({\rm UV})\sim 1$ for optically selected spirals vs. $A({\rm UV})\sim 3.5$ for M 82 (Buat et al. 2002) and $A({\rm UV})\geq 100$ for Arp 220 (Haas et al. 2001). At the same time the far-IR emission of optically-selected, normal galaxies is more than a factor of 10-100 less important than in sturbust galaxies.

It is thus extremely dangerous to use the SEDs of starburst galaxies such as M 82 and Arp 220 as templates of normal late-type galaxies at high redshift, as often done, since these objects may not be representative of the mean late-type galaxy population even at earlier epochs, when star formation was expected to be more active.

5.2 The stellar contribution to the mid-IR emission

The Bruzual & Charlot models fitted to the data trace the stellar emission from 1000 Å  to 10 $\mu $m, and can thus be used to estimate the stellar contribution to the emission of our target galaxies at 6.75 $\mu $m. The ratio of the total flux (dust plus star) to the stellar flux at 6.75 $\mu $m, [F6.75(d+s)/F6.75(s)], determined for all galaxies detected at 6.75 $\mu $m, and with available visible or near-IR photometry, is given in Table 8, while the median value for each morphological class in Table 13.

Figure 4 shows the relationship between [F6.75(d+s)/F6.75(s)] and the morphological type. The stellar contribution to the total mid-IR emission of galaxies strongly depends on the morphological type. In early-types ($\leq $S0a), the emission at 6.75 $\mu $m is completely dominated by the photosphere of the cold stellar population (see Table 13). The average stellar contribution to the 6.75 $\mu $m emission of spiral galaxies is always important, ranging from $\sim$80% in Sa to $\sim$20% to Sc and Im. In BCD the stellar emission contributes on average at $\sim$50%. Given the low detection rate in irregular galaxies (Im and BCD), their average [F6.75(d+s)/F6.75(s)] ratios might be biased towards objects whose stellar contribution to the mid-IR emission is important, the only ones with detectable 6.75 $\mu $m flux. The decrease of the dust emission observed in BCD and Im galaxies, however, could be due either to their low metallicity, or to the destruction of the carriers of the UIB expected in high UV radiation fields (Boselli et al. 1998). We do not see any strong relationship between the [F6.75(d+s)/F6.75(s)]ratio and the total K band luminosity or concentration index parameter. However all galaxies with $C_{31}\rm (K)> 4$ have their mid-IR emission at 6.75 $\mu $m dominated by stars. Among the ISOCAM resolved galaxies, these objects have also a C31(6.75 $\mu $m) index >4 (Boselli et al. 2003), suggesting that the spatial distribution of the stellar component dominating the mid-IR emission is similar to that emitting in the near-IR.

In the assumption that the stars dominating the emission at $\sim$$\mu $m have a spatial distribution similar to those emitting in the near-IR, we can re-scale our K band images (Boselli et al. 1997) using Table 8 and subtract them from the ISOCAM LW2 images of Boselli et al. (2003) to obtain images of the pure dust emission at 6.75 $\mu $m. We apply this correction, as an exercize to the Sab galaxy VCC 1727 (Fig. 5). The ISOCAM LW2 image at 6.75 $\mu $m shows a very pronunced nucleus, a clumpy, ring-like structure and a smoothed, diffuse external region. The emitting dust, on the contrary, is mostly located along the ring-like structure. Most of the nuclear and part of the diffuse emission in the 6.75 $\mu $m image is stellar.

The determination of the stellar contribution to the 12 and 15 $\mu $m emission of galaxies cannot be easely quantified since the Bruzual & Charlot models are limited to the spectral domain $\lambda$ $\leq $ 10 $\mu $m. The extrapolation of our fit (Fig. 2) indicates that the stellar contribution can be important at 15 $\mu $m, even though less than at 6.75 $\mu $m.

This result has to be taken in serious consideration when mid-IR deep surveys are used to estimate the star formation activity of galaxies at high z, where rest-frame mid-IR fluxes might be dominated by the stellar emission.


 

 
Table 13: The average stellar contribution to the 6.75 $\mu $m emission for different morphological classes.
Type $\log[F_{6.75}(d+s)/F_{6.75}(s)]$
S0a $-0.17 \pm 0.13$
Sa-Sab $0.08 \pm 0.33 $
Sb-Sbc $0.39 \pm 0.18$
Sc $0.76 \pm 0.29$
Scd-Sd $0.50 \pm 0.30$
Sm-Im $0.60 \pm 0.37$
BCD $0.27 \pm 0.31$


5.3 The dust emission

As extensively discussed in Sect. 3.1, in a given galaxy the energy emitted by the various stellar populations and absorbed by dust must equal the total energy radiated in the mid- and far-IR domain. However $A({\rm UV})$ was estimated in Sect. 3.1 just from FIR, which is a combination of the 60 and 100 $\mu $m fluxes, not from the integral of the dust emission as determined on the SEDs. It remains to be checked whether the global extinction A( $\rm 1000~ \AA <\lambda< 10~\mu$m), which depends on the adopted geometrical model and on the choice of the galactic extinction law, is consistent with the observed mid- and far-IR emission.

The energy of the stellar light absorbed by dust is equal to the difference between the integrals of the stellar SEDs (i.e. the Bruzual & Charlot models) prior and after the extinction correction. This should equal the energy radiated in the FIR:

\begin{displaymath}\int\limits_{20\rm ~\mu m}^{2000\rm ~\mu m} F(\lambda){\rm d}...
...000\rm ~\AA}^{10\rm ~\mu m} F_{\rm obs}(\lambda){\rm d}\lambda
\end{displaymath} (8)

where the integral on the left is performed under the two modified black-body functions fitted to the data between 20 and 2000 $\mu $m (far-IR). The integrals on the right are performed under the Bruzual & Charlot models prior and after the extinction correction. We disregard the dust emission in the range 5-20 $\mu $m due to the lack of model fitting in the mid-IR domain, whose energy contribution to the total should however be small.

To illustrate our method we give in Fig. 6 the SED of the galaxy VCC 1554. The energy of the stellar light absorbed by dust is marked by the shaded region shortward of 10 $\mu $m, the energy re-emitted in the FIR by the shaded region between 20 and 2000 $\mu $m.

  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{3180f4.eps}\end{figure} Figure 4: The relationship between the total flux (dust plus stars) to the stellar flux at 6.75 $\mu $m, [F6.75(d+s)/F6.75(s)], and the morphological type.


  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{3180f5a.ps}\par\includegra...
...,clip]{3180f5b.ps}\par\includegraphics[width=8.8cm,clip]{3180f5c.ps}\end{figure} Figure 5: The gray-level images of the Sab galaxy VCC 1727 at 6.75 $\mu $m: a) the observed images (dust+star), b) the stellar image (scaled from the K band image), c) the image of the dust emission, corrected for stellar contribution (dust). The three images are displayed with the same cuts and on the same scale (6.45 $\times $ 6.45 arcmin).


  \begin{figure}
\par\includegraphics[width=8.65cm,clip]{3180f6N.eps}\end{figure} Figure 6: The SED of the galaxy VCC 1554. The energy of the stellar light absorbed by dust is indicated by the shaded region in between the Bruzual & Charlot extinction corrected model (light green continuum line) and the observed one (emeralde green continuum line) in the wavelength range 0.1-10 $\mu $m. The energy re-emitted by dust in the FIR is shown by the violet shaded region in the wavelength range 20-2000 $\mu $m. The photometric data are shown by blue dots, the optical spectrum is given in red.


  \begin{figure}
\par\includegraphics[width=8.65cm,clip]{3180f7.eps}\end{figure} Figure 7: The relationship between the total energy emitted in the far-IR and that emitted by stars and absorbed by dust in the range between 1000 Å and 10 $\mu $m (see Eq. (8)). The continuum line is the one to one relation, while the dashed line is the bysector fit. Filled symbols are galaxies whose extinction has been determined directly using the observed FIR/UV ratio, empty symbols are objects without far-IR and/or UV data, whose extinction has been determined using the average A(UV) for their morphological type class.

Figure 7 shows the relationship between the total energy emitted in the far-IR and that emitted by stars and absorbed by dust in the range between 1000 Å and 10 $\mu $m (Eq. (8)). The median value of the ratio between the energy absorbed by dust and that emitted in the far-IR is 1.27 for the entire sample, 1.03 for those objects whose extinction has been determined directly using the observed FIR/UV ratio, as illustrated in Fig. 8.

The almost linear relation between the absorbed star light and the energy emitted by dust, combined with their ratio close to one, leads us to conclude that the prescription given in Sect. 3.1 to correct stellar SEDs is sufficiently accurate for optically-selected spiral galaxies, even for objects without UV and far-IR data.

The ratio between the energy absorbed by dust and that emitted in the far-IR shows however a weak residual trend with morphological type (Fig. 9) and luminosity (Fig. 10): it is significantely larger than unity in early-type, massive galaxies.

  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{3180f8.eps}\end{figure} Figure 8: The distribution of the ratio between the energy absorbed by dust and that emitted in the far-IR for the entire sample a), for galaxies whose extinction has been determined using the observed FIR/UV ratio b), and for those objects without far-IR and/or UV data whose extinction has been determined using the average value of A(UV) for their morphological class c).

This increase could be due to an underestimate of the far-IR emission of massive, early-type galaxies, that could exist if we missed a colder dust component in quiescent objects with low UV interstellar radiation field.

We remind that the extinction values derived using this prescription are significantly smaller than those obtained using the Calzetti's law, which is probably more accurate for starburst galaxies (see Gavazzi et al. 2002a and Buat et al. 2002 for a detailed discussion on this issue).

5.4 The radio emission

For 25 galaxies detected at more than one frequency in the centimetric domain, we derive the slope of the radio continuum spectrum by a simple linear fit to the data. Excluding galaxies VCC 857, 1110 and 1450 showing large inconsistencies in the radio continuum flux densities and 8 additional objects with signs of nuclear activity (LINER, Seyfert, see Table 2) we obtain an average spectral slope $\alpha=0.76 \pm 0.27$, consistent with the canonical synchrotron slope $\alpha=0.8$ found by Niklas et al. (1997) by carefully separating the contribution of the thermal from the synchrotron emission (see Table 8).

5.5 The bolometric luminosity of optically-selected, late-type galaxies

By integrating the fit models in the stellar and FIR domain, we calculate the (observed) bolometric luminosity of our target galaxies:

\begin{displaymath}L_{\rm Bol} = \int\limits_{1000~\rm\AA}^{10~\rm\mu m} F_{\rm ...
...imits_{20~\rm\mu m}^{2000~\rm\mu m} F(\lambda){\rm d}\lambda .
\end{displaymath} (9)

As before, we disregard the contribution of UIB and of the very small grains in the 5-50 $\mu $m range, thus this esitimate gives a lower limits to the total bolometric luminosity.


  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{3180f9.eps}\end{figure} Figure 9: The ratio between the energy absorbed by dust and that emitted in the far-IR as a function of the morphological type. Symbols as in Fig. 7.


  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{3180f10.eps}\end{figure} Figure 10: The ratio between the energy absorbed by dust and that emitted in the far-IR as a function of the H band luminosity. Symbols as in Fig. 7.


  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{3180f11.ps}\end{figure} Figure 11: The relationship of the ratio of the total uncorrected stellar luminosity (from the Bruzual & Charlot model) to the total FIR luminosity versus the bolometric luminosity of the target galaxies. Symbols are as in Fig. 7.

