A&A 402, 37-51 (2003)
DOI: 10.1051/0004-6361:20030219
A. Boselli 1 - G. Gavazzi 2 - G. Sanvito 2
1 - Laboratoire d'Astrophysique de Marseille, BP 8,
Traverse du Siphon, 13376 Marseille Cedex 12, France
2 - Università degli Studi di Milano-Bicocca, Dipartimento di Fisica,
Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy
Received 10 October 2002 / Accepted 16 December 2002
Abstract
We present a multifrequency dataset for an optically-selected,
volume-limited, complete sample of 118 late-type galaxies (S0a)
in the Virgo cluster. The database includes UV, visible, near-IR, mid-IR,
far-IR, radio continuum photometric data as well as spectroscopic
data of H
,
CO and HI lines, homogeneously reduced,
obtained from our own observations or compiled from the literature.
Assuming the energy balance between the absorbed stellar light and that
radiated in the IR by dust, we calibarte an empirical attenuation law
suitable for correcting photometric and spectroscopic data of normal
galaxies.
The data, corrected for internal extinction,
are used to construct the spectral energy distribution (SED)
of each individual galaxy, and combined to trace the median SED of galaxies
in various classes of morphological type and luminosity. Low-luminosity,
dwarf galaxies have on average bluer stellar continua and higher
far-IR luminosities per unit galaxy mass than giant, early-type spirals.
If compared to nearby starburst galaxies such as M 82 and Arp 220,
normal spirals have relatively similar observed stellar spectra but
10-100 times lower IR luminosities. The temperature of the cold dust
component increases with the far-IR luminosity, from giant spirals to dwarf
irregulars.
The SED are used to separate the stellar emission from the dust emission
in the mid-IR regime. We show that the contribution of the
stellar emission at 6.75 m to the total emission of galaxies is
generally important, from
80% in Sa to
20% in Sc.
Key words: galaxies: general - galaxies: spiral - galaxies: ISM - galaxies: stellar content
An ideal tool for constraining observationally models of galaxy evolution
would consist of a multi-dimensional "data-cube'':
containing imaging data of complete samples of
galaxies, spanning the broadest possible wavelength (
), redshift (z),
morphological type (Type) and luminosity (Lum) ranges.
Moreover, all environmental conditions (Env) should be equally
represented, from the coarsest "field" to the densest cluster's cores.
Such an ideal data-base is irrealistic. First of all, multifrequency images hardly exist, at suitable resolution, even for galaxies in the Local Group. The requirement that the data-cube consists of "imaging" data must then be relaxed for the more realistic requirement that it should contain "integrated" data, as more commonly available from aperture/CCD photometry. Even with these reduced characteristics, very few such data-sets exist either for high z, or for local galaxies. The presently available samples cover a small wavelength window, such as those of Connolly et al. (1995) or Kinney et al. (1993), or they are biased towards starburst and active galaxies (Schmitt et al. 1997), thus they are not representative of "normal'' galaxies.
Within few years from now, however, when SLOAN will reach completion and the space missions GALEX (UV) and ASTRO-F (FIR) will perform their all-sky surveys, large data-sets meeting the above requirements will be at hands.
There is yet a sample which approaches the ideal requirements.
The data-cube we are referring to is an optically selected (complete) one, representative of galaxy
in a broad luminosity range and it is truly multifrequency (from the far-UV to the radio domains).
It suffers from three limitations: it is local (z=0) and it
represents only late-type galaxies in the densest environment, being composed
of galaxies in the the Virgo cluster:
.
It is on this data-base that
the present paper is focused.
Skipping through the details of the sample selection and of the available data that can be found in Sects. 2 and 3 of this paper respectively, it is worth spending some words on what scientific purpouses such data-base is aimed at.
Individual galaxies are represented in the data-base under the form of
Spectral Energy Distributions (SEDs), such as those
presented in Fig. 2.
SEDs are powerful diagnostic tools for studying the energy balance
between the principal constituents of galaxies.
From 0.1 to 5
(UV, Visible, Near-IR) SEDs are dominated by the stellar thermal radiation,
(but include most of the measurable recombination lines providing
the diagnostics of the ISM).
From 5 to 25
(Mid-IR) the dominant source is the radiation from very small grains of dust,
but the contribution of emission lines (PAH) is relevant.
From 25 to 1000
(Far-IR, sub-mm radio) the flux of SEDs is due to the thermal radiation from cold
dust (10-100 K). Important diagnostic lines such as the
[CII] (
m) and CO are found in this interval.
It is here that dust-rich objects peak their flux distributions.
At wavelengths longer than 1 cm (radio) the radiation is non-thermal (synchrotron) by
relativistic cosmic ray electrons and magnetic fields, but the most important ISM diagnostic line,
the 21 cm line of the neutral hydrogen, lies in this domain.
All these components and their complex feedback relations can be studied at once using the SEDs.
First an estimate of the relative fraction of stars in the various age (temperature) classes can be obtained
by fitting populations synthesis models (Bruzual & Charlot 1993) to the
stellar continua (see e.g., Gavazzi et al. 2002a).
Once the stellar populations are determined, by studying the ISM emission
line properties (e.g. the H
)
one can
learn about the ionization processes in HII regions. From the FIR properties
we can study the dust heating mechanisms.
Finally from the luminosity of the synchrotron radiation one can study the contribution of the various
stellar populations to the cosmic ray acceleration.
Before energy balances can be quantitatively derived, however, the observed SEDs must be properly corrected for a number of effects that introduce wavelength dependent distortions to their shape. Primarily the SEDs must be rest-framed. Galaxies at large redshift require important K corrections. Their cosmic evolution can be studied by comparing their rest-frame SEDs with those of normal local galaxies. Hence the importance of obtaining template SEDs representative of normal galaxies, unlike those of starburst galaxies such as M 82 or Arp 220 (see Fig. 3), often used for such a purpouse.
Secondly comes the internal extinction correction. Stellar light is absorbed and scattered by the dust in a wavelength dependent way. Corrected SEDs can be derived if the proper amount of extinction is estimated. The amount of stellar light absorbed in the blue should equal that thermally re-emitted in the FIR by the dust. Thus the difference of the integral under the stellar continua in the SEDs before and after the extinction correction gives the energy radiated in the FIR. By reversing the argument Buat et al. (2002) derive a robust estimate of the internal extinction in normal galaxies.
Finally the comparison of SEDs of isolated and cluster galaxies can shed light on influences of the environment on the various components of galaxies. Our Virgo sample, spanning a large interval of galactocentric projected distance from M 87 (up to 6 degrees), provides a clue also on this issue.
Matter in the present paper is organized as follows The sample is described in Sect. 2; in Sect. 3 we give a new prescription for the determination of the UV, optical and near-IR internal extinction based on the FIR/UV flux ratio. The adopted extinction law is checked in Sect. 5.3 using considerations on the energy balance between the emitted far-IR radiation and the absorbed stellar light. The SEDs of the sample galaxies are presented in Sect. 4, and analyzed in Sect. 5. We construct template SEDs in bins of equal morphological type and luminosity and compare them to those of starburst galaxies (Sect. 5.1). The stellar contribution to the mid-IR emission of galaxies (Sect. 5.2) and the properties of the nonthermal radiation (Sect. 5.4) are also analyzed. The bolometric properties of the observed sample are described in Sect. 5.5.
New optical observations obtained using the 1.2 m telescope of the Observatoire de Haute Provence (OHP), the 0.9 m telescope at Kitt Peak and the 2.5 m INT telescope at el Roques de los Muchachos (La Palma) are given in the appendix.
All observations analyzed in the present paper are contained in a database that has been made available to the international community via the Word Wide Web site GOLDMine (http://goldmine.mib.infn.it) described in Gavazzi et al. (2003).
The sample analyzed in this work was extracted from the optically selected
Virgo Cluster Catalogue (VCC) of Binggeli et al. (1985), which
is complete to
.
Galaxies were selected according to the
following criteria:
![]() |
Figure 1:
Plot of all VCC galaxies classified as members by Binggeli et al.
(1985) taken from Fig. 1 of Sandage et al. (1985). The subsample of
galaxies here analyzed (see Sect. 2) are marked with filled symbols of increasing size
according to their magnitude. Empty symbols are for Virgo members not included in the
ISO sample; circles for late-type galaxies (![]() ![]() |
The resulting sample of 118 galaxies is complete to
,
and
both the cluster-periphery and -core subsamples span the range
-21 < MB< -13.
Both subsamples are approximately equally divided between giant
spirals on the one hand and dwarf and irregular galaxies on the other.
The distribution over Hubble type is summarised in Table 1.
S0/a - Sab | Sb - Sc | Scd - Sm | Im | BCD | |
periphery | 9 | 16 | 12 | 20 | 15 |
core | 16 | 11 | 6 | 10 | 3 |
Total | 25 | 27 | 18 | 30 | 18 |
The parameter of the sample galaxies are given in Table 2, arranged as follows:
The SED presented in this paper have been constructed using multifrequency data available in the literature or from our own observations, treated as consistently as possible, in order to produce an homogeneous data-set.
The UV data are taken from the FAUST (Lampton et al. 1990) and the FOCA (Milliard et al. 1991) experiments. In order to be consistent with our previous works, we transformed UV magnitudes taken at 1650 Å by Deharveng et al. (1994) to 2000 Å assuming a constant colour index UV(2000) = UV(1650) + 0.2 mag. This relation has been obtained by comparing the FAUST 1650 Å with the SCAP (Donas et al. 1987) 2000 Å UV magnitudes of 17 late-type galaxies in the Virgo cluster, observed by both experiments (Deharveng et al. 1994). FOCA magnitudes are from Deharveng et al. (2002), and Donas et al., in preparation. These are total magnitudes, determined by integrating the UV emission up to the weakest detectable isophote. The estimated error on the UV magnitude is 0.3 mag in general, but it ranges from 0.2 mag for bright galaxies to 0.5 mag for weak sources observed in frames with larger than average calibration uncertainties.
U, B and V photometry is generally derived from our own CCD measurements consistently with
Gavazzi & Boselli (1996), as described in the appendix.
When these are not available it is derived from aperture photometry taken from the literature.
The (U,B,V) D25 magnitudes, computed at the
isophotal B band
diameter as in Gavazzi & Boselli (1996),
have
10% uncertainty. They are on
average 0.1 mag fainter than the total asymptotic magnitudes.
NIR data, from Nicmos3 observations, are taken mostly from Boselli et al. (1997) and Gavazzi et al. (2001). Magnitudes (J,H,K) are determined consistently with the optical magnitudes as in Gavazzi & Boselli (1996). The typical uncertainty in (J,H,K) is 10%. As for the visible magnitudes, they are on average 0.1 mag fainter than the total asymptotic magnitudes.
Mid-IR data, at 6.75 and 15 m, are from Boselli et al. (2003). Flux densities have been
extracted from ISOCAM images by integrating the emission until the weakest detectable isophote.
Even if the mid-IR emission of these galaxies is less extended than in the visible and near-IR bands,
ISOCAM data provide us with integrated flux denisties representative of the whole galaxy.
The typic uncertainty on the ISOCAM data is
30%.
12, 25, 60 and 100 m integrated flux densities from the IRAS survey are taken from
different sources. The typical uncertainty in the IRAS data is
15%.
Alternative Far-IR values at 60 and 100
m from ISOPHOT, as well as 170
m flux densities, are
taken from Tuffs et al. (2002), with a typical nominal uncertainty of
10%. The comparison
of ISO and IRAS data for the sample galaxies detected in both surveys reveals a systematic difference of
and 0.82 at 60 and 100
m respectively (Tuffs et al. 2002).
We collected radio continuum data at 2.8, 6.3, 12.6 and 21 cm from different sources.
21 cm radio continuum data, available for the whole sample, are mostly from the NVSS survey (Condon et al. 1998)
(see Gavazzi & Boselli 1999).
All radio continuum data are integrated fluxes. The typical uncertainty is 20%.
The photometric data for the whole sample are given in Table 3, arranged as follows:
All data given in Table 3 are observed quantities. The UV, optical and near-IR data are uncorrected for dust extinction, the mid-IR data for the contribution of the stellar component, the radio continuum data for the contribution of the nuclear emission.
References to the photometric data are given in Table 4.
Additional emission line data are given in Table 5, arranged as follows:
UV to near-IR data have been corrected for galactic extinction according to
Burstein & Heiles (1982). The galactic extinction
,
taken from NED
and listed in Table 7, have been transformed to
assuming a
standard galactic extinction law (see Table 6):
,
where
.
Filter | ![]() |
c(![]() |
Å | ||
UV | 2000 | 2.10 |
U | 3650 | 1.15 |
B | 4400 | 1.00 |
V | 5500 | 0.75 |
J | 12 500 | 0.21 |
H | 16 500 | 0.14 |
K' | 21 000 | 0.10 |
The observed stellar radiation of galaxies, from UV to near-IR wavelengths, is subject to internal extinction (absorption plus scattering) by the interstellar dust. In order to quantify the emission of the various stellar populations, UV, optical and, to a lesser amount, near-IR fluxes must be corrected for dust attenuation. Furthermore, since dust extinction varies from galaxy to galaxy (according to their geometrical parameters such as the inclination, their history of star formation and metallicity), corrections appropriate to each individual galaxy must be determined.
Estimating the dust extinction at different
in external galaxies
is however very difficult (it has been done only for the Magellanic clouds).
Buat et al. (2002) have shown that, for example, the Calzetti's
law calibrated on the central part of starburst galaxies (Calzetti 2001)
strongly overestimates the extinction in normal, late-type objects.
This difficulty is mainly due to two reasons: a) the extinction strongly
depends on the relative geometry of the emitting stars and of the
absorbing dust within the disc of galaxies. The young stellar population are
mostly located along the disc in a thin layer, while the old populations forms a thicker layer.
This point is further complicated by the fact that different dust components
(very small grains, big grains etc.), which have different opacities to
the UV, visible or near-IR light, have themselves different geometrical distributions both on
the large and small
scales. b) it is still uncertain whether the Galactic extinction law
is universal, or if it changes with metallicity and/or with the UV radiation field. Detailed
observations of resolved stars in the Small Magellanic Cloud by Bouchet et
al. (1985) indicate that the extinction law in the optical domain is not significantly different
from the Galactic one in galaxies with a UV field
10 times higher and
a metallicity
10 times lower than those of the Milky Way.
A steeper UV rise and a weaker 2200 Å bump than in the Galactic
extinction law have been however observed in the LMC and SMC (Mathis 1990).
While the adoption of the Galactic extinction law for external galaxies seems reasonable (even though it is questionable for low-luminosity galaxies), no simple analytic functions describing the geometrical distribution of emitting stars and absorbing dust, both on small and large scales, are yet available.
The radiative transfer models of Witt & Gordon (2000) have however shown that the FIR to UV flux ratio, being mostly independent of the geometry, of the star formation history (the two radiations are produced by similar stellar populations) and of the adopted extinction law, is a robust estimator of the dust extinction at UV wavelengths. Here we will use this method to estimate the extinction correction in the UV, the wavelength most affected by dust.
We propose an internal extinction correction prescription similar to that described in Gavazzi et al. (2002a).
Our semi-empirical
determination of A(UV) takes into account the scattered light.
Following Buat et al. (1999), we estimate Ai(UV) from the relation:
![]() ![]() |
(1) |
![]() ![]() |
(2) |
![]() |
(3) |
![]() |
(4) |
![]() |
(5) |
In the case of the UV band (
Å),
,
and Eq. (4)
reduces to a simple slab model. In this case
(UV) can be derived by
inverting Eq. (4):
![]() |
|||
![]() |
(6) |
![]() |
(7) |
FIR/UV is available for 44 objects.
If FIR or UV measurements are unavailable we assume the average values
;
0.85; 0.68 mag
for Sa-Sbc; Sc-Scd; Sd-Im-BCD galaxies respectively, as determined
when FIR and UV measurements are available.
Once corrected adopting the aformentioned prescription, we checked empirically that the SED do not contain a residual dependence on galaxy inclination. The corrected SEDs of 32 Sc galaxies, binned in 4 intervals of inclination, and their fit parameters were found very consistent one another. The galactic and internal extinction correction (in magnitude) for the observed galaxies are given in Table 7.
This empirical attenuation law gives a zeroth order estimate of the attenuation in the UV regime, the most affected by dust. We stress however that the shape of the corrected spectrum, in particular at UV wavelengths, is still uncertain. This is due not only to the lack of observational constraints other than the 2000 Å flux, but also to the large uncertainties on the relative geometrical distributions of dust and stars and on the extinction law, which might significantely depend on the UV field and metallicity in this wavelength regime.
Figure 2 shows the SEDs of the sample galaxies obtained using the data given in Table 3 (only for those
galaxies with at least 2 photometric data points).
UV, optical and near-IR data are corrected for galactic and internal extinction as described
in the previous section. FIR data at 60 and 100 m
are average values between IRAS and ISOPHOT data when both are available. When one of
the two data is an upper limit, we take the detection
.
To be as consistent as possible with IRAS, ISOPHOT data have been corrected for the average ISOPHOT/IRAS
ratio found by Tuffs et al. (2002) for Virgo galaxies
detected with both instruments,
and 0.82 at 60 and 100
m respectively.
The morphological type given in Table 2 and the logarithm of the H band luminosity, defined as
(in solar units),
where
is the total H band magnitude and D is the distance
to the source (in Mpc), are labeled in Fig. 2.
For few objects we derive the H luminosity
from K band measurements assuming an average H-K colour of
0.25 mag (independent of type; see Gavazzi et al. 2000).
A minority of the objects in our sample have an H band magnitude
obtained from aperture photometry, thus with no asymptotic extrapolation.
For these we use the H magnitude determined as in Gavazzi & Boselli
(1996) at the optical radius
which is on average 0.1 mag fainter than
(Gavazzi et al. 2000).
The continuum line in the optical domain gives the integrated spectrum obtained by Gavazzi et al. (2002a).
The two dashed lines at
m are the
Bruzual & Charlot stellar population synthesis
models (GISSEL 2001).
The upper curves represent the models which best fit the extinction corrected data,
as determined by Gavazzi et al. (2002a). The lower curves represent the same models
attenuated by dust extinction using the inverse relations
of Sect. 3.1.
For galaxies with insufficient photometric points for fitting a model, we adopt the
Bruzual & Charlot model that best-fits a template SED of similar morphological type (Fig. 9
in Gavazzi et al. 2002a). To be consistent with Gavazzi et al. (2002a), all models are normalized
to the V band photometric data when available, or to the K band.
Given the poor
quality of the fit, models are not shown for the galaxies VCC 1217 and VCC 1313.
We have preferred not to give fits in the Mid-IR range for two reasons: 1) because the very small grains and the carriers of the Aromatic Infrared Bands responsable for the mid-IR dust emission are not in thermal equilibrium with the radiation, but are stochastically heated (mostly) by UV photons (Boselli et al. 2003). Thus modified black-body functions cannot be used to fit the mid-IR data. 2) mid-IR spectra obtained with the CVF camera onboard ISO in various galactic and extragalactic environments has shown a variety of strong emission lines with fluxes comparable with the continuum. It is thus difficult to estimate a typic mid-IR spectrum of galaxies.
The dashed line in the FIR domain (20-2000 m) reprsents a two dust components
model. Two modified blackbodies
,
with
,
one with a fixed warm temperature of
K (tracing the star forming
regions), the other with a (variable) cold temperature
(tracing the cirrus emission), were
determined consistently with Popescu et al. (2002). The two components
are calibrated to match the 60 and 170
m data respectively.
For galaxies not observed by PHOT but detected by IRAS at 60 and 100
m, we adopted
a modified blackbody with
K for the warm component and we assume
K
(the average value of Popescu et al. 2002), for the cold component. They are calibrated
to match the 60 and 100
m fluxes respectively.
The far-IR to mm domain, from 170 m to
1 cm, is totally unexplored.
Submillimetric observation should provide constraints on the cold dust temperature and on
the total dust mass of the sample galaxies. From
1 mm to 1 cm, data are needed to
estimate the relative contribution of the thermal and synchrotron radio emission.
The dashed line in the centimetric domain, given for all galaxies with more than two detections, represents the power-law regression to the radio continuum data. The best-fit parameters are given in Table 8.
Previous analyses, each devoted to a limited spectral domain, have attempted to interpret the SEDs of galaxies: Gavazzi et al. (2002a) for the continuum stellar radiation, Boselli et al. (1998, 2003 and in preparation) for the mid-IR emission, Popescu et al. (2002) for the FIR emission, and Niklas et al. (1997) for the radio emission. In this work, for the first time we analyze the SEDs as determined in the whole spectral range.
![]() ![]() |
Log
![]() |
|||||||||||
S0a | Sa | Sab-Sb | Sbc-Sc | Scd-Sd | Im | BCD | ![]() |
![]() |
![]() |
![]() |
![]() |
|
0.20 | -3.22(2) | -2.46(5) | -1.51(5) | -1.04(15) | -0.72(4) | -0.38(7) | -0.36(4) | - (1) | -0.37(11) | -0.87(9) | -1.22(12) | -1.62(10) |
0.37 | -1.25(5) | -0.96(10) | -0.92(7) | -0.59(16) | -0.47(6) | -0.26(15) | -0.32(9) | -0.12(3) | -0.28(21) | -0.58(17) | -0.88(15) | -1.06(16) |
0.44 | -0.78(6) | -0.42(11) | -0.45(7) | -0.26(22) | -0.16(6) | 0.06(21) | -0.10(11) | 0.11(4) | -0.03(27) | -0.21(21) | -0.40(19) | -0.53(18) |
0.55 | -0.48(6) | -0.21(11) | -0.25(7) | -0.13(22) | -0.07(6) | 0.13(21) | -0.04(10) | 0.23(3) | 0.08(27) | -0.09(21) | -0.18(19) | -0.28(18) |
1.25 | 0.06(5) | 0.07(9) | 0.05(6) | -0.02(7) | -(-) | 0.19(6) | 0.08(2) | 0.22(2) | 0.19(4) | 0.09(3) | 0.05(12) | 0.06(16) |
1.65 | 0.13(6) | 0.13(10) | 0.11(6) | 0.13(14) | -(1) | 0.15(7) | 0.11(2) | 0.21(2) | 0.15(5) | 0.14(7) | 0.13(19) | 0.12(16) |
2.10 | 0.00(6) | 0.00(11) | 0.00(7) | 0.00(22) | 0.00(6) | 0.00(35) | 0.00(17) | 0.00(20) | 0.00(32) | 0.00(22) | 0.00(19) | 0.00(18) |
6.75 | -0.95(5) | -0.96(9) | -0.46(7) | -0.14(21) | -0.37(5) | -0.19(14) | -0.57(11) | -0.15(4) | -0.35(18) | -0.34(18) | -0.16(18) | -0.61(17) |
12 | -(1) | -0.54(4) | -0.24(7) | 0.26(13) | -(1) | -(1) | -(-) | - (-) | - (-) | - (1) | 0.13(13) | -0.33(14) |
15 | -1.37(5) | -1.30(10) | -0.47(7) | -0.13(21) | -0.14(4) | 0.06(9) | -0.48(7) | 0.02(2) | -0.30(10) | -0.46(18) | -0.22(19) | -0.63(17) |
25 | -(1) | -(1) | -0.40(7) | 0.46(13) | -(1) | -(1) | -(1) | - (-) | - (1) | 0.72(3) | 0.28(11) | -0.10(12) |
60 | -0.19(2) | 0.19(7) | 0.43(7) | 1.14(17) | 1.29(5) | 1.44(6) | 1.39(6) | - (-) | 1.48(10) | 1.18(14) | 1.05(14) | 0.43(15) |
100 | 0.36(2) | 1.01(6) | 0.97(7) | 1.63(17) | 1.72(5) | 1.78(7) | 1.65(8) | 2.00(3) | 1.70(9) | 1.67(14) | 1.61(13) | 0.97(15) |
170 | 0.36(4) | 1.15(5) | 1.27(7) | 1.78(11) | 1.88(4) | 1.89(10) | 1.93(9) | 2.05(4) | 1.82(12) | 1.83(15) | 1.68(10) | 1.15(11) |
28000 | -(1) | -(1) | -1.55(5) | -1.46(8) | -(-) | -(1) | -(-) | - (-) | - (-) | - (-) | -1.63(9) | -1.44(9) |
63000 | -2.46(2) | -2.09(2) | -1.57(5) | -1.08(11) | -(-) | -(1) | -(-) | - (-) | - (-) | - (1) | -1.21(9) | -1.40(12) |
126000 | -2.00(3) | -1.68(6) | -1.34(5) | -1.01(10) | -(1) | -(1) | -(1) | - (-) | - (-) | - (1) | -1.10(13) | -1.47(14) |
210000 | -(1) | -(1) | -1.31(5) | -0.81(10) | -0.72(2) | 0.33(4) | -(1) | - (-) | 0.51(3) | -0.72(3) | -0.95(11) | -1.06(10) |
Note: the values in parenthesis give the total number of objects in each Hubble type
and wavelength bin that were combined to form the templates.
By analyzing Fig. 3 we can observe that: a) the relative contribution to the SED of the young
stellar component, emitting in the UV, and of the relatively cold dust emitting at 60-200
m increases from early to late-type spirals and/or from high-mass to low-mass objects;
b) the 60 to 100
m flux density ratio increases with the total FIR emission, indicating a
general increase of the big grains dust temperature
from massive Sa to low-luminosity Scd-Im-BCD and, to a much higher degree, in starburst galaxies.
c) optically selected spirals have UV to near-IR SEDs similar to those of sturburst
galaxies such as M 82 or Arp 220, despite the fact that these extreme objects have dust attenuations
several order of magnitudes higher than normal galaxies,
for
optically selected spirals vs.
for M 82 (Buat et al. 2002) and
for
Arp 220 (Haas et al. 2001).
At the same time
the far-IR emission of optically-selected, normal galaxies is more than a factor of 10-100 less
important than in sturbust galaxies.
It is thus extremely dangerous to use the SEDs of starburst galaxies such as M 82 and Arp 220 as templates of normal late-type galaxies at high redshift, as often done, since these objects may not be representative of the mean late-type galaxy population even at earlier epochs, when star formation was expected to be more active.
The Bruzual & Charlot models fitted to the data trace the stellar emission
from 1000 Å to 10 m, and can thus be used to estimate the stellar contribution to the
emission of our target galaxies at 6.75
m.
The ratio of the total flux (dust plus star) to the stellar flux at 6.75
m,
[F6.75(d+s)/F6.75(s)], determined for all galaxies detected at 6.75
m, and with
available visible or near-IR photometry, is given in Table 8, while the median value for each morphological class
in Table 13.
Figure 4 shows the relationship between
[F6.75(d+s)/F6.75(s)] and the morphological type.
The stellar contribution to the total mid-IR emission of galaxies strongly depends on the
morphological type. In early-types (S0a), the emission at 6.75
m is completely
dominated by the photosphere of the cold stellar population (see Table 13).
The average stellar contribution to the 6.75
m emission of spiral galaxies is always
important, ranging from
80% in Sa to
20% to Sc and Im. In BCD the
stellar emission contributes on average at
50%. Given the low detection rate in irregular
galaxies (Im and BCD), their average
[F6.75(d+s)/F6.75(s)] ratios might be biased towards
objects whose stellar contribution to the mid-IR emission is important, the only ones with detectable
6.75
m flux. The decrease of the dust emission observed in BCD and Im galaxies, however,
could be due either to their low metallicity, or to the
destruction of the carriers of the UIB expected in high UV radiation fields (Boselli et al. 1998).
We do not see any strong relationship between the
[F6.75(d+s)/F6.75(s)]ratio and the total K band luminosity or concentration index parameter.
However all galaxies with
have their mid-IR
emission at 6.75
m dominated by stars. Among the ISOCAM resolved galaxies, these
objects have also a C31(6.75
m) index >4 (Boselli et al. 2003), suggesting
that the spatial distribution of the stellar component dominating the mid-IR emission
is similar to that emitting in the near-IR.
In the assumption that the stars dominating the emission at 7
m have
a spatial distribution similar to those emitting in the near-IR, we can re-scale our K band
images (Boselli et al. 1997) using Table 8 and subtract them from the
ISOCAM LW2 images of Boselli et al. (2003) to obtain images of the pure dust emission at 6.75
m.
We apply this correction, as an exercize to the Sab galaxy VCC 1727 (Fig. 5). The ISOCAM LW2 image at 6.75
m
shows a very pronunced nucleus, a clumpy, ring-like structure and a smoothed, diffuse external region.
The emitting dust, on the contrary, is mostly located along the ring-like structure. Most of the
nuclear and part of the diffuse emission in the 6.75
m image is stellar.
The determination of the stellar contribution to the 12 and 15 m emission of galaxies
cannot be easely quantified since the Bruzual & Charlot models are limited to the spectral
domain
10
m.
The extrapolation of our fit (Fig. 2) indicates that
the stellar contribution can be important at 15
m, even though less than at 6.75
m.
This result has to be taken in serious consideration when mid-IR deep surveys are used to estimate the star formation activity of galaxies at high z, where rest-frame mid-IR fluxes might be dominated by the stellar emission.
Type |
![]() |
S0a |
![]() |
Sa-Sab |
![]() |
Sb-Sbc |
![]() |
Sc |
![]() |
Scd-Sd |
![]() |
Sm-Im |
![]() |
BCD |
![]() |
As extensively discussed in Sect. 3.1, in a given galaxy the energy emitted by the various stellar
populations and absorbed by dust must equal the total energy radiated in
the mid- and far-IR domain.
However
was estimated in Sect. 3.1 just from FIR, which is a
combination of the 60 and 100
m fluxes, not from
the integral of the dust emission as determined on the SEDs.
It remains to be checked
whether the global extinction A(
m), which depends on the
adopted geometrical model and on the choice of the galactic extinction law,
is consistent with the observed mid- and far-IR
emission.
The energy of the stellar light absorbed by dust is equal to the
difference between the integrals of the stellar SEDs (i.e. the Bruzual & Charlot models)
prior and after the extinction correction. This should equal the energy radiated in the FIR:
![]() |
(8) |
To illustrate our method we give in Fig. 6 the SED of the galaxy VCC 1554. The energy of the
stellar light absorbed by dust is marked by the shaded region shortward of 10 m,
the energy re-emitted in the FIR by the shaded region between 20 and 2000
m.
![]() |
Figure 4:
The relationship between the total flux (dust plus stars) to the stellar flux at 6.75 ![]() |
Figure 7 shows the relationship between the total energy emitted in the far-IR and that
emitted by stars and absorbed by dust in the range between 1000 Å and 10 m (Eq. (8)).
The median value of the ratio between the energy
absorbed by dust and that emitted in the far-IR is 1.27 for the entire sample, 1.03 for those objects
whose extinction has been determined directly using the observed FIR/UV ratio, as illustrated in Fig. 8.
The almost linear relation between the absorbed star light and the energy emitted by dust, combined with their ratio close to one, leads us to conclude that the prescription given in Sect. 3.1 to correct stellar SEDs is sufficiently accurate for optically-selected spiral galaxies, even for objects without UV and far-IR data.
The ratio between the energy absorbed by dust and that emitted in the
far-IR shows however a weak residual trend with morphological type (Fig. 9)
and luminosity (Fig. 10): it is significantely larger than unity in early-type, massive galaxies.
This increase could be due to an underestimate of the far-IR emission of massive, early-type galaxies, that could exist if we missed a colder dust component in quiescent objects with low UV interstellar radiation field.
We remind that the extinction values derived using this prescription are significantly smaller than those obtained using the Calzetti's law, which is probably more accurate for starburst galaxies (see Gavazzi et al. 2002a and Buat et al. 2002 for a detailed discussion on this issue).
For 25 galaxies detected at more than one frequency in the centimetric domain, we
derive the slope of the radio continuum spectrum by a simple linear fit to the data.
Excluding galaxies VCC 857, 1110 and 1450 showing
large inconsistencies in the radio continuum flux densities and 8 additional objects
with signs of nuclear activity (LINER, Seyfert, see Table 2)
we obtain an average spectral slope
,
consistent with
the canonical synchrotron slope
found by Niklas et al. (1997) by
carefully separating the contribution of the thermal from the synchrotron emission (see Table 8).