Figure 11 shows that the bolometric luminosity of optically-selected late-type galaxies in the range 108 $\leq $ $L_{\rm bol}$ $\leq $ 10 $^{11}~ L_\odot$, is dominated by the stellar emission. The median value of the ratio between the energy emitted by stars in the 1000 Å- 10 $\mu $m range and by dust in the Far-IR is 4.0, significantly higher than $f_B/f_{\rm FIR} \sim 1.6$ found by Soifer et al. (1987) who determined the stellar emission from the B band luminosity alone. No relation is observed between the stellar to FIR ratio and the bolometric luminosity, except for an higher dispersion at high luminosity.

Figure 12 shows that the far-IR to bolometric luminosity ratio increases from early Sa spirals ( $L_{\rm FIR}/L_{\rm bol} \leq 0.1$) to Sc-Sd galaxies ( $L_{\rm FIR}/L_{\rm bol} \sim 0.2{-}0.4$), consistently with Popescu & Tuffs (2002). BCDs have $L_{\rm FIR}/L_{\rm bol} \sim 0.2$. The apparent discrepancy with Popescu & Tuffs (2002) who occasionaly observed $L_{\rm FIR}/L_{\rm bol} > 0.5$in BCDs is probably due to a systematic difference in determining the stellar contribution to the bolometric luminosity in the two works. We trust our values being based on a robust estimate of the stellar contribution to the bolometric luminosity consequent to a complete and homogeneous spectro-photometric dataset extending from the UV to the near-IR that we have fitted with Bruzual & Charlot population synthesis models.


  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{3180f12.ps}\end{figure} Figure 12: The relationship between the far-IR to bolometric luminosity ratio and the morphological type. Symbols are as in Fig. 7.

6 Summary and conclusions

We present a multifrequency dataset comprising an optically-selected, volume-limited, complete sample of 118 galaxies in the Virgo cluster. The sample includes all late-type ($\geq $S0a) Virgo A members in the core of the cluster, with projected distance $\Theta< 2$ degrees from M 87, or at the peryphery of the cluster ($\Theta> 4$ degrees from the position of maximum projected galaxy density).

The database includes UV, visible, near-IR, mid-IR, far-IR, radio continuum photometric data as well as spectroscopic data on the H$\alpha$, CO and HI lines.

Spectral energy distributions (SEDs) of the individual galaxies, as well as templates SEDs in bins of morphological type and luminosity are derived. The SEDs are fitted with stellar population synthesis models providing an estimate of the total stellar radiation, with modified black-bodies fitted to the far-IR data giving the energy re-emitted by dust, and with power laws representing the synchrotron emission.

Assuming the energy balance between the absorbed stellar light and the energy radiated in the IR by dust, we calibrate an empirical attenuation law suitable for correcting photometric and spectroscopic data of normal galaxies.

The analysis of the SED show that low-luminosity, dwarf galaxies have on average bluer stellar continua and higher far-IR luminosities (per unit galaxy mass) than giant, early-type spirals. Normal spirals have relatively similar observed stellar spectra but 10 to 100 times lower IR luminosities than nearby starburst galaxies such as M 82 and Arp 220. The temperature of the cold dust component increases with the far-IR luminosity, from giant spirals to dwarf irregulars and to an higher extent in starburst galaxies. SEDs of starburst galaxies should not be used as templates of normal high redshift galaxies.

We show that the contribution of the stellar emission to the 6.75 $\mu $m mid-IR flux is generally important, from $\sim$80% in Sa to $\sim$20% in Sc.

Acknowledgements

We thank J. Donas and D. Pierini for providing us with unpublished UV and near-IR data. We thank S. Arnouts, V. Buat and M. Sauvage for stimulating discussions, and D. Elbaz for providing us with the SED of M 82 and Arp 220. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. most of the data presented in this work are available through the WEB page http://goldmine.mib.infn.it

Appendix: UBV CCD photometry of Virgo galaxies[*]

The present work is partly based on new CCD optical photometry of 36 galaxies obtained at the 1.20 m Newton telescope at the Observatoire de Haute Provance (OHP, France), at the 0.9 m telescope at Kitt Peak and at the 2.5 m INT telescope at La Palma. The OHP and the INT observations were taken during the H$\alpha$ surveys presented in Boselli & Gavazzi (2002) and Boselli et al. (2002a) respectively. Details on the observations and data reduction procedures are found in these papers. Kitt Peak targets were observed as fillers during an H$\alpha$ survey of isolated galaxies.

The f/6 1.2 m OHP telescope was equipped with a thinned TK $1024\times 1024$ pixels CCD detector, with a pixel size of 0.69 arcsec and a field of view of $11.8\times11.8$ arcmin. At the adopted gain, the electron/adu conversion is 3.5 e-/adu, with a readout noise of 8.5 e-. Thirty galaxies of the present sample were observed during 26 nights in two runs, in 1998 and 2000. Fourteen galaxies were imaged in the V, 30 in the B and 1 in the U band. The observations were done in poor seeing conditions, ranging from 2 to 4 arcsec. The typical integration time was 10 minuts in the V, 15 in the B and 30 in the U bands.

INT B band imaging of 2 galaxies were obtained in 1999 using the Wide Field Camera (WFC) attached at the prime focus of the f/3.292.5 m telescope. The WFC is composed by a science array of four thinned AR coated EEV $\rm 4K\times 2K$ CCDs, plus a fifth acting as autoguider. The pixel scale at the detectors is 0.33 arcsec pixel-1, which gives a total field of view of about $34\times 34$  arcmin2. The observations were done during photometric conditions, with an average seeing of 1.5-2 arcsec and an integration time of 10 min.

Kitt Peak B band imaging of 5 galaxies were obtained during 4 nights in 1995 using the 0.9 m telescope in the f/13 configuration, equipped with a T2KA $2048\times2048$ pixel CCD, with a pixel size of 0.384 arcsec pixel-1 and a total field of view of $13.1\times13.1$ arcmin. At the adopted gain, the electron/adu conversion is 2 e-/adu, with a lecture noise of 4 e-. The observations were done during non photometric conditions, with an average seeing of 1-1.5 arcsec and an integration time of 15 min.

The observations were calibrated and transformed into the Johnson UBV system using standard stars in the catalogue of Landolt (1983). Observations of the standard stars were repeated every 2 hours. Repeated measurements gave <0.10 mag differences, which we assume as the typical uncertainty of the photometric result given in this work. Not all frames were obtained in photometric conditions. When the zero point was varing by more than 0.05 mag due to cirrus, we choose to observe only galaxies with available multiaperture photometry in order to perform the calibration a posteriori.


 
Table 10: Example of template dust extinction corrected B&C SEDs.

$\lambda$ ($\mu $m)
Log $(F(\nu)/F(K))$
  S0a Sa Sab-Sb Sbc-Sc Scd-Sd Im BCD LH<8.3 8.3$\leq $LH<9 9$\leq $LH<9.8 9.8$\leq $LH<10.5 LH$\geq $10.5
0.1005 -3.26 -2.88 -2.04 -1.03 -0.81 -0.58 -0.40 -0.36 -0.51 -0.97 -1.26 -2.08
0.1015 -3.25 -2.88 -2.06 -1.05 -0.83 -0.62 -0.44 -0.40 -0.55 -1.01 -1.25 -2.09
0.1025 -3.36 -3.02 -2.25 -1.28 -1.02 -0.85 -0.67 -0.63 -0.77 -1.24 -1.42 -2.28
0.1035 -3.28 -2.91 -2.10 -1.09 -0.87 -0.65 -0.46 -0.43 -0.57 -1.04 -1.30 -2.13
0.1045 -3.19 -2.83 -1.98 -0.98 -0.75 -0.55 -0.37 -0.34 -0.48 -0.95 -1.16 -2.02
0.1055 -3.20 -2.83 -1.98 -0.97 -0.75 -0.54 -0.36 -0.32 -0.47 -0.93 -1.17 -2.01
... ... ... ... ... ... ... ... ... ... ... ... ...
1.0025 -0.02 0.14 0.08 0.08 0.15 0.05 0.22 0.32 0.18 0.12 0.11 0.06
1.0075 -0.02 0.13 0.07 0.08 0.15 0.04 0.21 0.32 0.17 0.12 0.10 0.05
1.0125 -0.02 0.14 0.08 0.08 0.15 0.05 0.22 0.33 0.18 0.12 0.11 0.06
1.0175 -0.02 0.14 0.08 0.08 0.15 0.05 0.22 0.32 0.18 0.12 0.10 0.06
1.0225 -0.01 0.14 0.08 0.08 0.15 0.05 0.22 0.32 0.18 0.12 0.11 0.06
... ... ... ... ... ... ... ... ... ... ... ... ...
9.7800 -1.09 -1.05 -1.10 -1.09 -1.02 -1.24 -1.06 -0.96 -1.10 -1.06 -1.07 -1.10
9.8200 -1.09 -1.05 -1.10 -1.09 -1.02 -1.24 -1.07 -0.96 -1.11 -1.06 -1.07 -1.11
9.8600 -1.09 -1.05 -1.11 -1.09 -1.02 -1.24 -1.07 -0.96 -1.11 -1.07 -1.07 -1.11
9.9000 -1.10 -1.05 -1.11 -1.09 -1.02 -1.24 -1.07 -0.96 -1.11 -1.07 -1.07 -1.11
9.9400 -1.10 -1.06 -1.11 -1.10 -1.03 -1.25 -1.08 -0.97 -1.12 -1.07 -1.08 -1.11
9.9800 -1.10 -1.06 -1.12 -1.11 -1.03 -1.25 -1.08 -0.97 -1.12 -1.08 -1.08 -1.12
10.0200 -1.11 -1.07 -1.12 -1.11 -1.04 -1.26 -1.09 -0.98 -1.12 -1.08 -1.09 -1.12

Notes: Table 10, 11 (template dust extinction uncorrected) and 12 (template FIR fit) are available only in electronic form at the CDS.


The data reduction of the CCD images follows a procedure identical to the one described in previous papers of the series (Gavazzi et al. 1995), based on the IRAF STSDAS data reduction packages. To remove the detector response each image is bias subtracted and devided by the mean of 5 flat field exposures obtained on the twilight sky. Direct inspection of the frames allows manual cosmic rays removal and subtraction of contaminating objects, such as nearby stars and galaxies. The sky background is determined in each frame in concentric object-free annuli around the object. The typical uncertainty on the mean background is estimated 10% of the rms in the individual pixels. This represents the dominant source of error in low S/N regions. The determination of object centroid is performed by fitting Gaussian two-dimensional profiles to the data, centered on the brightest excess in each object, generally corresponding to the nucleus. At the central coordinates determined, a growth curve is derived for each object by integrating the counts in concentric circular rings of increasing radii. The obtained growth curves, transformed from counts to magnitudes, are then compared with the multiaperture photometry available in the literature, in order to check our photometric calibration and to obtain a zero point for those objects observed in non-photometric conditions. At this stage stars projected within the target galaxies were not subtracted since, unless specified, reference aperture photometry usually includes them. Once the accurate zero point is obtained for each galaxy, a similar procedure is repeated after subtracting contaminating stars and galaxies. Following the procedure described in Gavazzi & Boselli (1996), a magnitude is obtained after integrating along circular, concentric annuli up to the isophotal 25 mag arcsec-2B diameter. To improve the photometric accuracy, this procedure is applyed adding our measurements with aperture photometry available in the literature. UBV magnitudes of the target galaxies are given in Table 3. The estimated error on the magnitude is $\sim$10%.

References

 

Online Material


  \begin{figure}{
\includegraphics[width=5.4cm,clip] {VCC1.eps}\hspace*{1mm}
\incl...
...eps}\hspace*{1mm}
\includegraphics[width=5.4cm,clip] {VCC459.eps} }
\end{figure} Figure 2: The SED of the sample galaxies.


 \begin{figure}{
\includegraphics[width=5.6cm,clip] {VCC460.eps}\hspace*{1mm}
\in...
...ps}\hspace*{1mm}
\includegraphics[width=5.6cm,clip] {VCC912.eps} }\end{figure} Figure 2: continued.


 \begin{figure}{
\includegraphics[width=5.6cm,clip] {VCC945.eps}\hspace*{1mm}
\in...
...s}\hspace*{1mm}
\includegraphics[width=5.6cm,clip] {VCC1189.eps} }\end{figure} Figure 2: continued.


 \begin{figure}{
\includegraphics[width=5.6cm,clip] {VCC1196.eps}\hspace*{1mm}
\i...
...s}\hspace*{1mm}
\includegraphics[width=5.6cm,clip] {VCC1411.eps} }\end{figure} Figure 2: continued.


 \begin{figure}{
\includegraphics[width=5.6cm,clip] {VCC1412.eps}\hspace*{1mm}
\i...
...s}\hspace*{1mm}
\includegraphics[width=5.6cm,clip] {VCC1673.eps} }\end{figure} Figure 2: continued.


 \begin{figure}{
\includegraphics[width=5.6cm,clip] {VCC1675.eps}\hspace*{1mm}
\i...
...s}\hspace*{1mm}
\includegraphics[width=5.6cm,clip] {VCC1757.eps} }\end{figure} Figure 2: continued.


 \begin{figure}{
\includegraphics[width=5.6cm,clip] {VCC1758.eps}\hspace*{1mm}
\i...
...s}\hspace*{1mm}
\includegraphics[width=5.6cm,clip] {VCC1972.eps} }\end{figure} Figure 2: continued.


 \begin{figure}{
\includegraphics[width=5.6cm,clip] {VCC1987.eps}\hspace*{1mm}
\i...
...s}\hspace*{1mm}
\includegraphics[width=5.6cm,clip] {VCC2087.eps} }\end{figure} Figure 2: continued.


 

 
Table 2: The target galaxies.
VCC NGC IC UGC CGCG RA(2000) dec type $m_{\rm pg}$ a b vel Dist memb. $\theta$ C31 com
          h  m  s $\deg$  $\hbox{$^\prime$ }$  $\hbox{$^{\prime\prime}$ }$   mag $\hbox{$^\prime$ }$ $\hbox{$^\prime$ }$ km s-1 Mpc   deg    
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
1 - - - 69059 120820.02 134100.2 BCD? 14.78 0.80 0.18 2267 32 M 5.63 3.36  
4 - - - - 120830.75 150548.2 Im 17.50 0.50 0.43 589 32 M 6.06 -  
17 - 3023 7150 - 121001.86 142142.4 Im 15.20 0.91 0.45 819 32 M 5.43 2.85  
24 - - - 69070 121035.65 114538.5 BCD 14.95 1.00 0.37 1289 32 M 4.99 6.23  
26 - - - - 121040.20 143848.5 Im 17.50 0.43 0.27 2469 32 M 5.39 2.35  
66 4178 - 7215 69088 121246.27 105156.0 SBc(s) 11.89 5.35 1.87 369 17 N 4.68 3.24 *
81 4186 - 7223 - 121326.18 144620.1 d:Sc 15.60 0.95 0.81 2075 17 N 4.85 3.22  
87 - - - 98106 121340.91 152713.2 Sm 15.00 1.45 0.72 -134 17 N 5.17 3.18  
92 4192 - 7231 98108 121348.24 145401.2 Sb: 10.92 9.78 2.60 -135 17 N 4.84 5.04 *
130 - - - - 121504.22 94513.5 BCD 16.50 0.63 0.25 2189 17 N 4.68 2.71  
152 4207 - 7268 69107 121530.31 93508.6 Scd(on edge) 13.48 1.96 0.89 592 17 N 4.69 3.54  
159 - - - 69108 121541.50 81707.7 Im 15.08 1.04 0.52 2584 32 W 5.54 2.73  
169 - - - - 121556.39 93855.7 Im 16.50 0.85 0.43 2222 17 N 4.57 -  
171 - - - - 121558.88 82225.8 Im 17.40 0.57 0.36 875 32 W 5.43 -  
207 - - - - 121648.07 80302.0 BCD 17.20 0.36 0.13 2564 32 W 5.55 2.63  
318 - 776 7352 70005 121903.40 85122.7 SBcd 14.01 1.71 1.00 2469 32 W 4.57 2.93  
425 - - - - 122035.90 81209.3 Im: 17.30 0.43 0.38 - 23 B 4.89 -  
459 - - - 99022 122111.46 173818.5 BCD 14.95 0.84 0.36 2108 17 A 5.74 3.09  
460 4293 - 7405 99023 122112.68 182256.5 Sa pec 11.20 5.10 2.92 921 17 A 6.42 3.52 *
655 4344 - 7468 99037 122337.45 173228.5 S pec,N:/BCD 13.21 1.55 1.55 1147 17 A 5.44 2.50  
664 - 3258 7470 70042 122344.36 122842.5 Sc 13.50 2.60 1.87 -427 17 A 1.73 2.55  
666 - - - - 122346.13 164728.5 Im: 16.80 1.00 0.57 - 17 A 4.72 2.80  
692 4351 - 7476 70045 122401.37 121216.6 Sc(s) 12.93 2.92 1.87 2324 17 A 1.67 2.95  
793 - - - - 122521.88 130423.2 Im,N? 16.74 0.47 0.34 1906 17 A 1.50 2.25  
802 - - - - 122529.01 132947.3 BCD 17.40 0.64 0.21 -215 17 A 1.71 2.58  
809 - 3311 7510 70063 122533.17 121536.3 Sc (on edge) 14.55 1.45 0.36 -142 17 A 1.30 3.24  
836 4388 - 7520 70068 122546.60 123940.4 Sab 11.83 5.10 1.24 2515 17 A 1.26 4.69 *
848 - - - 42097 122552.78 54829.5 Im pec/BCD 14.72 1.16 0.98 1537 23 B 6.70 2.86  
857 4394 - 7523 99047 122555.64 181249.5 SBb(sr) 11.76 3.60 3.60 914 17 A 5.94 5.64 *
873 4402 - 7528 70071 122607.32 130643.6 Sc (on edge) 12.56 3.95 1.16 234 17 A 1.36 2.95  
890 - - - - 122620.85 64005.7 BCD 16.00 0.21 0.21 1483 23 B 5.83 2.64  
912 4413 - 7538 70076 122632.16 123639.8 SBbc(rs) 12.97 2.92 1.75 105 17 A 1.07 3.14  
945 - 3355 7548 70085 122651.06 131032.9 SBm 15.31 1.29 0.57 -9 17 A 1.25 2.67  
950 - 3356 7547 70084 122651.38 113316.9 Sm 14.49 1.71 0.85 1098 17 A 1.28 2.78  
971 4423 - 7556 42107 122708.93 55248.1 Sd (on edge) 14.28 3.06 0.43 1120 23 B 6.57 3.44  
984 4425 - 7562 70091 122713.30 124405.1 SBa 12.82 2.99 1.00 1883 17 A 0.94 4.68  
995 - 3371 7565 70092 122721.55 105155.2 Sc (on edge) 15.32 1.53 0.11 928 17 A 1.75 3.43  
1001 - - - - 122724.65 134300.2 Im 16.60 0.73 0.47 338 17 A 1.56 2.44  
1002 4430 - 7566 42111 122726.37 61544.2 SBc(r) 12.48 3.02 2.69 1450 23 B 6.19 2.73  
1003 4429 - 7568 70093 122726.31 110629.2 S0/Sa pec 11.15 8.12 3.52 1130 17 A 1.53 5.48 *
1043 4438 - 7574 70097 122745.52 130031.4 Sb (tides) 10.91 8.12 3.68 70 17 A 0.97 10.21 *
1047 4440 - 7581 70099 122753.52 121735.5 SBa(sr) 12.48 2.01 1.71 724 17 A 0.72 7.42  
1106 - - - - 122829.23 103112.8 Im: 17.50 0.59 0.41 - 17 A 1.96 2.26  
1110 4450 - 7594 99062 122829.27 170506.8 Sab pec 10.93 6.15 4.04 1954 17 A 4.73 4.33 *
1121 - - - - 122841.73 110754.9 Im? 16.48 0.71 0.56 - 17 A 1.36 -  
1158 4461 - 7613 70115 122903.01 131101.1 Sa 12.09 3.52 1.29 1919 17 A 0.90 7.45  
1189 - 3414 7621 42129 122928.83 64612.3 Sc(s) 13.70 1.84 1.07 597 17 S 5.63 2.42  
1196 4468 - 7628 70122 122931.25 140258.3 S0/Sa 13.80 1.76 1.06 895 17 A 1.69 4.31  
1200 - 3416 - 70124 122934.53 104737.3 Im 15.10 1.26 0.84 -123 17 A 1.63 2.76  
1217 - 3418 7630 - 122942.54 112404.4 SBm 14.59 1.87 1.29 - 17 A 1.03 2.80  
1253 4477 - 7638 70129 123002.37 133810.6 SB0/SBa 11.31 3.60 3.60 1353 17 A 1.26 8.73 *
1257 - - - - 123004.68 172401.6 Im pec 16.50 1.36 0.32 2488 17 A 5.01 2.55  
1287 - - - - 123023.79 135855.8 Im 16.00 0.85 0.85 - 17 A 1.59 -  
1313 - - - - 123048.47 120242.0 BCD 17.15 0.45 0.20 1254 17 A 0.35 2.07  
1326 4491 - 7657 70140 123057.15 112859.1 SBa(s) 13.41 1.89 0.94 497 17 A 0.91 2.87  
1356 - 3446 - 70142 123122.92 112934.3 Sm/BCD 15.55 1.10 0.43 1251 17 A 0.91 2.71  
1368 4497 - 7665 70145 123132.79 113736.4 SB0/SBa 13.12 2.01 0.85 1123 17 A 0.78 2.81  
1377 - - - - 123139.21 105008.5 Im: 16.87 0.61 0.43 - 17 A 1.57 2.79  
1379 4498 - 7669 99075 123139.62 165107.5 SBc(s) 12.62 2.85 1.53 1505 17 A 4.46 2.27  
1403 - - - - 123159.63 130459.7 Im? 17.15 0.71 0.43 - 17 A 0.75 -  
1410 4502 - 7677 99078 123203.22 164114.7 Sm 14.57 1.48 0.78 1629 17 A 4.31 2.80  
1411 - 3466 - 70150 123204.83 114902.7 pec,N 15.72 0.70 0.43 911 17 A 0.65 2.74  
1412 4503 - 7680 70149 123206.13 111034.8 Sa 12.12 4.33 1.71 1342 17 A 1.25 5.95  
1419 4506 - 7682 70152 123210.46 132509.8 Spec(dust) 13.64 2.16 1.29 737 17 A 1.08 3.44  
1426 - - - - 123222.80 115338.9 Im? 15.64 0.80 0.80 1110 17 A 0.63 3.08  
1448 - 3475 7692 70156 123240.83 124613.1 Im 13.87 2.31 1.83 2583 17 A 0.59 2.88  
1450 - 3476 7695 70157 123241.91 140256.1 Sc(s) 13.29 2.60 2.01 -173 17 A 1.72 2.93  
1486 - 3483 - 70160 123309.94 112049.4 Spec,N 15.30 1.10 0.78 129 17 A 1.19 7.18  
1552 4531 - 7729 70175 123415.77 130429.1 Sa pec 12.58 4.24 2.42 195 17 A 1.08 3.00  
1554 4532 - 7726 42158 123419.31 62807.1 Sm 12.30 2.60 1.00 2021 17 S 5.99 2.92  
1569 - 3520 - 70178 123431.68 133013.2 Scd: 15.00 1.07 0.71 799 17 A 1.43 3.16  
1575 - 3521 7736 42162 123439.28 70938.3 SBm pec 13.98 2.00 1.41 597 17 S 5.32 2.44  
1581 - - 7739 42163 123444.93 61807.4 Sm 14.55 1.46 1.16 2065 17 S 6.17 2.77  
1596 - - - - 123500.91 91116.5 Im: 17.24 0.35 0.16 1286 17 S 3.36 -  