By integrating the fit models in the stellar and FIR domain, we
calculate the (observed) bolometric luminosity of our target galaxies:
![]() |
(9) |
![]() |
Figure 9: The ratio between the energy absorbed by dust and that emitted in the far-IR as a function of the morphological type. Symbols as in Fig. 7. |
![]() |
Figure 10: The ratio between the energy absorbed by dust and that emitted in the far-IR as a function of the H band luminosity. Symbols as in Fig. 7. |
![]() |
Figure 11: The relationship of the ratio of the total uncorrected stellar luminosity (from the Bruzual & Charlot model) to the total FIR luminosity versus the bolometric luminosity of the target galaxies. Symbols are as in Fig. 7. |
Figure 11 shows that the bolometric luminosity of optically-selected late-type galaxies
in the range 108
10
,
is dominated by the stellar emission. The median value of the ratio between
the energy emitted by stars in the 1000 Å- 10
m range and by dust in the Far-IR
is 4.0,
significantly higher than
found by Soifer et al. (1987) who determined the stellar emission from the B band luminosity alone.
No relation is observed between the stellar to FIR ratio and the bolometric luminosity,
except for an higher dispersion at high luminosity.
Figure 12 shows that the far-IR to bolometric luminosity ratio increases
from early Sa spirals (
)
to Sc-Sd
galaxies (
),
consistently with Popescu & Tuffs (2002).
BCDs have
.
The apparent discrepancy with Popescu & Tuffs (2002) who occasionaly observed
in BCDs is probably due to a systematic difference in
determining the stellar contribution to the
bolometric luminosity in the two works.
We trust our values being based on a robust estimate of the stellar contribution to the
bolometric luminosity consequent to a complete and homogeneous spectro-photometric
dataset extending from the UV to the near-IR that we have fitted with
Bruzual & Charlot population synthesis models.
![]() |
Figure 12: The relationship between the far-IR to bolometric luminosity ratio and the morphological type. Symbols are as in Fig. 7. |
We present a multifrequency dataset comprising an optically-selected,
volume-limited, complete sample of 118 galaxies in the Virgo cluster.
The sample includes all late-type (S0a) Virgo A members
in the core of the cluster, with projected distance
degrees
from M 87, or at the peryphery of the cluster (
degrees from the position
of maximum projected galaxy density).
The database includes UV, visible,
near-IR, mid-IR, far-IR, radio continuum photometric data as well
as spectroscopic data on the H,
CO and HI lines.
Spectral energy distributions (SEDs) of the individual galaxies, as well as templates SEDs in bins of morphological type and luminosity are derived. The SEDs are fitted with stellar population synthesis models providing an estimate of the total stellar radiation, with modified black-bodies fitted to the far-IR data giving the energy re-emitted by dust, and with power laws representing the synchrotron emission.
Assuming the energy balance between the absorbed stellar light and the energy radiated in the IR by dust, we calibrate an empirical attenuation law suitable for correcting photometric and spectroscopic data of normal galaxies.
The analysis of the SED show that low-luminosity, dwarf galaxies have on average bluer stellar continua and higher far-IR luminosities (per unit galaxy mass) than giant, early-type spirals. Normal spirals have relatively similar observed stellar spectra but 10 to 100 times lower IR luminosities than nearby starburst galaxies such as M 82 and Arp 220. The temperature of the cold dust component increases with the far-IR luminosity, from giant spirals to dwarf irregulars and to an higher extent in starburst galaxies. SEDs of starburst galaxies should not be used as templates of normal high redshift galaxies.
We show that the contribution of the
stellar emission to the 6.75 m mid-IR flux is
generally important, from
80% in Sa to
20% in Sc.
Acknowledgements
We thank J. Donas and D. Pierini for providing us with unpublished UV and near-IR data. We thank S. Arnouts, V. Buat and M. Sauvage for stimulating discussions, and D. Elbaz for providing us with the SED of M 82 and Arp 220. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. most of the data presented in this work are available through the WEB page http://goldmine.mib.infn.it
The present work is partly based on new CCD optical photometry of 36 galaxies
obtained at the 1.20 m Newton telescope at the Observatoire de Haute Provance (OHP, France),
at the 0.9 m telescope at Kitt Peak and at the 2.5 m INT telescope at La Palma.
The OHP and the INT observations were taken during the H
surveys presented
in Boselli & Gavazzi (2002) and Boselli et al. (2002a) respectively. Details on the
observations and data reduction procedures are found in these papers.
Kitt Peak targets were observed as fillers during an H
survey of isolated
galaxies.
The f/6 1.2 m OHP telescope was equipped with
a thinned TK
pixels CCD detector, with a pixel size of 0.69 arcsec
and a field of view of
arcmin.
At the adopted gain, the electron/adu conversion is 3.5 e-/adu, with a readout noise of
8.5 e-.
Thirty galaxies of the present sample were observed during 26 nights in two runs,
in 1998 and 2000. Fourteen galaxies were imaged in the V,
30 in the B and 1 in the U band. The observations were done in poor seeing
conditions, ranging from 2 to 4 arcsec.
The typical integration time was 10 minuts in the V, 15 in the B and 30
in the U bands.
INT B band imaging of 2 galaxies were obtained in 1999 using the
Wide Field Camera (WFC) attached at the prime focus of the f/3.292.5 m telescope.
The WFC is composed by a science array of four thinned AR
coated EEV
CCDs, plus a fifth acting as
autoguider. The pixel scale at the detectors is 0.33
arcsec pixel-1, which gives a total field of view of about
arcmin2. The observations were done during photometric conditions, with an
average seeing of 1.5-2 arcsec and an integration time of 10 min.
Kitt Peak B band imaging of 5 galaxies were obtained during 4 nights in 1995
using the 0.9 m telescope in the f/13 configuration, equipped with a
T2KA
pixel CCD,
with a pixel size of 0.384 arcsec pixel-1 and a total field of view of
arcmin. At the adopted gain, the
electron/adu conversion is 2 e-/adu, with a lecture noise of 4 e-.
The observations were done during non photometric conditions, with an
average seeing of 1-1.5 arcsec and an integration time of 15 min.
The observations were calibrated and transformed into the Johnson UBV system using standard stars in the catalogue of Landolt (1983). Observations of the standard stars were repeated every 2 hours. Repeated measurements gave <0.10 mag differences, which we assume as the typical uncertainty of the photometric result given in this work. Not all frames were obtained in photometric conditions. When the zero point was varing by more than 0.05 mag due to cirrus, we choose to observe only galaxies with available multiaperture photometry in order to perform the calibration a posteriori.
![]() ![]() |
Log
![]() |
|||||||||||
S0a | Sa | Sab-Sb | Sbc-Sc | Scd-Sd | Im | BCD | LH<8.3 | 8.3![]() |
9![]() |
9.8![]() |
LH![]() |
|
0.1005 | -3.26 | -2.88 | -2.04 | -1.03 | -0.81 | -0.58 | -0.40 | -0.36 | -0.51 | -0.97 | -1.26 | -2.08 |
0.1015 | -3.25 | -2.88 | -2.06 | -1.05 | -0.83 | -0.62 | -0.44 | -0.40 | -0.55 | -1.01 | -1.25 | -2.09 |
0.1025 | -3.36 | -3.02 | -2.25 | -1.28 | -1.02 | -0.85 | -0.67 | -0.63 | -0.77 | -1.24 | -1.42 | -2.28 |
0.1035 | -3.28 | -2.91 | -2.10 | -1.09 | -0.87 | -0.65 | -0.46 | -0.43 | -0.57 | -1.04 | -1.30 | -2.13 |
0.1045 | -3.19 | -2.83 | -1.98 | -0.98 | -0.75 | -0.55 | -0.37 | -0.34 | -0.48 | -0.95 | -1.16 | -2.02 |
0.1055 | -3.20 | -2.83 | -1.98 | -0.97 | -0.75 | -0.54 | -0.36 | -0.32 | -0.47 | -0.93 | -1.17 | -2.01 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1.0025 | -0.02 | 0.14 | 0.08 | 0.08 | 0.15 | 0.05 | 0.22 | 0.32 | 0.18 | 0.12 | 0.11 | 0.06 |
1.0075 | -0.02 | 0.13 | 0.07 | 0.08 | 0.15 | 0.04 | 0.21 | 0.32 | 0.17 | 0.12 | 0.10 | 0.05 |
1.0125 | -0.02 | 0.14 | 0.08 | 0.08 | 0.15 | 0.05 | 0.22 | 0.33 | 0.18 | 0.12 | 0.11 | 0.06 |
1.0175 | -0.02 | 0.14 | 0.08 | 0.08 | 0.15 | 0.05 | 0.22 | 0.32 | 0.18 | 0.12 | 0.10 | 0.06 |
1.0225 | -0.01 | 0.14 | 0.08 | 0.08 | 0.15 | 0.05 | 0.22 | 0.32 | 0.18 | 0.12 | 0.11 | 0.06 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
9.7800 | -1.09 | -1.05 | -1.10 | -1.09 | -1.02 | -1.24 | -1.06 | -0.96 | -1.10 | -1.06 | -1.07 | -1.10 |
9.8200 | -1.09 | -1.05 | -1.10 | -1.09 | -1.02 | -1.24 | -1.07 | -0.96 | -1.11 | -1.06 | -1.07 | -1.11 |
9.8600 | -1.09 | -1.05 | -1.11 | -1.09 | -1.02 | -1.24 | -1.07 | -0.96 | -1.11 | -1.07 | -1.07 | -1.11 |
9.9000 | -1.10 | -1.05 | -1.11 | -1.09 | -1.02 | -1.24 | -1.07 | -0.96 | -1.11 | -1.07 | -1.07 | -1.11 |
9.9400 | -1.10 | -1.06 | -1.11 | -1.10 | -1.03 | -1.25 | -1.08 | -0.97 | -1.12 | -1.07 | -1.08 | -1.11 |
9.9800 | -1.10 | -1.06 | -1.12 | -1.11 | -1.03 | -1.25 | -1.08 | -0.97 | -1.12 | -1.08 | -1.08 | -1.12 |
10.0200 | -1.11 | -1.07 | -1.12 | -1.11 | -1.04 | -1.26 | -1.09 | -0.98 | -1.12 | -1.08 | -1.09 | -1.12 |
The data reduction of the CCD images follows a procedure identical to the one
described in previous papers of the series (Gavazzi et al. 1995), based on the IRAF
STSDAS data reduction packages. To remove the detector response each image is
bias subtracted and devided by the mean of 5 flat field exposures obtained on
the twilight sky. Direct inspection of the frames allows manual cosmic rays
removal and subtraction of contaminating objects, such as nearby stars and galaxies.
The sky background is determined in each frame in concentric object-free annuli
around the object. The typical uncertainty on the mean background is estimated
10% of the rms in the individual pixels. This represents the dominant source of
error in low S/N regions.
The determination of object centroid is performed by fitting Gaussian two-dimensional
profiles to the data, centered on the brightest excess in each object, generally
corresponding to the nucleus. At the central coordinates determined, a growth curve
is derived for each object by integrating the counts in concentric circular rings of
increasing radii. The obtained growth curves, transformed from counts to magnitudes,
are then compared with the multiaperture photometry available in the literature, in
order to check our photometric calibration and to obtain a zero point for those
objects observed in non-photometric conditions. At this stage stars projected within
the target galaxies were not subtracted since, unless specified, reference aperture
photometry usually includes them.