 
Table 2: continued.
VCC NGC IC UGC CGCG RA(2000) dec type $m_{\rm pg}$ a b vel Dist memb. $\theta$ C31 com
          h  m  s $\deg$  $\hbox{$^\prime$ }$  $\hbox{$^{\prime\prime}$ }$   mag $\hbox{$^\prime$ }$ $\hbox{$^\prime$ }$ km s-1 Mpc   deg    
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
1644 - - - - 123551.82 135133.1 Sm 17.50 0.98 0.17 756 17 A 1.91 2.93  
1673 4567 - 7777 70189 123632.66 111528.6 Sc(s) 12.08 2.92 1.87 2277 17 A 1.80 2.73 *
1675 - - - 42174 123634.65 80317.6 Pec 14.47 1.26 0.74 1795 17 S 4.56 2.87  
1676 4568 - 7776 70188 123634.16 111419.6 Sc(s) 11.70 5.10 1.75 2255 17 A 1.82 4.27 *
1678 - 3576 7781 42176 123637.61 63716.6 SBd 13.70 2.16 1.87 1073 17 S 5.94 2.91 *
1686 - 3583 7784 70191 123643.57 131531.7 Sm 13.95 2.79 1.71 1122 17 A 1.68 2.98  
1690 4569 - 7786 70192 123649.78 130945.7 Sab(s) 10.25 10.73 5.35 -216 17 A 1.65 4.37 *
1699 - 3589 7790 42179 123702.24 65530.9 SBm 14.11 1.55 0.83 1635 17 S 5.68 2.64  
1725 - - - 70196 123741.51 83331.3 Sm/BCD 14.51 1.55 0.97 1068 17 S 4.19 2.92  
1726 - - 7795 42184 123745.08 70622.4 Sdm 14.54 1.29 1.00 61 17 S 5.55 2.73  
1727 4579 - 7796 70197 123743.48 114904.4 Sab(s) 10.56 6.29 4.87 1520 17 A 1.78 4.51 *
1730 4580 - 7794 42183 123748.60 52206.4 Sc/Sa 12.61 2.16 1.60 1032 17 S 7.23 2.68  
1750 - - - - 123815.48 65938.7 BCD? 16.50 0.31 0.16 -117 17 S 5.70 2.54  
1757 4584 - 7803 70199 123817.79 130635.8 Sa(s)pec 13.60 1.87 1.00 1783 17 A 1.96 3.53  
1758 - - 7802 42186 123820.81 75328.8 Sc (on edge) 14.99 1.71 0.27 1788 17 S 4.87 3.47  
1784 - - - - 123913.81 153749.4 Im 15.84 0.79 0.63 57 17 E 3.83 2.80  
1789 - - - 42192 123921.34 45619.5 Im 15.07 1.10 0.62 1619 17 S 7.74 2.46  
1791 - 3617 7822 42194 123924.55 75752.5 SBm/BCD 14.67 1.29 0.64 2079 17 S 4.90 2.86  
1804 - - - - 123940.25 92355.7 Im/BCD 15.63 0.75 0.30 1898 17 E 3.70 4.33  
1811 4595 - 7826 99106 123951.63 151753.9 Sc(s) 12.92 2.16 1.42 632 17 E 3.64 2.71  
1813 4596 - 7828 70206 123955.88 101034.9 SBa 11.51 4.76 4.04 1834 17 E 3.14 5.44  
1822 - - - - 124010.14 65050.1 Im 15.60 0.63 0.25 1012 17 S 6.00 2.79  
1869 4608 - 7842 70214 124113.52 100922.9 SB0/a 12.05 4.30 3.42 1864 17 E 3.39 9.68  
1885 - - - - 124137.57 154933.2 Im 16.41 1.16 0.57 - 17 E 4.32 2.80  
1918 - - - - 124218.10 54421.7 Im 15.80 1.03 0.36 980 17 S 7.23 2.81  
1929 4633 - 7874 99111 124237.12 142122.0 Scd(s) 13.77 2.48 1.07 291 17 E 3.48 3.14  
1932 4634 - 7875 99112 124240.83 141746.0 Sc (on edge) 13.19 2.92 0.87 116 17 E 3.45 3.08  
1952 - - - - 124306.86 73858.4 Im 16.00 0.71 0.35 1308 17 E 5.62 2.93  
1970 - - - 71013 124329.11 100534.7 Im,N? 15.80 0.71 0.50 1325 17 E 3.86 2.94  
1972 4647 - 7896 71015 124332.28 113454.7 Sc(rs) 12.03 2.60 2.16 1422 17 E 3.21 3.06 *
1987 4654 - 7902 71019 124356.71 130734.0 SBc(rs) 11.14 4.99 2.60 1039 17 E 3.28 2.93  
1992 - - 7906 - 124410.02 120659.2 Im 15.50 0.81 0.51 1003 17 E 3.27 2.80  
1999 4659 - 7915 71024 124429.38 132953.5 Sa 13.08 1.99 1.25 267 17 E 3.51 6.03  
2006 - 3718 7920 71026 124445.93 122111.7 Amorphous 13.68 2.60 0.71 844 17 E 3.40 3.19  
2007 - 3716 - 43016 124447.50 80629.7 Im/BCD: 15.20 0.78 0.41 1857 17 E 5.49 2.70  
2023 - 3742 7932 71032 124531.55 131951.3 SBc(s) 13.86 2.01 1.00 958 17 E 3.70 3.09  
2033 - - - 71033 124604.76 82830.8 BCD 14.65 0.73 0.73 1486 17 E 5.42 3.70  
2034 - - - - 124607.96 100948.8 Im 15.82 0.78 0.52 1500 17 E 4.36 2.46  
2037 - - - - 124615.15 101224.9 Im/BCD 15.92 0.88 0.38 1142 17 E 4.37 2.92  
2058 4689 - 7965 71043 124745.39 134548.3 Sc(s) 11.55 5.86 4.44 1620 17 E 4.34 2.80  
2066 4694 - 7969 71044 124815.05 105906.7 Amorphous 12.19 3.20 1.16 1181 17 E 4.49 4.21 *
2070 4698 - 7970 71045 124822.96 82913.8 Sa 11.53 5.67 2.84 1008 17 E 5.82 5.78 *
2087 4733 - 7997 71054 125106.81 105444.3 SB0/a 12.63 1.96 1.96 908 17 E 5.18 2.73  
2094 - - - - 125235.75 102648.7 Im: 17.80 0.37 0.37 - 17 E 5.68 -  
Notes on morphological type, from NED:

VCC 66: HII; VCC 92: M98: HII and Seyfert; VCC 460: LINER; VCC 836: Seyfert2; VCC 857: LINER; VCC 1003: HII LINER; VCC 1043: LINER, tidally interacting with VCC 1030; VCC 1110: LINER; VCC 1253: Seyfert 2; VCC 1673: interacting with VCC 1676?; VCC 1676: interacting with VCC 1673?; VCC 1678: HII; VCC 1690: M90: LINER, Seyfert; VCC 1727: M58; LINER, Seyfert 1.9; VCC 1972: interacting with VCC 1978 (M60)?; VCC 2066: HII; VCC 2070: Seyfert 2;



 