Once the accurate zero point is obtained for each galaxy, a similar procedure is repeated
after subtracting contaminating stars and galaxies.
Following the procedure described in Gavazzi & Boselli (1996), a magnitude is obtained after
integrating along circular, concentric annuli up to the isophotal 25 mag arcsec-2B diameter. To improve the photometric accuracy, this procedure is applyed adding our
measurements with aperture photometry available in the literature.
UBV magnitudes of the target galaxies are given in Table 3.
The estimated error on the magnitude is 10%.
VCC | NGC | IC | UGC | CGCG | RA(2000) | dec | type |
![]() |
a | b | vel | Dist | memb. | ![]() |
C31 | com |
h m s | ![]() ![]() ![]() |
mag |
![]() |
![]() |
km s-1 | Mpc | deg | |||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) |
1 | - | - | - | 69059 | 120820.02 | 134100.2 | BCD? | 14.78 | 0.80 | 0.18 | 2267 | 32 | M | 5.63 | 3.36 | |
4 | - | - | - | - | 120830.75 | 150548.2 | Im | 17.50 | 0.50 | 0.43 | 589 | 32 | M | 6.06 | - | |
17 | - | 3023 | 7150 | - | 121001.86 | 142142.4 | Im | 15.20 | 0.91 | 0.45 | 819 | 32 | M | 5.43 | 2.85 | |
24 | - | - | - | 69070 | 121035.65 | 114538.5 | BCD | 14.95 | 1.00 | 0.37 | 1289 | 32 | M | 4.99 | 6.23 | |
26 | - | - | - | - | 121040.20 | 143848.5 | Im | 17.50 | 0.43 | 0.27 | 2469 | 32 | M | 5.39 | 2.35 | |
66 | 4178 | - | 7215 | 69088 | 121246.27 | 105156.0 | SBc(s) | 11.89 | 5.35 | 1.87 | 369 | 17 | N | 4.68 | 3.24 | * |
81 | 4186 | - | 7223 | - | 121326.18 | 144620.1 | d:Sc | 15.60 | 0.95 | 0.81 | 2075 | 17 | N | 4.85 | 3.22 | |
87 | - | - | - | 98106 | 121340.91 | 152713.2 | Sm | 15.00 | 1.45 | 0.72 | -134 | 17 | N | 5.17 | 3.18 | |
92 | 4192 | - | 7231 | 98108 | 121348.24 | 145401.2 | Sb: | 10.92 | 9.78 | 2.60 | -135 | 17 | N | 4.84 | 5.04 | * |
130 | - | - | - | - | 121504.22 | 94513.5 | BCD | 16.50 | 0.63 | 0.25 | 2189 | 17 | N | 4.68 | 2.71 | |
152 | 4207 | - | 7268 | 69107 | 121530.31 | 93508.6 | Scd(on edge) | 13.48 | 1.96 | 0.89 | 592 | 17 | N | 4.69 | 3.54 | |
159 | - | - | - | 69108 | 121541.50 | 81707.7 | Im | 15.08 | 1.04 | 0.52 | 2584 | 32 | W | 5.54 | 2.73 | |
169 | - | - | - | - | 121556.39 | 93855.7 | Im | 16.50 | 0.85 | 0.43 | 2222 | 17 | N | 4.57 | - | |
171 | - | - | - | - | 121558.88 | 82225.8 | Im | 17.40 | 0.57 | 0.36 | 875 | 32 | W | 5.43 | - | |
207 | - | - | - | - | 121648.07 | 80302.0 | BCD | 17.20 | 0.36 | 0.13 | 2564 | 32 | W | 5.55 | 2.63 | |
318 | - | 776 | 7352 | 70005 | 121903.40 | 85122.7 | SBcd | 14.01 | 1.71 | 1.00 | 2469 | 32 | W | 4.57 | 2.93 | |
425 | - | - | - | - | 122035.90 | 81209.3 | Im: | 17.30 | 0.43 | 0.38 | - | 23 | B | 4.89 | - | |
459 | - | - | - | 99022 | 122111.46 | 173818.5 | BCD | 14.95 | 0.84 | 0.36 | 2108 | 17 | A | 5.74 | 3.09 | |
460 | 4293 | - | 7405 | 99023 | 122112.68 | 182256.5 | Sa pec | 11.20 | 5.10 | 2.92 | 921 | 17 | A | 6.42 | 3.52 | * |
655 | 4344 | - | 7468 | 99037 | 122337.45 | 173228.5 | S pec,N:/BCD | 13.21 | 1.55 | 1.55 | 1147 | 17 | A | 5.44 | 2.50 | |
664 | - | 3258 | 7470 | 70042 | 122344.36 | 122842.5 | Sc | 13.50 | 2.60 | 1.87 | -427 | 17 | A | 1.73 | 2.55 | |
666 | - | - | - | - | 122346.13 | 164728.5 | Im: | 16.80 | 1.00 | 0.57 | - | 17 | A | 4.72 | 2.80 | |
692 | 4351 | - | 7476 | 70045 | 122401.37 | 121216.6 | Sc(s) | 12.93 | 2.92 | 1.87 | 2324 | 17 | A | 1.67 | 2.95 | |
793 | - | - | - | - | 122521.88 | 130423.2 | Im,N? | 16.74 | 0.47 | 0.34 | 1906 | 17 | A | 1.50 | 2.25 | |
802 | - | - | - | - | 122529.01 | 132947.3 | BCD | 17.40 | 0.64 | 0.21 | -215 | 17 | A | 1.71 | 2.58 | |
809 | - | 3311 | 7510 | 70063 | 122533.17 | 121536.3 | Sc (on edge) | 14.55 | 1.45 | 0.36 | -142 | 17 | A | 1.30 | 3.24 | |
836 | 4388 | - | 7520 | 70068 | 122546.60 | 123940.4 | Sab | 11.83 | 5.10 | 1.24 | 2515 | 17 | A | 1.26 | 4.69 | * |
848 | - | - | - | 42097 | 122552.78 | 54829.5 | Im pec/BCD | 14.72 | 1.16 | 0.98 | 1537 | 23 | B | 6.70 | 2.86 | |
857 | 4394 | - | 7523 | 99047 | 122555.64 | 181249.5 | SBb(sr) | 11.76 | 3.60 | 3.60 | 914 | 17 | A | 5.94 | 5.64 | * |
873 | 4402 | - | 7528 | 70071 | 122607.32 | 130643.6 | Sc (on edge) | 12.56 | 3.95 | 1.16 | 234 | 17 | A | 1.36 | 2.95 | |
890 | - | - | - | - | 122620.85 | 64005.7 | BCD | 16.00 | 0.21 | 0.21 | 1483 | 23 | B | 5.83 | 2.64 | |
912 | 4413 | - | 7538 | 70076 | 122632.16 | 123639.8 | SBbc(rs) | 12.97 | 2.92 | 1.75 | 105 | 17 | A | 1.07 | 3.14 | |
945 | - | 3355 | 7548 | 70085 | 122651.06 | 131032.9 | SBm | 15.31 | 1.29 | 0.57 | -9 | 17 | A | 1.25 | 2.67 | |
950 | - | 3356 | 7547 | 70084 | 122651.38 | 113316.9 | Sm | 14.49 | 1.71 | 0.85 | 1098 | 17 | A | 1.28 | 2.78 | |
971 | 4423 | - | 7556 | 42107 | 122708.93 | 55248.1 | Sd (on edge) | 14.28 | 3.06 | 0.43 | 1120 | 23 | B | 6.57 | 3.44 | |
984 | 4425 | - | 7562 | 70091 | 122713.30 | 124405.1 | SBa | 12.82 | 2.99 | 1.00 | 1883 | 17 | A | 0.94 | 4.68 | |
995 | - | 3371 | 7565 | 70092 | 122721.55 | 105155.2 | Sc (on edge) | 15.32 | 1.53 | 0.11 | 928 | 17 | A | 1.75 | 3.43 | |
1001 | - | - | - | - | 122724.65 | 134300.2 | Im | 16.60 | 0.73 | 0.47 | 338 | 17 | A | 1.56 | 2.44 | |
1002 | 4430 | - | 7566 | 42111 | 122726.37 | 61544.2 | SBc(r) | 12.48 | 3.02 | 2.69 | 1450 | 23 | B | 6.19 | 2.73 | |
1003 | 4429 | - | 7568 | 70093 | 122726.31 | 110629.2 | S0/Sa pec | 11.15 | 8.12 | 3.52 | 1130 | 17 | A | 1.53 | 5.48 | * |
1043 | 4438 | - | 7574 | 70097 | 122745.52 | 130031.4 | Sb (tides) | 10.91 | 8.12 | 3.68 | 70 | 17 | A | 0.97 | 10.21 | * |
1047 | 4440 | - | 7581 | 70099 | 122753.52 | 121735.5 | SBa(sr) | 12.48 | 2.01 | 1.71 | 724 | 17 | A | 0.72 | 7.42 | |
1106 | - | - | - | - | 122829.23 | 103112.8 | Im: | 17.50 | 0.59 | 0.41 | - | 17 | A | 1.96 | 2.26 | |
1110 | 4450 | - | 7594 | 99062 | 122829.27 | 170506.8 | Sab pec | 10.93 | 6.15 | 4.04 | 1954 | 17 | A | 4.73 | 4.33 | * |
1121 | - | - | - | - | 122841.73 | 110754.9 | Im? | 16.48 | 0.71 | 0.56 | - | 17 | A | 1.36 | - | |
1158 | 4461 | - | 7613 | 70115 | 122903.01 | 131101.1 | Sa | 12.09 | 3.52 | 1.29 | 1919 | 17 | A | 0.90 | 7.45 | |
1189 | - | 3414 | 7621 | 42129 | 122928.83 | 64612.3 | Sc(s) | 13.70 | 1.84 | 1.07 | 597 | 17 | S | 5.63 | 2.42 | |
1196 | 4468 | - | 7628 | 70122 | 122931.25 | 140258.3 | S0/Sa | 13.80 | 1.76 | 1.06 | 895 | 17 | A | 1.69 | 4.31 | |
1200 | - | 3416 | - | 70124 | 122934.53 | 104737.3 | Im | 15.10 | 1.26 | 0.84 | -123 | 17 | A | 1.63 | 2.76 | |
1217 | - | 3418 | 7630 | - | 122942.54 | 112404.4 | SBm | 14.59 | 1.87 | 1.29 | - | 17 | A | 1.03 | 2.80 | |
1253 | 4477 | - | 7638 | 70129 | 123002.37 | 133810.6 | SB0/SBa | 11.31 | 3.60 | 3.60 | 1353 | 17 | A | 1.26 | 8.73 | * |
1257 | - | - | - | - | 123004.68 | 172401.6 | Im pec | 16.50 | 1.36 | 0.32 | 2488 | 17 | A | 5.01 | 2.55 | |
1287 | - | - | - | - | 123023.79 | 135855.8 | Im | 16.00 | 0.85 | 0.85 | - | 17 | A | 1.59 | - | |
1313 | - | - | - | - | 123048.47 | 120242.0 | BCD | 17.15 | 0.45 | 0.20 | 1254 | 17 | A | 0.35 | 2.07 | |
1326 | 4491 | - | 7657 | 70140 | 123057.15 | 112859.1 | SBa(s) | 13.41 | 1.89 | 0.94 | 497 | 17 | A | 0.91 | 2.87 | |
1356 | - | 3446 | - | 70142 | 123122.92 | 112934.3 | Sm/BCD | 15.55 | 1.10 | 0.43 | 1251 | 17 | A | 0.91 | 2.71 | |
1368 | 4497 | - | 7665 | 70145 | 123132.79 | 113736.4 | SB0/SBa | 13.12 | 2.01 | 0.85 | 1123 | 17 | A | 0.78 | 2.81 | |
1377 | - | - | - | - | 123139.21 | 105008.5 | Im: | 16.87 | 0.61 | 0.43 | - | 17 | A | 1.57 | 2.79 | |
1379 | 4498 | - | 7669 | 99075 | 123139.62 | 165107.5 | SBc(s) | 12.62 | 2.85 | 1.53 | 1505 | 17 | A | 4.46 | 2.27 | |
1403 | - | - | - | - | 123159.63 | 130459.7 | Im? | 17.15 | 0.71 | 0.43 | - | 17 | A | 0.75 | - | |
1410 | 4502 | - | 7677 | 99078 | 123203.22 | 164114.7 | Sm | 14.57 | 1.48 | 0.78 | 1629 | 17 | A | 4.31 | 2.80 | |
1411 | - | 3466 | - | 70150 | 123204.83 | 114902.7 | pec,N | 15.72 | 0.70 | 0.43 | 911 | 17 | A | 0.65 | 2.74 | |
1412 | 4503 | - | 7680 | 70149 | 123206.13 | 111034.8 | Sa | 12.12 | 4.33 | 1.71 | 1342 | 17 | A | 1.25 | 5.95 | |
1419 | 4506 | - | 7682 | 70152 | 123210.46 | 132509.8 | Spec(dust) | 13.64 | 2.16 | 1.29 | 737 | 17 | A | 1.08 | 3.44 | |
1426 | - | - | - | - | 123222.80 | 115338.9 | Im? | 15.64 | 0.80 | 0.80 | 1110 | 17 | A | 0.63 | 3.08 | |
1448 | - | 3475 | 7692 | 70156 | 123240.83 | 124613.1 | Im | 13.87 | 2.31 | 1.83 | 2583 | 17 | A | 0.59 | 2.88 | |
1450 | - | 3476 | 7695 | 70157 | 123241.91 | 140256.1 | Sc(s) | 13.29 | 2.60 | 2.01 | -173 | 17 | A | 1.72 | 2.93 | |
1486 | - | 3483 | - | 70160 | 123309.94 | 112049.4 | Spec,N | 15.30 | 1.10 | 0.78 | 129 | 17 | A | 1.19 | 7.18 | |
1552 | 4531 | - | 7729 | 70175 | 123415.77 | 130429.1 | Sa pec | 12.58 | 4.24 | 2.42 | 195 | 17 | A | 1.08 | 3.00 | |
1554 | 4532 | - | 7726 | 42158 | 123419.31 | 62807.1 | Sm | 12.30 | 2.60 | 1.00 | 2021 | 17 | S | 5.99 | 2.92 | |
1569 | - | 3520 | - | 70178 | 123431.68 | 133013.2 | Scd: | 15.00 | 1.07 | 0.71 | 799 | 17 | A | 1.43 | 3.16 | |
1575 | - | 3521 | 7736 | 42162 | 123439.28 | 70938.3 | SBm pec | 13.98 | 2.00 | 1.41 | 597 | 17 | S | 5.32 | 2.44 | |
1581 | - | - | 7739 | 42163 | 123444.93 | 61807.4 | Sm | 14.55 | 1.46 | 1.16 | 2065 | 17 | S | 6.17 | 2.77 | |
1596 | - | - | - | - | 123500.91 | 91116.5 | Im: | 17.24 | 0.35 | 0.16 | 1286 | 17 | S | 3.36 | - |
VCC | NGC | IC | UGC | CGCG | RA(2000) | dec | type |
![]() |
a | b | vel | Dist | memb. | ![]() |
C31 | com |
h m s | ![]() ![]() ![]() |
mag |
![]() |
![]() |
km s-1 | Mpc | deg | |||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) |
1644 | - | - | - | - | 123551.82 | 135133.1 | Sm | 17.50 | 0.98 | 0.17 | 756 | 17 | A | 1.91 | 2.93 | |
1673 | 4567 | - | 7777 | 70189 | 123632.66 | 111528.6 | Sc(s) | 12.08 | 2.92 | 1.87 | 2277 | 17 | A | 1.80 | 2.73 | * |
1675 | - | - | - | 42174 | 123634.65 | 80317.6 | Pec | 14.47 | 1.26 | 0.74 | 1795 | 17 | S | 4.56 | 2.87 | |
1676 | 4568 | - | 7776 | 70188 | 123634.16 | 111419.6 | Sc(s) | 11.70 | 5.10 | 1.75 | 2255 | 17 | A | 1.82 | 4.27 | * |
1678 | - | 3576 | 7781 | 42176 | 123637.61 | 63716.6 | SBd | 13.70 | 2.16 | 1.87 | 1073 | 17 | S | 5.94 | 2.91 | * |
1686 | - | 3583 | 7784 | 70191 | 123643.57 | 131531.7 | Sm | 13.95 | 2.79 | 1.71 | 1122 | 17 | A | 1.68 | 2.98 | |
1690 | 4569 | - | 7786 | 70192 | 123649.78 | 130945.7 | Sab(s) | 10.25 | 10.73 | 5.35 | -216 | 17 | A | 1.65 | 4.37 | * |
1699 | - | 3589 | 7790 | 42179 | 123702.24 | 65530.9 | SBm | 14.11 | 1.55 | 0.83 | 1635 | 17 | S | 5.68 | 2.64 | |
1725 | - | - | - | 70196 | 123741.51 | 83331.3 | Sm/BCD | 14.51 | 1.55 | 0.97 | 1068 | 17 | S | 4.19 | 2.92 | |
1726 | - | - | 7795 | 42184 | 123745.08 | 70622.4 | Sdm | 14.54 | 1.29 | 1.00 | 61 | 17 | S | 5.55 | 2.73 | |
1727 | 4579 | - | 7796 | 70197 | 123743.48 | 114904.4 | Sab(s) | 10.56 | 6.29 | 4.87 | 1520 | 17 | A | 1.78 | 4.51 | * |
1730 | 4580 | - | 7794 | 42183 | 123748.60 | 52206.4 | Sc/Sa | 12.61 | 2.16 | 1.60 | 1032 | 17 | S | 7.23 | 2.68 | |