 
Table 3: The photometric data.
VCC UV U B V J H K C6.75 I12 C15 I25 I60 P60 I100 P100 P170 r2.8 r6.3 r12.6 r21
$\lambda$ 2000 Å 3650 Å 4400 Å 5500 Å 1.25 $\mu $m 1.65$~\mu$m 2.1 $\mu $m 6.75 $\mu $m 12 $\mu $m 15 $\mu $m 25 $\mu $m 60 $\mu $m 60 $\mu $m 100 $\mu $m 100 $\mu $m 170 $\mu $m 2.8 cm 6.3 cm 12.6 cm 21 cm
units mag mag mag mag mag mag mag mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)
1 - - 15.90 15.13 13.58 12.81 12.52 1.15 - 2.86 <340 <390 100 <840 140 330 - - - <1800
4 - - - - - - 15.32 <1.31 - <1.94 <340 <390 - <840 - - - - - <1800
17 - - 16.28 15.89 14.81 14.30 14.15 0.98 - 1.76 130 130 <40 460 <30 <70 - - - <1800
24 - - 15.79 15.19 - - 12.82 0.37 <80 0.82 <110 <120 <40 <300 <40 120 - - - <1800
26 - - - - - - 15.96 <0.71 - <1.05 <340 <390 - <840 - - - - - <1800
66 12.00 11.91 11.98 11.39 9.89 9.14 8.92 229.59 110 192.69 <140 2110 2470 8080 5090 11 270 6000 29 000 13 000 26 200
81 - - 15.85 15.30 - - 13.21 <5.86 - <6.94 <340 <390 <40 <840 <30 770 - - - <1800
87 - 15.10 15.27 14.80 - - 13.08 2.18 - 0.74 <340 <390 100 <840 150 380 - - - <1800
92 11.17 11.17 10.73 9.83 7.72 6.85 6.59 900.15 1100 692.42 1460 8110 4700 23 070 11 460 40 290 18 000 33 000 37 000 73 300
130 - - - - - - 14.71 <0.96 <120 <1.42 <170 <110 <50 <280 70 80 - - - <1800
152 - 13.78 13.56 12.72 - 9.75 9.49 173.99 230 145.13 240 3080 1870 7470 5480 8380 - - 11000 19 800
159 - - 16.02 15.66 - - 14.09 <3.30 - <4.88 <340 <390 <40 <840 <40 160 - - - <1800
169 - - - - - - - <2.23 - <3.3 <340 <390 <30 <840 <50 <50 - - - <1800
171 - - - - - - - <1.25 - <1.85 <340 <390 - <840 - - - - - <1800
207 - - - - - - 14.88 <0.25 <120 <0.42 <160 <140 - <340 - - - - - <1800
318 13.47 14.26 14.45 14.09 - - 11.95 3.08 - 5.16 <740 240 130 620 350 960 - - - <1800
425 - - - - - - - <1.00 - <1.33 <340 <390 - <840 - - - - - <1800
459 13.49 - - - - - 12.60 2.87 <100 2.96 <130 240 130 540 380 500 - - - <1800
460 - 12.01 11.45 10.50 8.39 7.49 7.33 195.11 180 186.36 510 4580 3290 10 390 9110 11 250 6000 11 000 20 000 19 100
655 - 13.62 13.59 12.93 - - 10.29 42.05 <140 15.17 140 470 420 1890 1110 5360 - - 1000 <1800
664 13.15 13.25 13.60 13.16 - - 11.29 7.09 <70 15.17 140 600 750 1030 770 970 - - - <1800
666 - - - - - - 14.46 <4.34 - <6.17 <340 <390 <30 <840 <30 <40 - - - <1800
692 13.05 13.07 12.99 12.52 - 10.34 10.19 33.64 <90 25.22 <180 710 540 2010 1430 3910 - 2000 <4000 <1800
793 - 17.27 17.26 16.89 15.55 14.97 15.16 <99 - <99 <340 <390 - <840 - - - - - <1800
802 - 17.15 17.61 - - - 14.81 <99 <100 <99 <170 <130 - <620 - - - - - <1800
809 15.14 15.14 15.11 14.43 - - 12.03 5.97 - 3.57 <500 <470 - <1100 - - - - - <1800
836 12.56 12.00 11.86 11.11 9.32 8.37 7.92 528.11 1060 1064.56 3420 10 050 7030 17 400 14 220 11 630 36 000 84 000 129 000 119 400
848 - 15.01 15.18 14.76 - - 12.91 1.20 - <10.25 <340 <390 <60 <840 50 1410 - - - <1800
857 - 12.28 11.92 11.09 - - 8.02 114.95 150 98.3 150 960 650 4020 2830 7760 - 2000 <4000 700
873 13.72 13.02 12.64 11.80 - 8.67 8.39 500.01 790 525.45 640 5430 3820 17 480 8610 17 720 12 000 21 000 50 000 59 500
890 - - - - - - 14.61 <0.27 <90 <0.32 <190 <150 <40 <360 <30 120 - - - <1800
912 13.40 13.01 12.97 12.34 - 9.73 9.53 60.94 140 54.72 180 1000 830 3100 2340 2820 - <1000 6000 <1800
945 14.32 15.24 15.47 15.15 - - 13.45 <99 - <99 <340 <390 - <840 - - - - - <1800
950 14.94 15.60 15.76 15.32 - - 13.85 <99 - <99 <340 <390 - <840 - - - - - <1800
971 13.32 14.06 14.17 13.61 - - 11.32 8.21 <90 6.57 <140 470 290 1100 830 1380 - - - 3600
984 16.29 13.27 12.86 11.95 10.08 9.36 8.95 19.56 <120 9.69 <170 <180 <40 <340 <40 <170 - <1000 <4000 <1800
995 - 15.21 15.39 14.78 - - 12.61 1.40 - 3.02 <340 <390 - <840 - - - - - <1800
1001 - - - - - - 14.79 <99 - <99 <340 <390 - <840 <20 230 - - - <1800
1002 12.66 - 12.74 12.09 10.54 9.63 9.33 119.35 130 72.17 230 1150 940 3780 3360 5300 - 2000 4000 7900
1003 14.98 11.51 10.95 9.96 7.69 6.90 6.63 267.86 310 192.87 220 1510 870 4130 3940 3120 - 1000 <4000 <1800
1043 12.58 11.64 11.08 10.07 8.13 7.35 6.89 259.53 210 247.26 170 3760 2360 11 270 7670 16 720 44 000 97 000 109 000 148 900
1047 16.27 - 12.85 11.88 10.02 9.05 8.92 <99 <150 5.09 <160 210 <40 <280 <40 <210 <1000 - 27000 <4000
1106 - - - - - - 15.00 <99 - <99 <340 <390 - <840 - - - - - <1800
1110 - 11.48 10.96 10.07 7.74 7.03 6.74 236.00 150 252.78 170 1800 1790 7910 4080 10 010 14 000 28 000 11 000 10 200
1121 - - - - - - 15.22 <99 - <99 <340 <390 - <840 <20 <140 - - - <1800
1158 15.26 12.72 12.19 11.23 8.91 8.22 7.99 44.15 <120 16.45 <180 <120 <40 <310 <50 <140 - <1000 <4000 <1800
1189 13.35 13.90 14.02 13.56 - - 11.32 12.89 <60 5.8 <170 230 180 730 490 1160 - - - <1800
1196 - 14.32 13.92 13.07 11.03 10.38 10.17 6.03 - 1.82 <100 <180 <40 <420 <40 1240 - - - <1800
1200 - 15.33 15.56 15.06 - 13.35 13.01 <99 - <99 <340 <390 - <840 - - - - - 13 000
1217 15.49 - 14.52 14.17 13.26 12.72 12.55 3.65 - <21.75 <340 <390 <40 <840 <30 <70 - - - <1800
1253 - 12.11 11.52 10.57 8.26 7.51 7.25 96.85 <100 28.74 <170 540 140 1180 810 1130 <500 5000 8000 <1800
1257 - - - - - - 14.08 <2.65 - 1.75 <340 <390 - <840 - - - - - <1800
1287 - - - - - - - <99 - <99 <340 <390 - <840 - - - - - <1800
1313 15.35 16.67 17.30 16.96 - 15.58 - <99 <150 <99 <110 <140 - <350 - - - - - <19 800
1326 15.01 13.74 13.52 12.69 - 10.07 9.95 27.00 <90 70.1 420 2770 2360 3490 2890 2980 5000 - <4000 <1800
1356 14.65 15.35 15.56 15.11 - - 12.84 - - - <340 <390 - <840 - - - - - <1800



 
Table 3: continued.
VCC UV U B V J H K C6.75 I12 C15 I25 I60 P60 I100 P100 P170 r2.8 r6.3 r12.6 r21
$\lambda$ 2000 Å 3650 Å 4400 Å 5500 Å 1.25 $\mu $m 1.65 $\mu $m 2.1 $\mu $m 6.75 $\mu $m 12 $\mu $m 15 $\mu $m 25 $\mu $m 60 $\mu $m 60 $\mu $m 100 $\mu $m 100 $\mu $m 170 $\mu $m 2.8 cm 6.3 cm 12.6 cm 21 cm
units mag mag mag mag mag mag mag mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)
1368 17.22 13.76 13.44 12.56 - 9.88 9.70 8.62 <120 3.59 <130 <240 <150 <890 <30 200 - - 9000 <4000
1377 - - 17.23 16.49 - - 14.06 <99 - <99 <340 <390 - <840 - - - - - <1800
1379 12.31 12.71 12.76 12.17 - 9.97 9.74 95.88 150 62.02 90 1200 1140 3700 3270 4980 1000 - - 4600
1403 - - - - - - - <99 - <99 <340 <390 - <840 - - - - - <4000
1410 - 14.46 14.54 14.05 - - 11.93 9.68 - 4.51 <190 230 220 620 360 690 - - - <1800
1411 16.10 - 15.99 15.49 - - 13.61 <99 - <99 <340 <390 - <840 - - - - - <4000
1412 - 12.79 12.18 11.18 8.91 8.18 7.88 47.83 <150 13.47 <140 <150 <60 <390 <70 710 - <1000 8000 <1800
1419 - 14.10 13.82 13.00 - 10.38 10.32 16.31 - 12.5 <240 150 60 640 280 440 - - - <1800
1426 - - 16.43 15.73 - - 13.48 <99 - <99 <340 <390 - <840 - - - - - <4000
1448 - 14.70 14.55 13.87 12.40 11.68 11.50 <99 <100 <99 <180 <200 - <340 - - - - - 6300
1450 12.53 - 13.43 12.98 - 10.82 10.55 72.46 190 59.61 350 1850 740 3100 2990 3960 10 000 24 000 15 000 10 100
1486 - 15.02 14.99 14.31 - - 11.54 <99 - <99 <340 <390 - <840 - - - - - <1800
1552 - 12.85 12.52 11.65 9.66 8.91 8.75 40.15 <100 27.73 <140 360 290 1720 1080 1940 <1000 - 6000 <1800
1554 11.34 12.01 12.35 11.96 10.39 9.67 9.39 183.96 290 213.47 830 8930 5560 15 530 9070 10 650 19 000 58 000 84 000 123 800
1569 - 15.73 15.86 15.39 - - 13.50 0.80 - <5.48 <340 <390 <50 <840 <50 <60 - - - <1800
1575 13.80 13.76 13.79 13.13 - - 10.54 47.48 <90 46.02 <150 1030 1110 2300 2080 2740 - - - 4200
1581 - 15.08 15.08 14.51 - - 12.59 <10.32 - <12.22 <340 <390 <30 <840 <30 330 - - - <1800
1596 - - - - - - - <0.30 - <0.5 <340 <390 - <840 - - - - - <1800
1644 - - - - - - 15.19 <99 - <99 <340 <390 - <840 - - - - - <1800
1673 12.29 - 11.17 10.49 9.32 8.60 7.93 324.33 - 319.63 <240 <390 - <840 - - - - <54 000 10500
1675 - - - - - - 12.30 <4.97 - <8.41 <340 <390 50 <840 <30 160 - - - <1800
1676 - - 11.17 10.25 - - 7.34 973.91 2000 1050.86 2580 20 360 - 56 810 - - 29 000 65 000 75 000 124 200
1678 13.26 14.32 14.47 13.96 - - 12.02 <21.54 <100 <29.13 <120 300 80 520 430 680 - - - <1800
1686 - 13.00 13.46 13.03 - - 11.22 25.19 <120 19.42 <180 540 450 1720 1130 1490 - - - <1800
1690 11.67 10.34 10.10 9.32 7.54 6.81 6.66 830.16 1310 972.71 2070 10 080 6200 26 600 16 000 29 160 30 000 40 000 63 000 72 500
1699 13.43 14.38 14.46 14.04 - - 12.19 4.15 - 14.04 <340 <390 270 <840 390 490 - - - <1800
1725 13.47 14.26 14.61 14.23 13.13 12.51 12.26 2.32 60 2.7 100 <180 50 350 300 480 - - - <1800
1726 13.83 14.93 15.36 15.13 - - 13.38 <5.90 - <9.3 <340 <390 <50 <840 <50 240 - - - <1800
1727 12.60 11.05 10.51 9.64 7.48 6.72 6.42 658.15 1110 646.18 760 5850 4160 20 860 12 340 29 190 82 000 99 000 95 000 97 400
1730 - 13.01 12.78 11.94 9.86 8.84 8.79 99.75 260 97.4 540 1460 1520 4820 3640 5460 <400 3000 <4000 <1800
1750 - - - - - - 14.43 0.28 <130 <0.54 <170 <140 <30 <210 40 80 - - - <1800
1757 - 14.08 13.90 13.14 - - 10.52 <9.97 <100 <16.86 <140 240 100 <640 500 790 - - - <1800
1758 - 14.98 15.00 14.37 - - 11.85 5.92 - 0.98 <340 <390 - <840 - - - - - <1800
1784 - - - - - - 14.74 <3.03 - <6.28 <340 <390 - <840 - - - - - 3500
1789 - 16.00 15.91 15.19 13.23 12.60 12.71 2.40 - <7.38 <340 <390 - <840 - - - - - <1800
1791 13.07 14.41 14.67 14.37 - - 12.49 2.88 - 3.97 <230 270 - 630 - - - - - 3000
1804 - 16.33 16.30 15.73 - - 13.44 0.41 - <2.43 <340 <390 - <840 - - - - - <1800
1811 12.81 13.11 13.11 12.56 - 10.22 10.04 74.49 100 52.59 180 900 - 2670 - - 1000 7000 5000 7100
1813 13.78 12.01 11.48 10.53 8.17 7.44 7.19 126.86 120 40.01 <130 490 - 1280 - - - <1000 4000 <1800
1822 - 16.63 16.85 16.49 - - 14.36 0.72 - <1.14 <340 <390 - <840 - - - - - <1800
1869 - - 12.11 11.16 8.77 8.09 7.86 <99 <120 <99 <180 <150 - <340 - - - <1000 2000 2800
1885 - - - - - - 14.06 <3.53 - <5.96 <340 <390 - <840 - - - - - <1800
1918 - - - - - - 14.47 0.87 - 1 <340 <390 - <840 - - - - - <1800
1929 12.87 13.63 13.77 13.19 - - 10.61 29.28 <100 35.14 <130 500 - 1810 - - - - - <1800
1932 - 13.25 13.18 12.45 10.52 9.67 9.25 290.08 400 265.79 480 4130 - 12 650 - - 6000 20 000 20 000 34 000
1952 - - - - - - 14.68 <1.51 - <1.79 <240 <150 - 250 - - - - - <1800
1970 - - - - - - 13.75 <2.16 - <3.2 <340 <390 - <840 - - - - - <1800
1972 11.88 12.36 12.02 11.34 10.14 8.74 8.58 501.09 980 493.38 780 5350 - 16040 - - 6000 38000 26000 56 300
1987 11.23 11.37 11.31 10.60 8.71 7.86 7.57 1051.86 1190 1101.42 1910 13 930 - 37 160 - - 29 000 51 000 59 000 125 300
1992 - 16.08 16.58 16.15 15.48 14.88 14.54 0.58 - <3.72 <340 <390 - <840 - - - - - <1800
1999 - 13.57 13.20 12.34 10.43 9.62 9.35 10.06 120 3.98 <80 <140 - <570 - - - - <4000 <1800
2006 - - - - - - 11.15 2.93 <120 1.49 <140 <150 - <340 - - - - - <1800
2007 - - - - - - 13.35 1.80 - <3.46 <340 <390 - <840 - - - - - <1800
2023 - 14.02 14.05 13.56 - - 11.41 5.46 - 5.45 <100 250 - 940 - - - - - <1800
2033 - 15.37 15.60 15.08 - - 13.03 0.59 <110 1.17 <170 200 - <350 - - - - - <1800