1750 | - | - | - | - | 123815.48 | 65938.7 | BCD? | 16.50 | 0.31 | 0.16 | -117 | 17 | S | 5.70 | 2.54 | |
1757 | 4584 | - | 7803 | 70199 | 123817.79 | 130635.8 | Sa(s)pec | 13.60 | 1.87 | 1.00 | 1783 | 17 | A | 1.96 | 3.53 | |
1758 | - | - | 7802 | 42186 | 123820.81 | 75328.8 | Sc (on edge) | 14.99 | 1.71 | 0.27 | 1788 | 17 | S | 4.87 | 3.47 | |
1784 | - | - | - | - | 123913.81 | 153749.4 | Im | 15.84 | 0.79 | 0.63 | 57 | 17 | E | 3.83 | 2.80 | |
1789 | - | - | - | 42192 | 123921.34 | 45619.5 | Im | 15.07 | 1.10 | 0.62 | 1619 | 17 | S | 7.74 | 2.46 | |
1791 | - | 3617 | 7822 | 42194 | 123924.55 | 75752.5 | SBm/BCD | 14.67 | 1.29 | 0.64 | 2079 | 17 | S | 4.90 | 2.86 | |
1804 | - | - | - | - | 123940.25 | 92355.7 | Im/BCD | 15.63 | 0.75 | 0.30 | 1898 | 17 | E | 3.70 | 4.33 | |
1811 | 4595 | - | 7826 | 99106 | 123951.63 | 151753.9 | Sc(s) | 12.92 | 2.16 | 1.42 | 632 | 17 | E | 3.64 | 2.71 | |
1813 | 4596 | - | 7828 | 70206 | 123955.88 | 101034.9 | SBa | 11.51 | 4.76 | 4.04 | 1834 | 17 | E | 3.14 | 5.44 | |
1822 | - | - | - | - | 124010.14 | 65050.1 | Im | 15.60 | 0.63 | 0.25 | 1012 | 17 | S | 6.00 | 2.79 | |
1869 | 4608 | - | 7842 | 70214 | 124113.52 | 100922.9 | SB0/a | 12.05 | 4.30 | 3.42 | 1864 | 17 | E | 3.39 | 9.68 | |
1885 | - | - | - | - | 124137.57 | 154933.2 | Im | 16.41 | 1.16 | 0.57 | - | 17 | E | 4.32 | 2.80 | |
1918 | - | - | - | - | 124218.10 | 54421.7 | Im | 15.80 | 1.03 | 0.36 | 980 | 17 | S | 7.23 | 2.81 | |
1929 | 4633 | - | 7874 | 99111 | 124237.12 | 142122.0 | Scd(s) | 13.77 | 2.48 | 1.07 | 291 | 17 | E | 3.48 | 3.14 | |
1932 | 4634 | - | 7875 | 99112 | 124240.83 | 141746.0 | Sc (on edge) | 13.19 | 2.92 | 0.87 | 116 | 17 | E | 3.45 | 3.08 | |
1952 | - | - | - | - | 124306.86 | 73858.4 | Im | 16.00 | 0.71 | 0.35 | 1308 | 17 | E | 5.62 | 2.93 | |
1970 | - | - | - | 71013 | 124329.11 | 100534.7 | Im,N? | 15.80 | 0.71 | 0.50 | 1325 | 17 | E | 3.86 | 2.94 | |
1972 | 4647 | - | 7896 | 71015 | 124332.28 | 113454.7 | Sc(rs) | 12.03 | 2.60 | 2.16 | 1422 | 17 | E | 3.21 | 3.06 | * |
1987 | 4654 | - | 7902 | 71019 | 124356.71 | 130734.0 | SBc(rs) | 11.14 | 4.99 | 2.60 | 1039 | 17 | E | 3.28 | 2.93 | |
1992 | - | - | 7906 | - | 124410.02 | 120659.2 | Im | 15.50 | 0.81 | 0.51 | 1003 | 17 | E | 3.27 | 2.80 | |
1999 | 4659 | - | 7915 | 71024 | 124429.38 | 132953.5 | Sa | 13.08 | 1.99 | 1.25 | 267 | 17 | E | 3.51 | 6.03 | |
2006 | - | 3718 | 7920 | 71026 | 124445.93 | 122111.7 | Amorphous | 13.68 | 2.60 | 0.71 | 844 | 17 | E | 3.40 | 3.19 | |
2007 | - | 3716 | - | 43016 | 124447.50 | 80629.7 | Im/BCD: | 15.20 | 0.78 | 0.41 | 1857 | 17 | E | 5.49 | 2.70 | |
2023 | - | 3742 | 7932 | 71032 | 124531.55 | 131951.3 | SBc(s) | 13.86 | 2.01 | 1.00 | 958 | 17 | E | 3.70 | 3.09 | |
2033 | - | - | - | 71033 | 124604.76 | 82830.8 | BCD | 14.65 | 0.73 | 0.73 | 1486 | 17 | E | 5.42 | 3.70 | |
2034 | - | - | - | - | 124607.96 | 100948.8 | Im | 15.82 | 0.78 | 0.52 | 1500 | 17 | E | 4.36 | 2.46 | |
2037 | - | - | - | - | 124615.15 | 101224.9 | Im/BCD | 15.92 | 0.88 | 0.38 | 1142 | 17 | E | 4.37 | 2.92 | |
2058 | 4689 | - | 7965 | 71043 | 124745.39 | 134548.3 | Sc(s) | 11.55 | 5.86 | 4.44 | 1620 | 17 | E | 4.34 | 2.80 | |
2066 | 4694 | - | 7969 | 71044 | 124815.05 | 105906.7 | Amorphous | 12.19 | 3.20 | 1.16 | 1181 | 17 | E | 4.49 | 4.21 | * |
2070 | 4698 | - | 7970 | 71045 | 124822.96 | 82913.8 | Sa | 11.53 | 5.67 | 2.84 | 1008 | 17 | E | 5.82 | 5.78 | * |
2087 | 4733 | - | 7997 | 71054 | 125106.81 | 105444.3 | SB0/a | 12.63 | 1.96 | 1.96 | 908 | 17 | E | 5.18 | 2.73 | |
2094 | - | - | - | - | 125235.75 | 102648.7 | Im: | 17.80 | 0.37 | 0.37 | - | 17 | E | 5.68 | - |
Notes on morphological type, from NED:
VCC 66: HII; VCC 92: M98: HII and Seyfert; VCC 460: LINER; VCC 836: Seyfert2; VCC 857: LINER; VCC 1003: HII LINER; VCC 1043: LINER, tidally interacting with VCC 1030; VCC 1110: LINER; VCC 1253: Seyfert 2; VCC 1673: interacting with VCC 1676?; VCC 1676: interacting with VCC 1673?; VCC 1678: HII; VCC 1690: M90: LINER, Seyfert; VCC 1727: M58; LINER, Seyfert 1.9; VCC 1972: interacting with VCC 1978 (M60)?; VCC 2066: HII; VCC 2070: Seyfert 2; |
VCC | UV | U | B | V | J | H | K | C6.75 | I12 | C15 | I25 | I60 | P60 | I100 | P100 | P170 | r2.8 | r6.3 | r12.6 | r21 |
![]() |
2000 Å | 3650 Å | 4400 Å | 5500 Å | 1.25 ![]() |
1.65![]() |
2.1 ![]() |
6.75 ![]() |
12 ![]() |
15 ![]() |
25 ![]() |
60 ![]() |
60 ![]() |
100 ![]() |
100 ![]() |
170 ![]() |
2.8 cm | 6.3 cm | 12.6 cm | 21 cm |
units | mag | mag | mag | mag | mag | mag | mag | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) | (21) |
1 | - | - | 15.90 | 15.13 | 13.58 | 12.81 | 12.52 | 1.15 | - | 2.86 | <340 | <390 | 100 | <840 | 140 | 330 | - | - | - | <1800 |
4 | - | - | - | - | - | - | 15.32 | <1.31 | - | <1.94 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
17 | - | - | 16.28 | 15.89 | 14.81 | 14.30 | 14.15 | 0.98 | - | 1.76 | 130 | 130 | <40 | 460 | <30 | <70 | - | - | - | <1800 |
24 | - | - | 15.79 | 15.19 | - | - | 12.82 | 0.37 | <80 | 0.82 | <110 | <120 | <40 | <300 | <40 | 120 | - | - | - | <1800 |
26 | - | - | - | - | - | - | 15.96 | <0.71 | - | <1.05 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
66 | 12.00 | 11.91 | 11.98 | 11.39 | 9.89 | 9.14 | 8.92 | 229.59 | 110 | 192.69 | <140 | 2110 | 2470 | 8080 | 5090 | 11 270 | 6000 | 29 000 | 13 000 | 26 200 |
81 | - | - | 15.85 | 15.30 | - | - | 13.21 | <5.86 | - | <6.94 | <340 | <390 | <40 | <840 | <30 | 770 | - | - | - | <1800 |
87 | - | 15.10 | 15.27 | 14.80 | - | - | 13.08 | 2.18 | - | 0.74 | <340 | <390 | 100 | <840 | 150 | 380 | - | - | - | <1800 |
92 | 11.17 | 11.17 | 10.73 | 9.83 | 7.72 | 6.85 | 6.59 | 900.15 | 1100 | 692.42 | 1460 | 8110 | 4700 | 23 070 | 11 460 | 40 290 | 18 000 | 33 000 | 37 000 | 73 300 |
130 | - | - | - | - | - | - | 14.71 | <0.96 | <120 | <1.42 | <170 | <110 | <50 | <280 | 70 | 80 | - | - | - | <1800 |
152 | - | 13.78 | 13.56 | 12.72 | - | 9.75 | 9.49 | 173.99 | 230 | 145.13 | 240 | 3080 | 1870 | 7470 | 5480 | 8380 | - | - | 11000 | 19 800 |
159 | - | - | 16.02 | 15.66 | - | - | 14.09 | <3.30 | - | <4.88 | <340 | <390 | <40 | <840 | <40 | 160 | - | - | - | <1800 |
169 | - | - | - | - | - | - | - | <2.23 | - | <3.3 | <340 | <390 | <30 | <840 | <50 | <50 | - | - | - | <1800 |
171 | - | - | - | - | - | - | - | <1.25 | - | <1.85 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
207 | - | - | - | - | - | - | 14.88 | <0.25 | <120 | <0.42 | <160 | <140 | - | <340 | - | - | - | - | - | <1800 |
318 | 13.47 | 14.26 | 14.45 | 14.09 | - | - | 11.95 | 3.08 | - | 5.16 | <740 | 240 | 130 | 620 | 350 | 960 | - | - | - | <1800 |
425 | - | - | - | - | - | - | - | <1.00 | - | <1.33 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
459 | 13.49 | - | - | - | - | - | 12.60 | 2.87 | <100 | 2.96 | <130 | 240 | 130 | 540 | 380 | 500 | - | - | - | <1800 |
460 | - | 12.01 | 11.45 | 10.50 | 8.39 | 7.49 | 7.33 | 195.11 | 180 | 186.36 | 510 | 4580 | 3290 | 10 390 | 9110 | 11 250 | 6000 | 11 000 | 20 000 | 19 100 |
655 | - | 13.62 | 13.59 | 12.93 | - | - | 10.29 | 42.05 | <140 | 15.17 | 140 | 470 | 420 | 1890 | 1110 | 5360 | - | - | 1000 | <1800 |
664 | 13.15 | 13.25 | 13.60 | 13.16 | - | - | 11.29 | 7.09 | <70 | 15.17 | 140 | 600 | 750 | 1030 | 770 | 970 | - | - | - | <1800 |
666 | - | - | - | - | - | - | 14.46 | <4.34 | - | <6.17 | <340 | <390 | <30 | <840 | <30 | <40 | - | - | - | <1800 |
692 | 13.05 | 13.07 | 12.99 | 12.52 | - | 10.34 | 10.19 | 33.64 | <90 | 25.22 | <180 | 710 | 540 | 2010 | 1430 | 3910 | - | 2000 | <4000 | <1800 |
793 | - | 17.27 | 17.26 | 16.89 | 15.55 | 14.97 | 15.16 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
802 | - | 17.15 | 17.61 | - | - | - | 14.81 | <99 | <100 | <99 | <170 | <130 | - | <620 | - | - | - | - | - | <1800 |
809 | 15.14 | 15.14 | 15.11 | 14.43 | - | - | 12.03 | 5.97 | - | 3.57 | <500 | <470 | - | <1100 | - | - | - | - | - | <1800 |
836 | 12.56 | 12.00 | 11.86 | 11.11 | 9.32 | 8.37 | 7.92 | 528.11 | 1060 | 1064.56 | 3420 | 10 050 | 7030 | 17 400 | 14 220 | 11 630 | 36 000 | 84 000 | 129 000 | 119 400 |
848 | - | 15.01 | 15.18 | 14.76 | - | - | 12.91 | 1.20 | - | <10.25 | <340 | <390 | <60 | <840 | 50 | 1410 | - | - | - | <1800 |
857 | - | 12.28 | 11.92 | 11.09 | - | - | 8.02 | 114.95 | 150 | 98.3 | 150 | 960 | 650 | 4020 | 2830 | 7760 | - | 2000 | <4000 | 700 |
873 | 13.72 | 13.02 | 12.64 | 11.80 | - | 8.67 | 8.39 | 500.01 | 790 | 525.45 | 640 | 5430 | 3820 | 17 480 | 8610 | 17 720 | 12 000 | 21 000 | 50 000 | 59 500 |
890 | - | - | - | - | - | - | 14.61 | <0.27 | <90 | <0.32 | <190 | <150 | <40 | <360 | <30 | 120 | - | - | - | <1800 |
912 | 13.40 | 13.01 | 12.97 | 12.34 | - | 9.73 | 9.53 | 60.94 | 140 | 54.72 | 180 | 1000 | 830 | 3100 | 2340 | 2820 | - | <1000 | 6000 | <1800 |
945 | 14.32 | 15.24 | 15.47 | 15.15 | - | - | 13.45 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
950 | 14.94 | 15.60 | 15.76 | 15.32 | - | - | 13.85 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
971 | 13.32 | 14.06 | 14.17 | 13.61 | - | - | 11.32 | 8.21 | <90 | 6.57 | <140 | 470 | 290 | 1100 | 830 | 1380 | - | - | - | 3600 |
984 | 16.29 | 13.27 | 12.86 | 11.95 | 10.08 | 9.36 | 8.95 | 19.56 | <120 | 9.69 | <170 | <180 | <40 | <340 | <40 | <170 | - | <1000 | <4000 | <1800 |
995 | - | 15.21 | 15.39 | 14.78 | - | - | 12.61 | 1.40 | - | 3.02 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1001 | - | - | - | - | - | - | 14.79 | <99 | - | <99 | <340 | <390 | - | <840 | <20 | 230 | - | - | - | <1800 |
1002 | 12.66 | - | 12.74 | 12.09 | 10.54 | 9.63 | 9.33 | 119.35 | 130 | 72.17 | 230 | 1150 | 940 | 3780 | 3360 | 5300 | - | 2000 | 4000 | 7900 |
1003 | 14.98 | 11.51 | 10.95 | 9.96 | 7.69 | 6.90 | 6.63 | 267.86 | 310 | 192.87 | 220 | 1510 | 870 | 4130 | 3940 | 3120 | - | 1000 | <4000 | <1800 |
1043 | 12.58 | 11.64 | 11.08 | 10.07 | 8.13 | 7.35 | 6.89 | 259.53 | 210 | 247.26 | 170 | 3760 | 2360 | 11 270 | 7670 | 16 720 | 44 000 | 97 000 | 109 000 | 148 900 |
1047 | 16.27 | - | 12.85 | 11.88 | 10.02 | 9.05 | 8.92 | <99 | <150 | 5.09 | <160 | 210 | <40 | <280 | <40 | <210 | <1000 | - | 27000 | <4000 |
1106 | - | - | - | - | - | - | 15.00 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1110 | - | 11.48 | 10.96 | 10.07 | 7.74 | 7.03 | 6.74 | 236.00 | 150 | 252.78 | 170 | 1800 | 1790 | 7910 | 4080 | 10 010 | 14 000 | 28 000 | 11 000 | 10 200 |
1121 | - | - | - | - | - | - | 15.22 | <99 | - | <99 | <340 | <390 | - | <840 | <20 | <140 | - | - | - | <1800 |
1158 | 15.26 | 12.72 | 12.19 | 11.23 | 8.91 | 8.22 | 7.99 | 44.15 | <120 | 16.45 | <180 | <120 | <40 | <310 | <50 | <140 | - | <1000 | <4000 | <1800 |
1189 | 13.35 | 13.90 | 14.02 | 13.56 | - | - | 11.32 | 12.89 | <60 | 5.8 | <170 | 230 | 180 | 730 | 490 | 1160 | - | - | - | <1800 |
1196 | - | 14.32 | 13.92 | 13.07 | 11.03 | 10.38 | 10.17 | 6.03 | - | 1.82 | <100 | <180 | <40 | <420 | <40 | 1240 | - | - | - | <1800 |
1200 | - | 15.33 | 15.56 | 15.06 | - | 13.35 | 13.01 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | 13 000 |
1217 | 15.49 | - | 14.52 | 14.17 | 13.26 | 12.72 | 12.55 | 3.65 | - | <21.75 | <340 | <390 | <40 | <840 | <30 | <70 | - | - | - | <1800 |
1253 | - | 12.11 | 11.52 | 10.57 | 8.26 | 7.51 | 7.25 | 96.85 | <100 | 28.74 | <170 | 540 | 140 | 1180 | 810 | 1130 | <500 | 5000 | 8000 | <1800 |
1257 | - | - | - | - | - | - | 14.08 | <2.65 | - | 1.75 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1287 | - | - | - | - | - | - | - | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1313 | 15.35 | 16.67 | 17.30 | 16.96 | - | 15.58 | - | <99 | <150 | <99 | <110 | <140 | - | <350 | - | - | - | - | - | <19 800 |
1326 | 15.01 | 13.74 | 13.52 | 12.69 | - | 10.07 | 9.95 | 27.00 | <90 | 70.1 | 420 | 2770 | 2360 | 3490 | 2890 | 2980 | 5000 | - | <4000 | <1800 |
1356 | 14.65 | 15.35 | 15.56 | 15.11 | - | - | 12.84 | - | - | - | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
VCC | UV | U | B | V | J | H | K | C6.75 | I12 | C15 | I25 | I60 | P60 | I100 | P100 | P170 | r2.8 | r6.3 | r12.6 | r21 |
![]() |
2000 Å | 3650 Å | 4400 Å | 5500 Å | 1.25 ![]() |
1.65 ![]() |
2.1 ![]() |
6.75 ![]() |
12 ![]() |
15 ![]() |
25 ![]() |
60 ![]() |
60 ![]() |
100 ![]() |
100 ![]() |
170 ![]() |
2.8 cm | 6.3 cm | 12.6 cm | 21 cm |
units | mag | mag | mag | mag | mag | mag | mag | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) | (21) |
1368 | 17.22 | 13.76 | 13.44 | 12.56 | - | 9.88 | 9.70 | 8.62 | <120 | 3.59 | <130 | <240 | <150 | <890 | <30 | 200 | - | - | 9000 | <4000 |
1377 | - | - | 17.23 | 16.49 | - | - | 14.06 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1379 | 12.31 | 12.71 | 12.76 | 12.17 | - | 9.97 | 9.74 | 95.88 | 150 | 62.02 | 90 | 1200 | 1140 | 3700 | 3270 | 4980 | 1000 | - | - | 4600 |
1403 | - | - | - | - | - | - | - | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <4000 |
1410 | - | 14.46 | 14.54 | 14.05 | - | - | 11.93 | 9.68 | - | 4.51 | <190 | 230 | 220 | 620 | 360 | 690 | - | - | - | <1800 |
1411 | 16.10 | - | 15.99 | 15.49 | - | - | 13.61 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <4000 |
1412 | - | 12.79 | 12.18 | 11.18 | 8.91 | 8.18 | 7.88 | 47.83 | <150 | 13.47 | <140 | <150 | <60 | <390 | <70 | 710 | - | <1000 | 8000 | <1800 |
1419 | - | 14.10 | 13.82 | 13.00 | - | 10.38 | 10.32 | 16.31 | - | 12.5 | <240 | 150 | 60 | 640 | 280 | 440 | - | - | - | <1800 |
1426 | - | - | 16.43 | 15.73 | - | - | 13.48 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <4000 |
1448 | - | 14.70 | 14.55 | 13.87 | 12.40 | 11.68 | 11.50 | <99 | <100 | <99 | <180 | <200 | - | <340 | - | - | - | - | - | 6300 |
1450 | 12.53 | - | 13.43 | 12.98 | - | 10.82 | 10.55 | 72.46 | 190 | 59.61 | 350 | 1850 | 740 | 3100 | 2990 | 3960 | 10 000 | 24 000 | 15 000 | 10 100 |
1486 | - | 15.02 | 14.99 | 14.31 | - | - | 11.54 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1552 | - | 12.85 | 12.52 | 11.65 | 9.66 | 8.91 | 8.75 | 40.15 | <100 | 27.73 | <140 | 360 | 290 | 1720 | 1080 | 1940 | <1000 | - | 6000 | <1800 |
1554 | 11.34 | 12.01 | 12.35 | 11.96 | 10.39 | 9.67 | 9.39 | 183.96 | 290 | 213.47 | 830 | 8930 | 5560 | 15 530 | 9070 | 10 650 | 19 000 | 58 000 | 84 000 | 123 800 |
1569 | - | 15.73 | 15.86 | 15.39 | - | - | 13.50 | 0.80 | - | <5.48 | <340 | <390 | <50 | <840 | <50 | <60 | - | - | - | <1800 |
1575 | 13.80 | 13.76 | 13.79 | 13.13 | - | - | 10.54 | 47.48 | <90 | 46.02 | <150 | 1030 | 1110 | 2300 | 2080 | 2740 | - | - | - | 4200 |
1581 | - | 15.08 | 15.08 | 14.51 | - | - | 12.59 | <10.32 | - | <12.22 | <340 | <390 | <30 | <840 | <30 | 330 | - | - | - | <1800 |
1596 | - | - | - | - | - | - | - | <0.30 | - | <0.5 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1644 | - | - | - | - | - | - | 15.19 | <99 | - | <99 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1673 | 12.29 | - | 11.17 | 10.49 | 9.32 | 8.60 | 7.93 | 324.33 | - | 319.63 | <240 | <390 | - | <840 | - | - | - | - | <54 000 | 10500 |
1675 | - | - | - | - | - | - | 12.30 | <4.97 | - | <8.41 | <340 | <390 | 50 | <840 | <30 | 160 | - | - | - | <1800 |
1676 | - | - | 11.17 | 10.25 | - | - | 7.34 | 973.91 | 2000 | 1050.86 | 2580 | 20 360 | - | 56 810 | - | - | 29 000 | 65 000 | 75 000 | 124 200 |
1678 | 13.26 | 14.32 | 14.47 | 13.96 | - | - | 12.02 | <21.54 | <100 | <29.13 | <120 | 300 | 80 | 520 | 430 | 680 | - | - | - | <1800 |
1686 | - | 13.00 | 13.46 | 13.03 | - | - | 11.22 | 25.19 | <120 | 19.42 | <180 | 540 | 450 | 1720 | 1130 | 1490 | - | - | - | <1800 |
1690 | 11.67 | 10.34 | 10.10 | 9.32 | 7.54 | 6.81 | 6.66 | 830.16 | 1310 | 972.71 | 2070 | 10 080 | 6200 | 26 600 | 16 000 | 29 160 | 30 000 | 40 000 | 63 000 | 72 500 |
1699 | 13.43 | 14.38 | 14.46 | 14.04 | - | - | 12.19 | 4.15 | - | 14.04 | <340 | <390 | 270 | <840 | 390 | 490 | - | - | - | <1800 |
1725 | 13.47 | 14.26 | 14.61 | 14.23 | 13.13 | 12.51 | 12.26 | 2.32 | 60 | 2.7 | 100 | <180 | 50 | 350 | 300 | 480 | - | - | - | <1800 |
1726 | 13.83 | 14.93 | 15.36 | 15.13 | - | - | 13.38 | <5.90 | - | <9.3 | <340 | <390 | <50 | <840 | <50 | 240 | - | - | - | <1800 |
1727 | 12.60 | 11.05 | 10.51 | 9.64 | 7.48 | 6.72 | 6.42 | 658.15 | 1110 | 646.18 | 760 | 5850 | 4160 | 20 860 | 12 340 | 29 190 | 82 000 | 99 000 | 95 000 | 97 400 |
1730 | - | 13.01 | 12.78 | 11.94 | 9.86 | 8.84 | 8.79 | 99.75 | 260 | 97.4 | 540 | 1460 | 1520 | 4820 | 3640 | 5460 | <400 | 3000 | <4000 | <1800 |
1750 | - | - | - | - | - | - | 14.43 | 0.28 | <130 | <0.54 | <170 | <140 | <30 | <210 | 40 | 80 | - | - | - | <1800 |
1757 | - | 14.08 | 13.90 | 13.14 | - | - | 10.52 | <9.97 | <100 | <16.86 | <140 | 240 | 100 | <640 | 500 | 790 | - | - | - | <1800 |
1758 | - | 14.98 | 15.00 | 14.37 | - | - | 11.85 | 5.92 | - | 0.98 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1784 | - | - | - | - | - | - | 14.74 | <3.03 | - | <6.28 | <340 | <390 | - | <840 | - | - | - | - | - | 3500 |
1789 | - | 16.00 | 15.91 | 15.19 | 13.23 | 12.60 | 12.71 | 2.40 | - | <7.38 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1791 | 13.07 | 14.41 | 14.67 | 14.37 | - | - | 12.49 | 2.88 | - | 3.97 | <230 | 270 | - | 630 | - | - | - | - | - | 3000 |
1804 | - | 16.33 | 16.30 | 15.73 | - | - | 13.44 | 0.41 | - | <2.43 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1811 | 12.81 | 13.11 | 13.11 | 12.56 | - | 10.22 | 10.04 | 74.49 | 100 | 52.59 | 180 | 900 | - | 2670 | - | - | 1000 | 7000 | 5000 | 7100 |
1813 | 13.78 | 12.01 | 11.48 | 10.53 | 8.17 | 7.44 | 7.19 | 126.86 | 120 | 40.01 | <130 | 490 | - | 1280 | - | - | - | <1000 | 4000 | <1800 |
1822 | - | 16.63 | 16.85 | 16.49 | - | - | 14.36 | 0.72 | - | <1.14 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1869 | - | - | 12.11 | 11.16 | 8.77 | 8.09 | 7.86 | <99 | <120 | <99 | <180 | <150 | - | <340 | - | - | - | <1000 | 2000 | 2800 |
1885 | - | - | - | - | - | - | 14.06 | <3.53 | - | <5.96 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1918 | - | - | - | - | - | - | 14.47 | 0.87 | - | 1 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1929 | 12.87 | 13.63 | 13.77 | 13.19 | - | - | 10.61 | 29.28 | <100 | 35.14 | <130 | 500 | - | 1810 | - | - | - | - | - | <1800 |
1932 | - | 13.25 | 13.18 | 12.45 | 10.52 | 9.67 | 9.25 | 290.08 | 400 | 265.79 | 480 | 4130 | - | 12 650 | - | - | 6000 | 20 000 | 20 000 | 34 000 |
1952 | - | - | - | - | - | - | 14.68 | <1.51 | - | <1.79 | <240 | <150 | - | 250 | - | - | - | - | - | <1800 |
1970 | - | - | - | - | - | - | 13.75 | <2.16 | - | <3.2 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1972 | 11.88 | 12.36 | 12.02 | 11.34 | 10.14 | 8.74 | 8.58 | 501.09 | 980 | 493.38 | 780 | 5350 | - | 16040 | - | - | 6000 | 38000 | 26000 | 56 300 |
1987 | 11.23 | 11.37 | 11.31 | 10.60 | 8.71 | 7.86 | 7.57 | 1051.86 | 1190 | 1101.42 | 1910 | 13 930 | - | 37 160 | - | - | 29 000 | 51 000 | 59 000 | 125 300 |
1992 | - | 16.08 | 16.58 | 16.15 | 15.48 | 14.88 | 14.54 | 0.58 | - | <3.72 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
1999 | - | 13.57 | 13.20 | 12.34 | 10.43 | 9.62 | 9.35 | 10.06 | 120 | 3.98 | <80 | <140 | - | <570 | - | - | - | - | <4000 | <1800 |
2006 | - | - | - | - | - | - | 11.15 | 2.93 | <120 | 1.49 | <140 | <150 | - | <340 | - | - | - | - | - | <1800 |
2007 | - | - | - | - | - | - | 13.35 | 1.80 | - | <3.46 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
2023 | - | 14.02 | 14.05 | 13.56 | - | - | 11.41 | 5.46 | - | 5.45 | <100 | 250 | - | 940 | - | - | - | - | - | <1800 |
2033 | - | 15.37 | 15.60 | 15.08 | - | - | 13.03 | 0.59 | <110 | 1.17 | <170 | 200 | - | <350 | - | - | - | - | - | <1800 |
VCC | UV | U | B | V | J | H | K | C6.75 | I12 | C15 | I25 | I60 | P60 | I100 | P100 | P170 | r2.8 | r6.3 | r12.6 | r21 |
![]() |
2000 Å | 3650 Å | 4400 Å | 5500 Å | 1.25 ![]() |
1.65 ![]() |
2.1 ![]() |
6.75 ![]() |
12 ![]() |
15 ![]() |
25 ![]() |
60 ![]() |
60 ![]() |
100 ![]() |
100 ![]() |
170 ![]() |
2.8 cm | 6.3 cm | 12.6 cm | 21 cm |
units | mag | mag | mag | mag | mag | mag | mag | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy | mJy |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) | (21) |
2034 | - | - | 16.24 | 15.78 | - | - | 13.37 | 0.19 | - | <3.66 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
2037 | - | 16.12 | 16.20 | 15.79 | - | - | 13.49 | <1.78 | - | <2.11 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
2058 | 12.62 | - | 11.73 | 10.98 | - | 8.43 | 7.88 | 316.50 | 380 | 352.68 | 400 | 3250 | - | 10 490 | - | - | 3000 | 8000 | 7000 | 14 300 |
2066 | - | 12.53 | 12.31 | 11.63 | 9.86 | 9.16 | 8.91 | 68.00 | 130 | 68.13 | 170 | 1170 | - | 2680 | - | - | 4000 | 3000 | 4000 | 4100 |
2070 | - | 11.99 | 11.48 | 10.56 | 8.25 | 7.57 | 7.31 | 88.49 | 280 | 66.58 | <460 | 630 | - | 1890 | - | - | - | 2000 | 2000 | <1800 |
2087 | - | 13.34 | 12.98 | 12.11 | 9.99 | 9.24 | 9.03 | 11.46 | <120 | 7.06 | <180 | <130 | - | <280 | - | - | 1000 | - | <4000 | <1800 |
2094 | - | - | - | - | - | - | 16.44 | 0.44 | - | <1.23 | <340 | <390 | - | <840 | - | - | - | - | - | <1800 |
Note to Table 3:
VCC 1379: the 116000 mJy flux at 12.6 cm of Dressel & Condon is contaminated by a background quasar, visible in the NVSS 20 cm map. |
VCC | UV | optical | near-IR | ISOCAM | IRAS | ISOPHOT | radio 2.8 cm | radio 6.3 cm | radio 12.6 cm | radio 21 cm |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
1 | - | 1 | 1 | 1 | 1 | 1 | - | - | - | 1 |
4 | - | - | 3 | 1 | 1 | - | - | - | - | 1 |
17 | - | 2 | 1 | 1 | 9 | 1 | - | - | - | 1 |
24 | - | 1 | 1 | 1 | 2 | 1 | - | - | - | 1 |
26 | - | - | 3 | 1 | 1 | - | - | - | - | 1 |
66 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | - | 1 |
81 | - | 1, 2 | 1 | 1 | 1 | 1 | - | - | - | 1 |