 
Table 3: continued.
VCC UV U B V J H K C6.75 I12 C15 I25 I60 P60 I100 P100 P170 r2.8 r6.3 r12.6 r21
$\lambda$ 2000 Å 3650 Å 4400 Å 5500 Å 1.25 $\mu $m 1.65 $\mu $m 2.1 $\mu $m 6.75 $\mu $m 12 $\mu $m 15 $\mu $m 25 $\mu $m 60 $\mu $m 60 $\mu $m 100 $\mu $m 100 $\mu $m 170 $\mu $m 2.8 cm 6.3 cm 12.6 cm 21 cm
units mag mag mag mag mag mag mag mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)
2034 - - 16.24 15.78 - - 13.37 0.19 - <3.66 <340 <390 - <840 - - - - - <1800
2037 - 16.12 16.20 15.79 - - 13.49 <1.78 - <2.11 <340 <390 - <840 - - - - - <1800
2058 12.62 - 11.73 10.98 - 8.43 7.88 316.50 380 352.68 400 3250 - 10 490 - - 3000 8000 7000 14 300
2066 - 12.53 12.31 11.63 9.86 9.16 8.91 68.00 130 68.13 170 1170 - 2680 - - 4000 3000 4000 4100
2070 - 11.99 11.48 10.56 8.25 7.57 7.31 88.49 280 66.58 <460 630 - 1890 - - - 2000 2000 <1800
2087 - 13.34 12.98 12.11 9.99 9.24 9.03 11.46 <120 7.06 <180 <130 - <280 - - 1000 - <4000 <1800
2094 - - - - - - 16.44 0.44 - <1.23 <340 <390 - <840 - - - - - <1800
Note to Table 3:

VCC 1379: the 116000 mJy flux at 12.6 cm of Dressel & Condon is contaminated by a background quasar, visible in the NVSS 20 cm map.



 

 
Table 4: References for the photometric data.

VCC
UV optical near-IR ISOCAM IRAS ISOPHOT radio 2.8 cm radio 6.3 cm radio 12.6 cm radio 21 cm
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1 - 1 1 1 1 1 - - - 1
4 - - 3 1 1 - - - - 1
17 - 2 1 1 9 1 - - - 1
24 - 1 1 1 2 1 - - - 1
26 - - 3 1 1 - - - - 1
66 1 1 1 1 4 1 1 1 - 1
81 - 1, 2 1 1 1 1 - - - 1
87 - 3, 4 1 1 1 1 - - - 1
92 1 1 1 1 3 1 1 1 1 3
130 - - 3 1 2 1 - - - 1
152 - 1 1 1 6 1 - - - 1
159 - 2 1 1 1 1 - - - 1
169 - - - 1 1 1 - - - 1
171 - - - 1 1 - - - - 1
207 - - 3 1 2 - - - - 1
318 1 3 1 1 10 1 - - - 1
425 - - - 1 1 - - - - 1
459 1 - 1 1 2, 7 1 - - - 1
460 - 1 1 1 4 1 1 1 1 1
655 - 4 1 1 4 1 - - - 1
664 1 7 1 1 2, 4 1 - - - 1
666 - - 3 1 1 1 - - - 1
692 3 5 1 1 4 1 - 1 - 1
793 - 1 3 1 1 - - - - 1
802 - 4 3 - 2 - - - - 1
809 3 3 1 1 10 - - - - 1
836 3 1 1 1 3 1 1 1 1 1
848 - 4 1 1 1 1 - - - 1
857 - 1 1 1 4 1 - 1 - 4
873 3 1 1 1 3 1 1 1 1 2
890 - - 1 1 2 1 - - - 1
912 3 3, 7 1 1 2 1 - 1 - 1
945 3 4, 6 1 - 1 - - - - 1
950 3 3, 4 1 - 1 - - - - 1
971 1 3 1 1 4 1 - - - 1
984 3 1 1 1 2 1 - 1 - 1
995 - 2 1 1 1 - - - - 1
1001 - - 3 - 1 1 - - - 1
1002 1 1 1 1 2 1 - 1 - 1
1003 3 1 1 1 6 1 - 1 - 1
1043 3 1 1 1 4 1 1 1 1 2
1047 3 7 1,2 1 5 1 1 - - 1
1106 - - 3 - 1 - - - - 1
1110 - 1 1 1 2 1 1 1 - 1
1121 - - 3 - 1 1 - - - 1
1158 2 1 1 1 2 1 - 1 - 1
1189 1 3 1 1 4 1 - - - 1
1196 - 3, 7, 8 1 1 5 1 - - - 1
1200 - 4 1 - 1 - - - - 1
1217 3 9 1 1 1 1 - - - 1
1253 - 1 1 1 4 1 1 1 - 1
1257 - - 3 1 1 - - - - 1
1287 - - - - 1 - - - - 1
1313 3 4 4 - 2 - - - - 1
1326 3 3, 7 1 1 4 1 1 - - 1
1356 3 3 1 - 1 - - - - 1
1368 3 3, 7 1 1 5 1 - - - 1
1377 - 2 1 - 1 - - - - 1
1379 1 5 1 1 2 1 1 - - 1
1403 - - - - 1 - - - - 1
1410 - 1 1 1 7 1 - - - 1
1411 3 2 1 - 1 - - - - 1
1412 - 1 1 1 2, 8 1 1 - - 1
1419 - 3 1 1 8 1 - - - 1
1426 - 2 1 - 1 - - - - 1
1448 - 4, 7 1 - 2 - - - - 1
1450 1 7 1 1 2 1 1 1 - 1
1486 - 3, 4 1 - 1 - - - - 1
1552 - 1 1 1 2, 4 1 1 - - 1
1554 1 1 1 1 3 1 1 1 1 1
1569 - 3 1 1 1 1 - - - 1
1575 1 1 1 1 4 1 - - - 1
1581 - 4, 7 1 1 1 1 - - - 1
1596 - - - 1 1 - - - - 1



 
Table 4: continued.

VCC
UV optical near-IR ISOCAM IRAS ISOPHOT radio 2.8 cm radio 6.3 cm radio 12.6 cm radio 21 cm
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1644 - - 3 - 1 - - - - 1
1673 1 1 1 1 1 1 - - - 1
1675 - - 1 1 1 1 - - - 1
1676 - 1 1 1 3 1 1 1 1 1
1678 1 7 1 1 2 1 - - - 1
1686 - 1 - 1 2 1 - - - 1
1690 1 1 1 1 3 1 1 1 1 1
1699 1 3 1 1 1 1 - - - 1
1725 1 3, 4, 10 1 1 9 1 - - - 1
1726 1 4 1 1 1 1 - - - 1
1727 1 1 1 1 3 1 1 1 1 1
1730 - 3, 7 1 1 6 1 1 1 - 1
1750 - - 3 1 2 1 - - - 1
1757 - 3, 7 1 1 4, 6 1 - - - 1
1758 - 3 1 1 1 - - - - 1
1784 - - 3 1 1 - - - - 1
1789 - 4 1 1 1 - - - - 1
1791 1 3, 4, 6 1 1 7 - - - - 1
1804 - 2 1 1 1 - - - - 1
1811 1 3, 11 1 1 2 - 1 1 - 1
1813 1 1 1 1 7 - - 1 - 1
1822 - 2 1 1 1 - - - - 1
1869 - 1 1 - 2 - - 1 - 1
1885 - - 1 1 1 - - - - 1
1918 - - 1 1 1 - - - - 1
1929 1 1 1 1 2 - - - - 1
1932 - 1 1 1 6 - 1 1 1 1
1952 - - 1 1 9 - - - - 1
1970 - - 1 1 1 - - - - 1
1972 1 7 1 1 3 - 1 1 1 1
1987 1 1 1 1 3 - 1 1 1 1
1992 - 2 1 1 1 - - - - 1
1999 - 3, 11 1 1 4 - - - - 1
2006 - - 1 1 2 - - - - 1
2007 - - 1 1 1 - - - - 1
2023 - 3 1 1 7 - - - - 1
2033 - 4 1 1 2 - - - - 1
2034 - 2 1 1 1 - - - - 1
2037 - 2 1 1 1 - - - - 1
2058 1 1 1 1 6 - 1 1 - 1
2066 - 1 1 1 4 - 1 1 - 1
2070 - 1 1 1 2 - - 1 - 1
2087 - 12, 13 1 1 2, 5 - 1 - - 1
2094 - - 3 1 1 - - - - 1
References:

UV data:

1: Deharveng et al. (1994) 2: Deharveng et al. (2002) 3: Donas et al. (private communication)

Optical data:

1: this work 2: Gavazzi et al. (2001) 3: Schroeder & Visvanathan (1996) 4: Gallagher & Hunter (1986) 5: Gavazzi et al. (1994) 6: de Vaucouleurs et al. (1981) 7: Longo et al. (1983-1985) 8: Prugniel & Heraudeau (1998) 9: Bothun et al. (1986) 10: Takamiya et al. (1995) 11: Boselli & Gavazzi (1994) 12: Burstein et al. (1987) 13: Frueh et al. (1996)

Near-IR:

1: Boselli et al. (1997) 2: Gavazzi et al. (2001) 3: Pierini, private communication 4: Gavazzi et al., in preparation

ISOCAM data:

1: Boselli et al. (2003)

IRAS data:

1: Lonsdale et al. (1985) 2: Helou et al. (1988) 3: Soifer et al. (1989) 4: Thuan & Sauvage (1992) 5: Isobe & Feigelson (1992) 6: Rush et al. (1993) 7: Young et al. (1996) 8: Tuffs, private communication 9: Almoznino & Brosch (1998) 10: Magri (1994)

ISOPHOT data:

Tuffs et al. (2002)

Radio continuum data:

2.8 cm:

1: Niklas et al. (1995)

6.3 cm:

1: Niklas et al. (1995)

12.6 cm:

1: Dressel & Condon (1978)

21 cm:

1: Gavazzi & Boselli (1999) 2: Kotanyi et al. (1980) 3: Condon et al. (1990) 4: Condon et al. (1987)



 

 
Table 5: The emission lines data.
VCC H $\alpha+{\rm [NII]}EW$ $F({\rm H}\alpha+{\rm [NII]})$ ref MHI defHI qual WHI ref MH2 ref
  Å erg cm-2 s-1   $M_\odot$     km s-1   $M_\odot$  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1 12 -13.51 1 - - - - - - -
4 - - - 8.25 0.00 2 41 1 - -
17 53 -12.83 6 8.78 -0.04 2 58 1 - -
24 3 -14.03 1 8.93 -0.11 1 218 1 - -
26 - - - 8.38 -0.26 3 47 1 - -
66 33 -11.72 6 9.81 -0.20 1 269 9 7.75 3
81 21 -13.26 1 8.63 -0.45 1 103 3 - -
87 20 -12.94 6 8.32 0.29 2 109 1 <8.13 4
92 9 -11.53 1 9.76 0.33 1 469 11 8.75 1
130 - - - 7.86 0.06 1 119 1 - -
152 9 -12.63 6 8.61 0.24 1 216 5 8.15 3
159 19 -13.21 6 8.55 0.30 2 67 1 - -
169 7 -14.36 4 8.52 -0.35 2 35 1 - -
171 - - - 7.16 1.20 4 29 2 - -
207 - - - 8.25 -0.25 2 81 2 - -
318 51 -12.51 1 9.39 -0.13 1 178 5 <8.34 4
425 - - - <7.53 0.33 - - 2 - -
459 48 -12.66 2 8.22 -0.07 2 127 1 <7.72 4
460 8 -11.92 6 7.62 1.85 3 274 6 8.43 1
655 6 -12.78 6 7.91 0.75 2 71 8 7.99 3
664 101 -12.12 1 8.40 0.62 2 103 7 <7.79 3
666 - - - <7.60 0.71 - - 1 - -
692 16 -12.47 5 8.46 0.66 1 119 7 <7.60 3
793 2 -14.41 2 7.65 0.05 2 41 1 - -
802 37 -13.54 2 <7.66 0.28 - - 1 - -
809 - - - 8.39 0.15 2 173 3 - -
836 15 -11.67 1 8.78 0.69 1 394 7 8.29 3
848 26 -13.05 2 8.85 -0.18 2 141 1 - -
857 12 -11.97 1 8.51 0.86 1 174 7 8.30 1
873 16 -11.97 2 8.74 0.63 1 269 4 8.96 1
890 - - - 7.33 -0.05 2 66 2 - -
912 13 -12.56 6 8.26 0.99 1 157 7 8.12 3
945 - - - 8.21 0.31 3 37 1 - -
950 23 -13.45 3 8.81 -0.07 2 74 1 - -
971 29 -12.52 3 9.26 0.20 2 171 2 8.86 3
984 1 -13.17 1 <7.31 1.78 - - 8 - -
995 32 -12.98 6 8.92 -0.33 1 162 3 - -
1001 -1 - 6 7.49 0.57 3 37 1 - -
1002 9 -12.11 6 8.92 0.47 1 152 4 8.24 3
1003 5 -11.72 1 <7.44 2.30 - - 8 7.39 7
1043 7 -11.77 6 8.62 1.33 2 253 8 8.98 5
1047 -1 - 6 <7.44 1.37 - - 8 8.25 2
1106 - - - <7.19 0.68 - - 1 - -
1110 2 -12.30 5 8.65 0.95 1 319 4 8.32 1
1121 - - - <7.63 0.39 - - 1 - -
1158 -1 - 6 <7.13 2.07 - - 6 - -
1189 21 -12.67 6 8.39 0.34 3 126 5 <7.86 3
1196 - - - - - - - - - -
1200 - -13.61 - <7.39 1.11 - - 1 - -
1217 - - - <7.09 1.73 - - 2 - -
1253 - - - <7.31 1.79 - - 8 - -
1257 - - - 8.41 0.14 1 157 1 - -
1287 - - - <7.63 0.54 - - 1 - -
1313 351 -12.84 2 7.84 -0.20 2 107 1 - -
1326 -1 - 6 <7.24 1.52 - - 6 7.98 3
1356 43 -13.05 1 8.34 0.04 1 168 3 - -
1368 - - - <7.38 1.28 - - 8 - -
1377 - - - <7.53 0.37 - - 1 - -
1379 36 -11.92 3 8.95 0.15 1 200 4 7.84 3
1403 - - - <7.57 0.45 - - 1 - -
1410 35 -12.71 1 8.20 0.42 1 181 1 - -
1411 2 -14.37 3 7.96 0.51 3 57 1 - -
1412 2 -12.52 1 <7.02 2.33 - - 6 <7.76 4
1419 5 -13.06 6 <7.27 1.59 - - 3 - -
1426 6 -13.93 3 <7.33 0.79 - - 1 - -
1448 - - - 8.90 -0.14 5 70 13 - -
1450 69 -11.89 1 8.47 0.54 1 130 10 7.78 3
1486 12 -13.17 6 7.66 0.72 2 124 5 - -
1552 2 -12.98 1 <7.16 2.18 - - 6 7.62 3
1554 75 -11.40 6 9.46 -0.37 1 185 4 8.02 4
1569 14 -13.45 6 7.47 0.90 2 109 3 - -
1575 13 -12.73 1 7.94 0.93 2 113 5 8.62 3
1581 6 -13.46 3 8.64 -0.03 2 97 1 - -
1596 - - - 7.34 0.12 4 56 1 - -



 
Table 5: continued.
VCC H $\alpha+{\rm [NII]}EW$ $F({\rm H}\alpha+{\rm [NII]})$ ref MHI defHI qual WHI ref MH2 ref
  Å erg cm-2 s-1   $M_\odot$     km s-1   $M_\odot$  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1644 - - - 8.15 0.14 1 93 1 - -
1673 15 -12.00 1 8.69 0.43 3 214 12 8.70 1
1675 4 -13.85 1 7.45 1.35 3 41 1 - -
1676 19 -11.74 1 8.99 0.58 3 341 12 8.99 1
1678 55 -12.56 6 9.00 -0.06 2 57 5 - -
1686 44 -12.17 1 8.35 0.79 1 116 1 <7.77 4
1690 2 -12.02 1 8.93 1.07 1 370 11 9.01 1
1699 24 -12.85 3 8.62 0.04 2 109 1 - -
1725 50 -12.62 2 8.11 0.55 2 93 1 - -
1726 - -12.80 - 8.52 0.00 2 85 1 - -
1727 4 -11.49 6 8.79 0.83 1 374 7 9.08 6
1730 4 -12.62 1 7.83 1.03 3 190 4 8.04 3
1750 - - - 7.35 -0.01 4 73 1 - -
1757 7 -12.98 3 7.38 1.38 5 - 3 - -
1758 17 -13.07 1 8.28 0.39 1 172 5 - -
1784 2 - 4 7.34 0.78 4 37 1 - -
1789 16 -13.25 3 7.86 0.53 1 103 1 - -
1791 72 -12.42 3 8.63 -0.12 2 120 1 - -
1804 3 -14.37 2 7.23 0.84 5 88 1 - -
1811 16 -12.50 6 8.63 0.23 1 150 4 8.20 3
1813 -1 - 6 <7.19 2.23 - - 6 <7.39 3
1822 -1 - 4 7.64 0.29 2 34 1 - -
1869 - - - <7.44 1.81 - - 8 - -
1885 - - - <7.33 1.09 - - 1 - -
1918 15 -13.90 3 8.16 0.17 2 77 1 - -
1929 13 -12.75 6 8.70 0.35 1 190 10 <7.68 4
1932 16 -12.32 6 8.66 0.45 1 301 6 8.46 3
1952 32 -13.62 4 8.21 -0.19 2 65 1 - -
1970 - - - <7.49 0.53 - - 1 - -
1972 16 -11.71 6 8.75 0.27 1 203 4 8.69 1
1987 31 -11.34 6 9.85 -0.29 1 308 7 8.66 1
1992 24 -13.21 4 8.35 -0.22 1 110 1 - -
1999 -1 - 6 <7.19 1.61 - - 6 - -
2006 -1 - 6 7.94 0.91 2 78 3 - -
2007 10 -13.77 2 7.37 0.74 3 77 1 - -
2023 27 -12.56 3 8.85 -0.05 1 186 3 <7.93 4
2033 13 -13.32 2 7.45 0.61 3 41 1 - -
2034 3 -14.28 6 7.83 0.27 3 62 1 - -
2037 16 -13.82 6 7.39 0.81 3 44 1 - -
2058 14 -11.85 6 8.79 0.90 1 195 4 8.70 1
2066 6 -12.47 6 8.36 0.66 2 106 1 7.71 3
2070 2 -11.98 6 9.54 0.01 1 432 4 <7.45 5
2087 - - - <7.38 1.26 - - 8 - -
2094 - - - <7.09 0.40 - - 2 - -
References:

H$\alpha$+[NII]:

1: Boselli & Gavazzi (2002); 2: Boselli et al. (2002a); 3: Gavazzi et al. (2002b); 4: Heller et al. (1999); 5: Koopmann et al. (2001) (equivalent width from ref. 6); 6: Boselli et al., in preparation

HI:

1: Hoffman et al. (1987); 2: Hoffman et al. (1989a); 3: Haynes & Giovanelli (1986); 4: Helou et al. (1984); 5: Hoffman et al. (1989b); 6: Magri (1994); 7: Helou et al. (1981); 8: Giovanardi et al. (1983); 9: Warmels (1986); 10: Schneider et al. (1990); 11: Huchtmeier et al. (1989); 12: Helou et al. (1982); 13: Bottinelli et al. (1990);

CO:

1: Kenney & Young (1988); 2: Stark et al. (1986); 3: Boselli et al. (1995); 4: Boselli et al. (2002b); 5: Combes et al. (1988); 6: Boselli et al., in preparation; 7: Sage & Wrobel (1989).