87 | - | 3, 4 | 1 | 1 | 1 | 1 | - | - | - | 1 |
92 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 3 |
130 | - | - | 3 | 1 | 2 | 1 | - | - | - | 1 |
152 | - | 1 | 1 | 1 | 6 | 1 | - | - | - | 1 |
159 | - | 2 | 1 | 1 | 1 | 1 | - | - | - | 1 |
169 | - | - | - | 1 | 1 | 1 | - | - | - | 1 |
171 | - | - | - | 1 | 1 | - | - | - | - | 1 |
207 | - | - | 3 | 1 | 2 | - | - | - | - | 1 |
318 | 1 | 3 | 1 | 1 | 10 | 1 | - | - | - | 1 |
425 | - | - | - | 1 | 1 | - | - | - | - | 1 |
459 | 1 | - | 1 | 1 | 2, 7 | 1 | - | - | - | 1 |
460 | - | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 1 |
655 | - | 4 | 1 | 1 | 4 | 1 | - | - | - | 1 |
664 | 1 | 7 | 1 | 1 | 2, 4 | 1 | - | - | - | 1 |
666 | - | - | 3 | 1 | 1 | 1 | - | - | - | 1 |
692 | 3 | 5 | 1 | 1 | 4 | 1 | - | 1 | - | 1 |
793 | - | 1 | 3 | 1 | 1 | - | - | - | - | 1 |
802 | - | 4 | 3 | - | 2 | - | - | - | - | 1 |
809 | 3 | 3 | 1 | 1 | 10 | - | - | - | - | 1 |
836 | 3 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
848 | - | 4 | 1 | 1 | 1 | 1 | - | - | - | 1 |
857 | - | 1 | 1 | 1 | 4 | 1 | - | 1 | - | 4 |
873 | 3 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 2 |
890 | - | - | 1 | 1 | 2 | 1 | - | - | - | 1 |
912 | 3 | 3, 7 | 1 | 1 | 2 | 1 | - | 1 | - | 1 |
945 | 3 | 4, 6 | 1 | - | 1 | - | - | - | - | 1 |
950 | 3 | 3, 4 | 1 | - | 1 | - | - | - | - | 1 |
971 | 1 | 3 | 1 | 1 | 4 | 1 | - | - | - | 1 |
984 | 3 | 1 | 1 | 1 | 2 | 1 | - | 1 | - | 1 |
995 | - | 2 | 1 | 1 | 1 | - | - | - | - | 1 |
1001 | - | - | 3 | - | 1 | 1 | - | - | - | 1 |
1002 | 1 | 1 | 1 | 1 | 2 | 1 | - | 1 | - | 1 |
1003 | 3 | 1 | 1 | 1 | 6 | 1 | - | 1 | - | 1 |
1043 | 3 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 2 |
1047 | 3 | 7 | 1,2 | 1 | 5 | 1 | 1 | - | - | 1 |
1106 | - | - | 3 | - | 1 | - | - | - | - | 1 |
1110 | - | 1 | 1 | 1 | 2 | 1 | 1 | 1 | - | 1 |
1121 | - | - | 3 | - | 1 | 1 | - | - | - | 1 |
1158 | 2 | 1 | 1 | 1 | 2 | 1 | - | 1 | - | 1 |
1189 | 1 | 3 | 1 | 1 | 4 | 1 | - | - | - | 1 |
1196 | - | 3, 7, 8 | 1 | 1 | 5 | 1 | - | - | - | 1 |
1200 | - | 4 | 1 | - | 1 | - | - | - | - | 1 |
1217 | 3 | 9 | 1 | 1 | 1 | 1 | - | - | - | 1 |
1253 | - | 1 | 1 | 1 | 4 | 1 | 1 | 1 | - | 1 |
1257 | - | - | 3 | 1 | 1 | - | - | - | - | 1 |
1287 | - | - | - | - | 1 | - | - | - | - | 1 |
1313 | 3 | 4 | 4 | - | 2 | - | - | - | - | 1 |
1326 | 3 | 3, 7 | 1 | 1 | 4 | 1 | 1 | - | - | 1 |
1356 | 3 | 3 | 1 | - | 1 | - | - | - | - | 1 |
1368 | 3 | 3, 7 | 1 | 1 | 5 | 1 | - | - | - | 1 |
1377 | - | 2 | 1 | - | 1 | - | - | - | - | 1 |
1379 | 1 | 5 | 1 | 1 | 2 | 1 | 1 | - | - | 1 |
1403 | - | - | - | - | 1 | - | - | - | - | 1 |
1410 | - | 1 | 1 | 1 | 7 | 1 | - | - | - | 1 |
1411 | 3 | 2 | 1 | - | 1 | - | - | - | - | 1 |
1412 | - | 1 | 1 | 1 | 2, 8 | 1 | 1 | - | - | 1 |
1419 | - | 3 | 1 | 1 | 8 | 1 | - | - | - | 1 |
1426 | - | 2 | 1 | - | 1 | - | - | - | - | 1 |
1448 | - | 4, 7 | 1 | - | 2 | - | - | - | - | 1 |
1450 | 1 | 7 | 1 | 1 | 2 | 1 | 1 | 1 | - | 1 |
1486 | - | 3, 4 | 1 | - | 1 | - | - | - | - | 1 |
1552 | - | 1 | 1 | 1 | 2, 4 | 1 | 1 | - | - | 1 |
1554 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
1569 | - | 3 | 1 | 1 | 1 | 1 | - | - | - | 1 |
1575 | 1 | 1 | 1 | 1 | 4 | 1 | - | - | - | 1 |
1581 | - | 4, 7 | 1 | 1 | 1 | 1 | - | - | - | 1 |
1596 | - | - | - | 1 | 1 | - | - | - | - | 1 |
VCC | UV | optical | near-IR | ISOCAM | IRAS | ISOPHOT | radio 2.8 cm | radio 6.3 cm | radio 12.6 cm | radio 21 cm |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
1644 | - | - | 3 | - | 1 | - | - | - | - | 1 |
1673 | 1 | 1 | 1 | 1 | 1 | 1 | - | - | - | 1 |
1675 | - | - | 1 | 1 | 1 | 1 | - | - | - | 1 |
1676 | - | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
1678 | 1 | 7 | 1 | 1 | 2 | 1 | - | - | - | 1 |
1686 | - | 1 | - | 1 | 2 | 1 | - | - | - | 1 |
1690 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
1699 | 1 | 3 | 1 | 1 | 1 | 1 | - | - | - | 1 |
1725 | 1 | 3, 4, 10 | 1 | 1 | 9 | 1 | - | - | - | 1 |
1726 | 1 | 4 | 1 | 1 | 1 | 1 | - | - | - | 1 |
1727 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
1730 | - | 3, 7 | 1 | 1 | 6 | 1 | 1 | 1 | - | 1 |
1750 | - | - | 3 | 1 | 2 | 1 | - | - | - | 1 |
1757 | - | 3, 7 | 1 | 1 | 4, 6 | 1 | - | - | - | 1 |
1758 | - | 3 | 1 | 1 | 1 | - | - | - | - | 1 |
1784 | - | - | 3 | 1 | 1 | - | - | - | - | 1 |
1789 | - | 4 | 1 | 1 | 1 | - | - | - | - | 1 |
1791 | 1 | 3, 4, 6 | 1 | 1 | 7 | - | - | - | - | 1 |
1804 | - | 2 | 1 | 1 | 1 | - | - | - | - | 1 |
1811 | 1 | 3, 11 | 1 | 1 | 2 | - | 1 | 1 | - | 1 |
1813 | 1 | 1 | 1 | 1 | 7 | - | - | 1 | - | 1 |
1822 | - | 2 | 1 | 1 | 1 | - | - | - | - | 1 |
1869 | - | 1 | 1 | - | 2 | - | - | 1 | - | 1 |
1885 | - | - | 1 | 1 | 1 | - | - | - | - | 1 |
1918 | - | - | 1 | 1 | 1 | - | - | - | - | 1 |
1929 | 1 | 1 | 1 | 1 | 2 | - | - | - | - | 1 |
1932 | - | 1 | 1 | 1 | 6 | - | 1 | 1 | 1 | 1 |
1952 | - | - | 1 | 1 | 9 | - | - | - | - | 1 |
1970 | - | - | 1 | 1 | 1 | - | - | - | - | 1 |
1972 | 1 | 7 | 1 | 1 | 3 | - | 1 | 1 | 1 | 1 |
1987 | 1 | 1 | 1 | 1 | 3 | - | 1 | 1 | 1 | 1 |
1992 | - | 2 | 1 | 1 | 1 | - | - | - | - | 1 |
1999 | - | 3, 11 | 1 | 1 | 4 | - | - | - | - | 1 |
2006 | - | - | 1 | 1 | 2 | - | - | - | - | 1 |
2007 | - | - | 1 | 1 | 1 | - | - | - | - | 1 |
2023 | - | 3 | 1 | 1 | 7 | - | - | - | - | 1 |
2033 | - | 4 | 1 | 1 | 2 | - | - | - | - | 1 |
2034 | - | 2 | 1 | 1 | 1 | - | - | - | - | 1 |
2037 | - | 2 | 1 | 1 | 1 | - | - | - | - | 1 |
2058 | 1 | 1 | 1 | 1 | 6 | - | 1 | 1 | - | 1 |
2066 | - | 1 | 1 | 1 | 4 | - | 1 | 1 | - | 1 |
2070 | - | 1 | 1 | 1 | 2 | - | - | 1 | - | 1 |
2087 | - | 12, 13 | 1 | 1 | 2, 5 | - | 1 | - | - | 1 |
2094 | - | - | 3 | 1 | 1 | - | - | - | - | 1 |
References:
UV data: 1: Deharveng et al. (1994) 2: Deharveng et al. (2002) 3: Donas et al. (private communication) Optical data: 1: this work 2: Gavazzi et al. (2001) 3: Schroeder & Visvanathan (1996) 4: Gallagher & Hunter (1986) 5: Gavazzi et al. (1994) 6: de Vaucouleurs et al. (1981) 7: Longo et al. (1983-1985) 8: Prugniel & Heraudeau (1998) 9: Bothun et al. (1986) 10: Takamiya et al. (1995) 11: Boselli & Gavazzi (1994) 12: Burstein et al. (1987) 13: Frueh et al. (1996) Near-IR: 1: Boselli et al. (1997) 2: Gavazzi et al. (2001) 3: Pierini, private communication 4: Gavazzi et al., in preparation ISOCAM data: 1: Boselli et al. (2003) IRAS data: 1: Lonsdale et al. (1985) 2: Helou et al. (1988) 3: Soifer et al. (1989) 4: Thuan & Sauvage (1992) 5: Isobe & Feigelson (1992) 6: Rush et al. (1993) 7: Young et al. (1996) 8: Tuffs, private communication 9: Almoznino & Brosch (1998) 10: Magri (1994) ISOPHOT data: Tuffs et al. (2002) Radio continuum data: 2.8 cm: 1: Niklas et al. (1995) 6.3 cm: 1: Niklas et al. (1995) 12.6 cm: 1: Dressel & Condon (1978) 21 cm: 1: Gavazzi & Boselli (1999) 2: Kotanyi et al. (1980) 3: Condon et al. (1990) 4: Condon et al. (1987) |
VCC | H
![]() |
![]() |
ref | MHI | defHI | qual | WHI | ref | MH2 | ref |
Å | erg cm-2 s-1 | ![]() |
km s-1 | ![]() |
||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
1 | 12 | -13.51 | 1 | - | - | - | - | - | - | - |
4 | - | - | - | 8.25 | 0.00 | 2 | 41 | 1 | - | - |
17 | 53 | -12.83 | 6 | 8.78 | -0.04 | 2 | 58 | 1 | - | - |
24 | 3 | -14.03 | 1 | 8.93 | -0.11 | 1 | 218 | 1 | - | - |
26 | - | - | - | 8.38 | -0.26 | 3 | 47 | 1 | - | - |
66 | 33 | -11.72 | 6 | 9.81 | -0.20 | 1 | 269 | 9 | 7.75 | 3 |
81 | 21 | -13.26 | 1 | 8.63 | -0.45 | 1 | 103 | 3 | - | - |
87 | 20 | -12.94 | 6 | 8.32 | 0.29 | 2 | 109 | 1 | <8.13 | 4 |
92 | 9 | -11.53 | 1 | 9.76 | 0.33 | 1 | 469 | 11 | 8.75 | 1 |
130 | - | - | - | 7.86 | 0.06 | 1 | 119 | 1 | - | - |
152 | 9 | -12.63 | 6 | 8.61 | 0.24 | 1 | 216 | 5 | 8.15 | 3 |
159 | 19 | -13.21 | 6 | 8.55 | 0.30 | 2 | 67 | 1 | - | - |
169 | 7 | -14.36 | 4 | 8.52 | -0.35 | 2 | 35 | 1 | - | - |
171 | - | - | - | 7.16 | 1.20 | 4 | 29 | 2 | - | - |
207 | - | - | - | 8.25 | -0.25 | 2 | 81 | 2 | - | - |
318 | 51 | -12.51 | 1 | 9.39 | -0.13 | 1 | 178 | 5 | <8.34 | 4 |
425 | - | - | - | <7.53 | 0.33 | - | - | 2 | - | - |
459 | 48 | -12.66 | 2 | 8.22 | -0.07 | 2 | 127 | 1 | <7.72 | 4 |
460 | 8 | -11.92 | 6 | 7.62 | 1.85 | 3 | 274 | 6 | 8.43 | 1 |
655 | 6 | -12.78 | 6 | 7.91 | 0.75 | 2 | 71 | 8 | 7.99 | 3 |
664 | 101 | -12.12 | 1 | 8.40 | 0.62 | 2 | 103 | 7 | <7.79 | 3 |
666 | - | - | - | <7.60 | 0.71 | - | - | 1 | - | - |
692 | 16 | -12.47 | 5 | 8.46 | 0.66 | 1 | 119 | 7 | <7.60 | 3 |
793 | 2 | -14.41 | 2 | 7.65 | 0.05 | 2 | 41 | 1 | - | - |
802 | 37 | -13.54 | 2 | <7.66 | 0.28 | - | - | 1 | - | - |
809 | - | - | - | 8.39 | 0.15 | 2 | 173 | 3 | - | - |
836 | 15 | -11.67 | 1 | 8.78 | 0.69 | 1 | 394 | 7 | 8.29 | 3 |
848 | 26 | -13.05 | 2 | 8.85 | -0.18 | 2 | 141 | 1 | - | - |
857 | 12 | -11.97 | 1 | 8.51 | 0.86 | 1 | 174 | 7 | 8.30 | 1 |
873 | 16 | -11.97 | 2 | 8.74 | 0.63 | 1 | 269 | 4 | 8.96 | 1 |
890 | - | - | - | 7.33 | -0.05 | 2 | 66 | 2 | - | - |
912 | 13 | -12.56 | 6 | 8.26 | 0.99 | 1 | 157 | 7 | 8.12 | 3 |
945 | - | - | - | 8.21 | 0.31 | 3 | 37 | 1 | - | - |
950 | 23 | -13.45 | 3 | 8.81 | -0.07 | 2 | 74 | 1 | - | - |
971 | 29 | -12.52 | 3 | 9.26 | 0.20 | 2 | 171 | 2 | 8.86 | 3 |
984 | 1 | -13.17 | 1 | <7.31 | 1.78 | - | - | 8 | - | - |
995 | 32 | -12.98 | 6 | 8.92 | -0.33 | 1 | 162 | 3 | - | - |
1001 | -1 | - | 6 | 7.49 | 0.57 | 3 | 37 | 1 | - | - |
1002 | 9 | -12.11 | 6 | 8.92 | 0.47 | 1 | 152 | 4 | 8.24 | 3 |
1003 | 5 | -11.72 | 1 | <7.44 | 2.30 | - | - | 8 | 7.39 | 7 |
1043 | 7 | -11.77 | 6 | 8.62 | 1.33 | 2 | 253 | 8 | 8.98 | 5 |
1047 | -1 | - | 6 | <7.44 | 1.37 | - | - | 8 | 8.25 | 2 |
1106 | - | - | - | <7.19 | 0.68 | - | - | 1 | - | - |
1110 | 2 | -12.30 | 5 | 8.65 | 0.95 | 1 | 319 | 4 | 8.32 | 1 |
1121 | - | - | - | <7.63 | 0.39 | - | - | 1 | - | - |
1158 | -1 | - | 6 | <7.13 | 2.07 | - | - | 6 | - | - |
1189 | 21 | -12.67 | 6 | 8.39 | 0.34 | 3 | 126 | 5 | <7.86 | 3 |
1196 | - | - | - | - | - | - | - | - | - | - |
1200 | - | -13.61 | - | <7.39 | 1.11 | - | - | 1 | - | - |
1217 | - | - | - | <7.09 | 1.73 | - | - | 2 | - | - |
1253 | - | - | - | <7.31 | 1.79 | - | - | 8 | - | - |
1257 | - | - | - | 8.41 | 0.14 | 1 | 157 | 1 | - | - |
1287 | - | - | - | <7.63 | 0.54 | - | - | 1 | - | - |
1313 | 351 | -12.84 | 2 | 7.84 | -0.20 | 2 | 107 | 1 | - | - |
1326 | -1 | - | 6 | <7.24 | 1.52 | - | - | 6 | 7.98 | 3 |
1356 | 43 | -13.05 | 1 | 8.34 | 0.04 | 1 | 168 | 3 | - | - |
1368 | - | - | - | <7.38 | 1.28 | - | - | 8 | - | - |
1377 | - | - | - | <7.53 | 0.37 | - | - | 1 | - | - |
1379 | 36 | -11.92 | 3 | 8.95 | 0.15 | 1 | 200 | 4 | 7.84 | 3 |
1403 | - | - | - | <7.57 | 0.45 | - | - | 1 | - | - |
1410 | 35 | -12.71 | 1 | 8.20 | 0.42 | 1 | 181 | 1 | - | - |
1411 | 2 | -14.37 | 3 | 7.96 | 0.51 | 3 | 57 | 1 | - | - |
1412 | 2 | -12.52 | 1 | <7.02 | 2.33 | - | - | 6 | <7.76 | 4 |
1419 | 5 | -13.06 | 6 | <7.27 | 1.59 | - | - | 3 | - | - |