 

 
Table 7: The galactic and internal extinction corrections.
VCC AB A(UV) A(U) A(B) A(V) A(J) A(H) A(K)
(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 0.02 - - 0.35 0.25 0.07 0.05 0.03
4 0.12 - - - - - - 0.03
17 0.08 - - 0.41 0.31 0.07 0.05 0.03
24 0.01 - - 0.34 0.25 - - 0.03
26 0.13 - - - - - - 0.03
66 0.00 0.68 0.39 0.33 0.25 0.07 0.05 0.04
81 0.14 - - 0.58 0.43 - - 0.05
87 0.08 - 0.47 0.41 0.31 - - 0.03
92 0.14 1.20 0.70 0.60 0.46 0.11 0.07 0.05
130 0.00 - - - - - - 0.03
152 0.00 - 0.50 0.43 0.33 - 0.07 0.05
159 0.00 - - 0.33 0.24 - - 0.03
169 0.00 - - - - - - -
171 0.00 - - - - - - -
207 0.00 - - - - - - 0.03
318 0.00 0.24 0.14 0.11 0.07 - - 0.01
425 0.00 - - - - - - -
459 0.04 0.31 - - - - - 0.01
460 0.07 - 0.88 0.77 0.59 0.16 0.11 0.08
655 0.03 - 0.42 0.36 0.27 - - 0.03
664 0.07 0.56 0.29 0.25 0.19 - - 0.02
666 0.03 - - - - - - 0.03
692 0.01 0.56 0.33 0.28 0.20 - 0.04 0.03
793 0.12 - 0.53 0.45 0.33 0.07 0.05 0.03
802 0.11 - 0.51 0.44 - - - 0.03
809 0.05 0.95 0.55 0.48 0.37 - - 0.05
836 0.11 2.00 1.28 1.13 0.88 0.25 0.17 0.12
848 0.00 - 0.39 0.33 0.24 - - 0.03
857 0.03 - 0.83 0.72 0.56 - - 0.08
873 0.12 2.66 1.73 1.54 1.25 - 0.29 0.21
890 0.00 - - - - - - 0.03
912 0.10 1.12 0.66 0.57 0.43 - 0.07 0.05
945 0.12 0.93 0.52 0.45 0.34 - - 0.03
950 0.03 0.74 0.42 0.36 0.27 - - 0.03
971 0.00 0.43 0.23 0.2 0.14 - - 0.02
984 0.10 1.49 0.92 0.81 0.62 0.16 0.11 0.08
995 0.10 - 0.62 0.53 0.40 - - 0.05
1001 0.08 - - - - - - 0.03
1002 0.00 0.64 - 0.32 0.23 0.07 0.05 0.03
1003 0.05 0.10 0.07 0.07 0.04 - - -
1043 0.09 1.45 0.88 0.76 0.59 0.16 0.11 0.08
1047 0.08 1.45 - 0.77 0.60 0.16 0.11 0.08
1106 0.01 - - - - - - 0.03
1110 0.03 - 0.84 0.73 0.56 0.16 0.11 0.08
1121 0.04 - - - - - - 0.03
1158 0.07 1.43 0.89 0.78 0.59 0.16 0.11 0.08
1189 0.00 0.23 0.12 0.10 0.07 - - 0.01
1196 0.08 - 0.10 0.09 0.06 - - -
1200 0.03 - 0.42 0.36 0.28 - 0.05 0.03
1217 0.03 0.74 - 0.36 0.28 0.07 0.05 0.03
1253 0.02 - 0.04 0.04 0.02 - - -
1257 0.02 - - - - - - 0.03
1287 0.08 - - - - - - -
1313 0.09 0.87 0.49 0.42 0.31 - 0.05 -
1326 0.02 2.54 1.69 1.51 1.24 - 0.31 0.22
1356 0.02 0.72 0.41 0.35 0.26 - - 0.03
1368 0.04 0.08 0.06 0.06 0.04 - - -
1377 0.02 - - 0.35 0.27 - - 0.03
1379 0.03 0.55 0.31 0.26 0.19 - 0.03 0.02
1403 0.07 - - - - - - -
1410 0.03 - 0.43 0.36 0.27 - - 0.03
1411 0.05 0.78 - 0.38 0.28 - - 0.03
1412 0.01 - 0.81 0.71 0.55 0.16 0.11 0.08
1419 0.01 - 0.81 0.70 0.54 - 0.11 0.08
1426 0.08 - - 0.41 0.31 - - 0.03
1448 0.08 - 0.12 0.12 0.07 - - -
1450 0.11 0.89 - 0.43 0.33 - 0.05 0.03
1486 0.01 - 0.80 0.70 0.54 - - 0.08
1552 0.08 - 0.88 0.77 0.60 0.16 0.11 0.08
1554 0.00 0.92 0.56 0.47 0.35 0.11 0.07 0.05
1569 0.08 - 0.60 0.51 0.39 - - 0.05
1575 0.00 1.05 0.64 0.55 0.42 - - 0.06
1581 0.00 - 0.40 0.33 0.24 - - 0.03
1596 0.00 - - - - - - -



 
Table 7: continued.
VCC AB A(UV) A(U) A(B) A(V) A(J) A(H) A(K)
(1) (2) (3) (4) (5) (6) (7) (8) (9)
1644 0.10 - - - - - - 0.03
1673 0.01 0.87 - 0.45 0.33 0.10 0.07 0.05
1675 0.00 - - - - - - 0.03
1676 0.01 - - 0.45 0.33 - - 0.05
1678 0.00 0.19 0.10 0.08 0.06 - - 0.01
1686 0.09 - 0.49 0.42 0.31 - - 0.03
1690 0.09 1.50 0.91 0.79 0.62 0.17 0.11 0.08
1699 0.00 0.68 0.39 0.33 0.24 - - 0.03
1725 0.00 0.68 0.39 0.33 0.25 0.07 0.05 0.03
1726 0.00 0.68 0.38 0.33 0.25 - - 0.03
1727 0.14 1.95 1.23 1.07 0.84 0.23 0.16 0.11
1730 0.00 - 0.51 0.43 0.33 0.10 0.07 0.05
1750 0.00 - - - - - - 0.03
1757 0.09 - 0.91 0.80 0.61 - - 0.08
1758 0.00 - 0.51 0.44 0.33 - - 0.05
1784 0.02 - - - - - - 0.03
1789 0.00 - 0.39 0.33 0.24 0.07 0.05 0.03
1791 0.00 0.15 0.08 0.06 0.03 - - 0.01
1804 0.00 - 0.39 0.33 0.24 - - 0.03
1811 0.03 0.62 0.35 0.30 0.22 - 0.04 0.03
1813 0.00 0.67 0.39 0.35 0.25 0.07 0.05 0.03
1822 0.00 - 0.39 0.33 0.25 - - 0.03
1869 0.00 - - 0.03 0.01 - - -
1885 0.04 - - - - - - 0.03
1918 0.02 - - - - - - 0.03
1929 0.03 0.44 0.23 0.2 0.15 - - 0.02
1932 0.03 - 0.53 0.46 0.35 0.10 0.07 0.05
1952 0.00 - - - - - - 0.03
1970 0.00 - - - - - - 0.03
1972 0.04 1.15 0.70 0.61 0.46 0.13 0.09 0.06
1987 0.06 1.39 0.85 0.74 0.57 0.16 0.11 0.08
1992 0.00 - 0.39 0.33 0.25 0.07 0.05 0.03
1999 0.04 - 0.84 0.73 0.57 0.16 0.11 0.08
2006 0.04 - - - - - - -
2007 0.00 - - - - - - 0.03
2023 0.06 - 0.58 0.49 0.37 - - 0.05
2033 0.00 - 0.39 0.33 0.24 - - 0.03
2034 0.00 - - 0.33 0.24 - - 0.03
2037 0.00 - 0.39 0.33 0.25 - - 0.03
2058 0.05 1.32 - 0.70 0.54 - 0.10 0.07
2066 0.00 - 0.01 0.02 0.01 - - -
2070 0.00 - 0.80 0.70 0.54 0.16 0.11 0.08
2087 0.00 - 0.01 0.01 - - - -
2094 0.00 - - - - - - 0.03



 

 
Table 8: The output parameters from fitting the SED.
VCC stellar fit [F6.75(d+s)/F6.75(s)] c d
(1) (2) (3) (4) (5)
1 S 1.15 - -
4 - - - -
17 S 3.48 - -
24 S 0.43 - -
26 - - - -
66 S 8.53 0.555 -1.536
81 S - - -
87 S 2.77 - -
92 S 3.63 0.632 -1.555
130 - - - -
152 S 10.10 1.151 -4.827
159 S - - -
169 - - - -
171 - - - -
207 - - - -
318 S 1.68 - -
425 - - - -
459 T 3.42 - -
460 S 1.65 0.620 -1.951
655 S 5.31 - -
664 S 2.29 - -
666 - - - -
692 S 5.17 - -
793 S - - -
802 - - - -
809 S 4.23 - -
836 S 7.30 0.622 -1.141
848 S 1.70 - -
857 S 1.79 - -
873 S 12.68 0.847 -2.698
890 - - - -
912 S 3.75 - -
945 S - - -
950 S - - -
971 S 2.49 - -
984 S 0.57 - -
995 S 1.62 - -
1001 - - - -
1002 S 7.30 1.133 -5.148
1003 S 1.10 - -
1043 S 1.46 0.569 -0.838
1047 S - - -
1106 - - - -
1110 S 1.06 - -
1121 - - - -
1158 S 0.69 - -
1189 S 4.17 - -
1196 S 0.71 - -
1200 S - - -
1217 S 1.67 - -
1253 S 0.74 0.678 -2.555
1257 - - - -
1287 - - - -
1313 S - - -
1326 S 1.66 - -
1356 S - - -
1368 S 0.58 - -
1377 S - - -
1379 S 7.41 0.757 -3.368
1403 - - - -
1410 S 5.55 - -
1411 S - - -
1412 S 0.59 - -
1419 S 1.55 - -
1426 S - - -
1448 S - - -
1450 S 11.32 - -
1486 S - - -
1552 S 1.01 - -
1554 S 10.18 0.903 -2.677
1569 S 1.58 - -
1575 S 10.38 - -
1581 S - - -
1596 - - - -



 
Table 8: continued.
VCC stellar fit [F6.75(d+s)/F6.75(s)] c d
(1) (2) (3) (4) (5)
1644 - - - -
1673 S 6.33 - -
1675 T - - -
1676 S 8.14 0.671 -1.487
1678 S - - -
1686 S 5.75 - -
1690 S 3.76 0.461 -0.583
1699 S 2.87 - -
1725 S 2.07 - -
1726 S - - -
1727 S 1.91 0.075 1.601
1730 S 2.67 - -
1750 - 1.78 - -
1757 S - - -
1758 S 2.94 - -
1784 - - - -
1789 S 2.49 - -
1791 S 3.23 - -
1804 S 1.04 - -
1811 S 7.28 0.863 -3.643
1813 S 0.80 - -
1822 S 4.70 - -
1869 S - 0.659 -3.058
1885 - - - -
1918 - 5.73 - -
1929 S 4.60 - -
1932 S 16.83 0.784 -2.629
1952 - - - -
1970 - - - -
1972 S 12.67 0.962 -3.348
1987 S 11.78 0.659 -1.480
1992 S 3.03 - -
1999 S 0.51 - -
2006 - 0.94 - -
2007 - 4.23 - -
2023 S 1.83 - -
2033 S 1.06 - -
2034 S 0.51 - -
2037 S - - -
2058 S 4.90 0.675 -2.473
2066 S 3.33 0.044 0.357
2070 S 0.67 0.000 0.301
2087 S 0.44 - -
2094 - 17.81 - -
Column 1: VCC name.

Column 2: S indicates galaxies with a fitted Bruzual & Charlot spectrum determined from UV, optical and near-IR spectro-photometry, T for galaxies whose fit is Bruzual & Charlot spectrum of the template.

Column 3: The ratio of the total flux (star plus dust) to the stellar flux at 6.75 $\mu $m, [F6.75(d+s)/F6.75(s)].

Columns 4 and 5: the fit of the radio continuum data, where a and b are the slope and the intercept of the relation $\log F(\nu) = c \times \log \lambda + d$, with $\nu$ in Hz and $\lambda$in $\mu $m. Given the inconsistency in their radio continuum flux densities, the fitting coefficients of the galaxies VCC 857, 1110 and 1450 are not given.



Copyright ESO 2003