1426 | 6 | -13.93 | 3 | <7.33 | 0.79 | - | - | 1 | - | - |
1448 | - | - | - | 8.90 | -0.14 | 5 | 70 | 13 | - | - |
1450 | 69 | -11.89 | 1 | 8.47 | 0.54 | 1 | 130 | 10 | 7.78 | 3 |
1486 | 12 | -13.17 | 6 | 7.66 | 0.72 | 2 | 124 | 5 | - | - |
1552 | 2 | -12.98 | 1 | <7.16 | 2.18 | - | - | 6 | 7.62 | 3 |
1554 | 75 | -11.40 | 6 | 9.46 | -0.37 | 1 | 185 | 4 | 8.02 | 4 |
1569 | 14 | -13.45 | 6 | 7.47 | 0.90 | 2 | 109 | 3 | - | - |
1575 | 13 | -12.73 | 1 | 7.94 | 0.93 | 2 | 113 | 5 | 8.62 | 3 |
1581 | 6 | -13.46 | 3 | 8.64 | -0.03 | 2 | 97 | 1 | - | - |
1596 | - | - | - | 7.34 | 0.12 | 4 | 56 | 1 | - | - |
VCC | H
![]() |
![]() |
ref | MHI | defHI | qual | WHI | ref | MH2 | ref |
Å | erg cm-2 s-1 | ![]() |
km s-1 | ![]() |
||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
1644 | - | - | - | 8.15 | 0.14 | 1 | 93 | 1 | - | - |
1673 | 15 | -12.00 | 1 | 8.69 | 0.43 | 3 | 214 | 12 | 8.70 | 1 |
1675 | 4 | -13.85 | 1 | 7.45 | 1.35 | 3 | 41 | 1 | - | - |
1676 | 19 | -11.74 | 1 | 8.99 | 0.58 | 3 | 341 | 12 | 8.99 | 1 |
1678 | 55 | -12.56 | 6 | 9.00 | -0.06 | 2 | 57 | 5 | - | - |
1686 | 44 | -12.17 | 1 | 8.35 | 0.79 | 1 | 116 | 1 | <7.77 | 4 |
1690 | 2 | -12.02 | 1 | 8.93 | 1.07 | 1 | 370 | 11 | 9.01 | 1 |
1699 | 24 | -12.85 | 3 | 8.62 | 0.04 | 2 | 109 | 1 | - | - |
1725 | 50 | -12.62 | 2 | 8.11 | 0.55 | 2 | 93 | 1 | - | - |
1726 | - | -12.80 | - | 8.52 | 0.00 | 2 | 85 | 1 | - | - |
1727 | 4 | -11.49 | 6 | 8.79 | 0.83 | 1 | 374 | 7 | 9.08 | 6 |
1730 | 4 | -12.62 | 1 | 7.83 | 1.03 | 3 | 190 | 4 | 8.04 | 3 |
1750 | - | - | - | 7.35 | -0.01 | 4 | 73 | 1 | - | - |
1757 | 7 | -12.98 | 3 | 7.38 | 1.38 | 5 | - | 3 | - | - |
1758 | 17 | -13.07 | 1 | 8.28 | 0.39 | 1 | 172 | 5 | - | - |
1784 | 2 | - | 4 | 7.34 | 0.78 | 4 | 37 | 1 | - | - |
1789 | 16 | -13.25 | 3 | 7.86 | 0.53 | 1 | 103 | 1 | - | - |
1791 | 72 | -12.42 | 3 | 8.63 | -0.12 | 2 | 120 | 1 | - | - |
1804 | 3 | -14.37 | 2 | 7.23 | 0.84 | 5 | 88 | 1 | - | - |
1811 | 16 | -12.50 | 6 | 8.63 | 0.23 | 1 | 150 | 4 | 8.20 | 3 |
1813 | -1 | - | 6 | <7.19 | 2.23 | - | - | 6 | <7.39 | 3 |
1822 | -1 | - | 4 | 7.64 | 0.29 | 2 | 34 | 1 | - | - |
1869 | - | - | - | <7.44 | 1.81 | - | - | 8 | - | - |
1885 | - | - | - | <7.33 | 1.09 | - | - | 1 | - | - |
1918 | 15 | -13.90 | 3 | 8.16 | 0.17 | 2 | 77 | 1 | - | - |
1929 | 13 | -12.75 | 6 | 8.70 | 0.35 | 1 | 190 | 10 | <7.68 | 4 |
1932 | 16 | -12.32 | 6 | 8.66 | 0.45 | 1 | 301 | 6 | 8.46 | 3 |
1952 | 32 | -13.62 | 4 | 8.21 | -0.19 | 2 | 65 | 1 | - | - |
1970 | - | - | - | <7.49 | 0.53 | - | - | 1 | - | - |
1972 | 16 | -11.71 | 6 | 8.75 | 0.27 | 1 | 203 | 4 | 8.69 | 1 |
1987 | 31 | -11.34 | 6 | 9.85 | -0.29 | 1 | 308 | 7 | 8.66 | 1 |
1992 | 24 | -13.21 | 4 | 8.35 | -0.22 | 1 | 110 | 1 | - | - |
1999 | -1 | - | 6 | <7.19 | 1.61 | - | - | 6 | - | - |
2006 | -1 | - | 6 | 7.94 | 0.91 | 2 | 78 | 3 | - | - |
2007 | 10 | -13.77 | 2 | 7.37 | 0.74 | 3 | 77 | 1 | - | - |
2023 | 27 | -12.56 | 3 | 8.85 | -0.05 | 1 | 186 | 3 | <7.93 | 4 |
2033 | 13 | -13.32 | 2 | 7.45 | 0.61 | 3 | 41 | 1 | - | - |
2034 | 3 | -14.28 | 6 | 7.83 | 0.27 | 3 | 62 | 1 | - | - |
2037 | 16 | -13.82 | 6 | 7.39 | 0.81 | 3 | 44 | 1 | - | - |
2058 | 14 | -11.85 | 6 | 8.79 | 0.90 | 1 | 195 | 4 | 8.70 | 1 |
2066 | 6 | -12.47 | 6 | 8.36 | 0.66 | 2 | 106 | 1 | 7.71 | 3 |
2070 | 2 | -11.98 | 6 | 9.54 | 0.01 | 1 | 432 | 4 | <7.45 | 5 |
2087 | - | - | - | <7.38 | 1.26 | - | - | 8 | - | - |
2094 | - | - | - | <7.09 | 0.40 | - | - | 2 | - | - |
References:
H 1: Boselli & Gavazzi (2002); 2: Boselli et al. (2002a); 3: Gavazzi et al. (2002b); 4: Heller et al. (1999); 5: Koopmann et al. (2001) (equivalent width from ref. 6); 6: Boselli et al., in preparation HI: 1: Hoffman et al. (1987); 2: Hoffman et al. (1989a); 3: Haynes & Giovanelli (1986); 4: Helou et al. (1984); 5: Hoffman et al. (1989b); 6: Magri (1994); 7: Helou et al. (1981); 8: Giovanardi et al. (1983); 9: Warmels (1986); 10: Schneider et al. (1990); 11: Huchtmeier et al. (1989); 12: Helou et al. (1982); 13: Bottinelli et al. (1990); CO: 1: Kenney & Young (1988); 2: Stark et al. (1986); 3: Boselli et al. (1995); 4: Boselli et al. (2002b); 5: Combes et al. (1988); 6: Boselli et al., in preparation; 7: Sage & Wrobel (1989). |
VCC | AB | A(UV) | A(U) | A(B) | A(V) | A(J) | A(H) | A(K) |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
1 | 0.02 | - | - | 0.35 | 0.25 | 0.07 | 0.05 | 0.03 |
4 | 0.12 | - | - | - | - | - | - | 0.03 |
17 | 0.08 | - | - | 0.41 | 0.31 | 0.07 | 0.05 | 0.03 |
24 | 0.01 | - | - | 0.34 | 0.25 | - | - | 0.03 |
26 | 0.13 | - | - | - | - | - | - | 0.03 |
66 | 0.00 | 0.68 | 0.39 | 0.33 | 0.25 | 0.07 | 0.05 | 0.04 |
81 | 0.14 | - | - | 0.58 | 0.43 | - | - | 0.05 |
87 | 0.08 | - | 0.47 | 0.41 | 0.31 | - | - | 0.03 |
92 | 0.14 | 1.20 | 0.70 | 0.60 | 0.46 | 0.11 | 0.07 | 0.05 |
130 | 0.00 | - | - | - | - | - | - | 0.03 |
152 | 0.00 | - | 0.50 | 0.43 | 0.33 | - | 0.07 | 0.05 |
159 | 0.00 | - | - | 0.33 | 0.24 | - | - | 0.03 |
169 | 0.00 | - | - | - | - | - | - | - |
171 | 0.00 | - | - | - | - | - | - | - |
207 | 0.00 | - | - | - | - | - | - | 0.03 |
318 | 0.00 | 0.24 | 0.14 | 0.11 | 0.07 | - | - | 0.01 |
425 | 0.00 | - | - | - | - | - | - | - |
459 | 0.04 | 0.31 | - | - | - | - | - | 0.01 |
460 | 0.07 | - | 0.88 | 0.77 | 0.59 | 0.16 | 0.11 | 0.08 |
655 | 0.03 | - | 0.42 | 0.36 | 0.27 | - | - | 0.03 |
664 | 0.07 | 0.56 | 0.29 | 0.25 | 0.19 | - | - | 0.02 |
666 | 0.03 | - | - | - | - | - | - | 0.03 |
692 | 0.01 | 0.56 | 0.33 | 0.28 | 0.20 | - | 0.04 | 0.03 |
793 | 0.12 | - | 0.53 | 0.45 | 0.33 | 0.07 | 0.05 | 0.03 |
802 | 0.11 | - | 0.51 | 0.44 | - | - | - | 0.03 |
809 | 0.05 | 0.95 | 0.55 | 0.48 | 0.37 | - | - | 0.05 |
836 | 0.11 | 2.00 | 1.28 | 1.13 | 0.88 | 0.25 | 0.17 | 0.12 |
848 | 0.00 | - | 0.39 | 0.33 | 0.24 | - | - | 0.03 |
857 | 0.03 | - | 0.83 | 0.72 | 0.56 | - | - | 0.08 |
873 | 0.12 | 2.66 | 1.73 | 1.54 | 1.25 | - | 0.29 | 0.21 |
890 | 0.00 | - | - | - | - | - | - | 0.03 |
912 | 0.10 | 1.12 | 0.66 | 0.57 | 0.43 | - | 0.07 | 0.05 |
945 | 0.12 | 0.93 | 0.52 | 0.45 | 0.34 | - | - | 0.03 |
950 | 0.03 | 0.74 | 0.42 | 0.36 | 0.27 | - | - | 0.03 |
971 | 0.00 | 0.43 | 0.23 | 0.2 | 0.14 | - | - | 0.02 |
984 | 0.10 | 1.49 | 0.92 | 0.81 | 0.62 | 0.16 | 0.11 | 0.08 |
995 | 0.10 | - | 0.62 | 0.53 | 0.40 | - | - | 0.05 |
1001 | 0.08 | - | - | - | - | - | - | 0.03 |
1002 | 0.00 | 0.64 | - | 0.32 | 0.23 | 0.07 | 0.05 | 0.03 |
1003 | 0.05 | 0.10 | 0.07 | 0.07 | 0.04 | - | - | - |
1043 | 0.09 | 1.45 | 0.88 | 0.76 | 0.59 | 0.16 | 0.11 | 0.08 |
1047 | 0.08 | 1.45 | - | 0.77 | 0.60 | 0.16 | 0.11 | 0.08 |
1106 | 0.01 | - | - | - | - | - | - | 0.03 |
1110 | 0.03 | - | 0.84 | 0.73 | 0.56 | 0.16 | 0.11 | 0.08 |
1121 | 0.04 | - | - | - | - | - | - | 0.03 |
1158 | 0.07 | 1.43 | 0.89 | 0.78 | 0.59 | 0.16 | 0.11 | 0.08 |
1189 | 0.00 | 0.23 | 0.12 | 0.10 | 0.07 | - | - | 0.01 |
1196 | 0.08 | - | 0.10 | 0.09 | 0.06 | - | - | - |
1200 | 0.03 | - | 0.42 | 0.36 | 0.28 | - | 0.05 | 0.03 |
1217 | 0.03 | 0.74 | - | 0.36 | 0.28 | 0.07 | 0.05 | 0.03 |
1253 | 0.02 | - | 0.04 | 0.04 | 0.02 | - | - | - |
1257 | 0.02 | - | - | - | - | - | - | 0.03 |
1287 | 0.08 | - | - | - | - | - | - | - |
1313 | 0.09 | 0.87 | 0.49 | 0.42 | 0.31 | - | 0.05 | - |
1326 | 0.02 | 2.54 | 1.69 | 1.51 | 1.24 | - | 0.31 | 0.22 |
1356 | 0.02 | 0.72 | 0.41 | 0.35 | 0.26 | - | - | 0.03 |
1368 | 0.04 | 0.08 | 0.06 | 0.06 | 0.04 | - | - | - |
1377 | 0.02 | - | - | 0.35 | 0.27 | - | - | 0.03 |
1379 | 0.03 | 0.55 | 0.31 | 0.26 | 0.19 | - | 0.03 | 0.02 |
1403 | 0.07 | - | - | - | - | - | - | - |
1410 | 0.03 | - | 0.43 | 0.36 | 0.27 | - | - | 0.03 |
1411 | 0.05 | 0.78 | - | 0.38 | 0.28 | - | - | 0.03 |
1412 | 0.01 | - | 0.81 | 0.71 | 0.55 | 0.16 | 0.11 | 0.08 |
1419 | 0.01 | - | 0.81 | 0.70 | 0.54 | - | 0.11 | 0.08 |
1426 | 0.08 | - | - | 0.41 | 0.31 | - | - | 0.03 |
1448 | 0.08 | - | 0.12 | 0.12 | 0.07 | - | - | - |
1450 | 0.11 | 0.89 | - | 0.43 | 0.33 | - | 0.05 | 0.03 |
1486 | 0.01 | - | 0.80 | 0.70 | 0.54 | - | - | 0.08 |
1552 | 0.08 | - | 0.88 | 0.77 | 0.60 | 0.16 | 0.11 | 0.08 |
1554 | 0.00 | 0.92 | 0.56 | 0.47 | 0.35 | 0.11 | 0.07 | 0.05 |
1569 | 0.08 | - | 0.60 | 0.51 | 0.39 | - | - | 0.05 |
1575 | 0.00 | 1.05 | 0.64 | 0.55 | 0.42 | - | - | 0.06 |
1581 | 0.00 | - | 0.40 | 0.33 | 0.24 | - | - | 0.03 |
1596 | 0.00 | - | - | - | - | - | - | - |
VCC | AB | A(UV) | A(U) | A(B) | A(V) | A(J) | A(H) | A(K) |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
1644 | 0.10 | - | - | - | - | - | - | 0.03 |
1673 | 0.01 | 0.87 | - | 0.45 | 0.33 | 0.10 | 0.07 | 0.05 |
1675 | 0.00 | - | - | - | - | - | - | 0.03 |
1676 | 0.01 | - | - | 0.45 | 0.33 | - | - | 0.05 |
1678 | 0.00 | 0.19 | 0.10 | 0.08 | 0.06 | - | - | 0.01 |
1686 | 0.09 | - | 0.49 | 0.42 | 0.31 | - | - | 0.03 |
1690 | 0.09 | 1.50 | 0.91 | 0.79 | 0.62 | 0.17 | 0.11 | 0.08 |
1699 | 0.00 | 0.68 | 0.39 | 0.33 | 0.24 | - | - | 0.03 |
1725 | 0.00 | 0.68 | 0.39 | 0.33 | 0.25 | 0.07 | 0.05 | 0.03 |
1726 | 0.00 | 0.68 | 0.38 | 0.33 | 0.25 | - | - | 0.03 |
1727 | 0.14 | 1.95 | 1.23 | 1.07 | 0.84 | 0.23 | 0.16 | 0.11 |
1730 | 0.00 | - | 0.51 | 0.43 | 0.33 | 0.10 | 0.07 | 0.05 |
1750 | 0.00 | - | - | - | - | - | - | 0.03 |
1757 | 0.09 | - | 0.91 | 0.80 | 0.61 | - | - | 0.08 |
1758 | 0.00 | - | 0.51 | 0.44 | 0.33 | - | - | 0.05 |
1784 | 0.02 | - | - | - | - | - | - | 0.03 |
1789 | 0.00 | - | 0.39 | 0.33 | 0.24 | 0.07 | 0.05 | 0.03 |
1791 | 0.00 | 0.15 | 0.08 | 0.06 | 0.03 | - | - | 0.01 |
1804 | 0.00 | - | 0.39 | 0.33 | 0.24 | - | - | 0.03 |
1811 | 0.03 | 0.62 | 0.35 | 0.30 | 0.22 | - | 0.04 | 0.03 |
1813 | 0.00 | 0.67 | 0.39 | 0.35 | 0.25 | 0.07 | 0.05 | 0.03 |
1822 | 0.00 | - | 0.39 | 0.33 | 0.25 | - | - | 0.03 |
1869 | 0.00 | - | - | 0.03 | 0.01 | - | - | - |
1885 | 0.04 | - | - | - | - | - | - | 0.03 |
1918 | 0.02 | - | - | - | - | - | - | 0.03 |
1929 | 0.03 | 0.44 | 0.23 | 0.2 | 0.15 | - | - | 0.02 |
1932 | 0.03 | - | 0.53 | 0.46 | 0.35 | 0.10 | 0.07 | 0.05 |
1952 | 0.00 | - | - | - | - | - | - | 0.03 |
1970 | 0.00 | - | - | - | - | - | - | 0.03 |
1972 | 0.04 | 1.15 | 0.70 | 0.61 | 0.46 | 0.13 | 0.09 | 0.06 |
1987 | 0.06 | 1.39 | 0.85 | 0.74 | 0.57 | 0.16 | 0.11 | 0.08 |
1992 | 0.00 | - | 0.39 | 0.33 | 0.25 | 0.07 | 0.05 | 0.03 |
1999 | 0.04 | - | 0.84 | 0.73 | 0.57 | 0.16 | 0.11 | 0.08 |
2006 | 0.04 | - | - | - | - | - | - | - |
2007 | 0.00 | - | - | - | - | - | - | 0.03 |
2023 | 0.06 | - | 0.58 | 0.49 | 0.37 | - | - | 0.05 |
2033 | 0.00 | - | 0.39 | 0.33 | 0.24 | - | - | 0.03 |
2034 | 0.00 | - | - | 0.33 | 0.24 | - | - | 0.03 |
2037 | 0.00 | - | 0.39 | 0.33 | 0.25 | - | - | 0.03 |
2058 | 0.05 | 1.32 | - | 0.70 | 0.54 | - | 0.10 | 0.07 |
2066 | 0.00 | - | 0.01 | 0.02 | 0.01 | - | - | - |
2070 | 0.00 | - | 0.80 | 0.70 | 0.54 | 0.16 | 0.11 | 0.08 |
2087 | 0.00 | - | 0.01 | 0.01 | - | - | - | - |
2094 | 0.00 | - | - | - | - | - | - | 0.03 |
VCC | stellar fit | [F6.75(d+s)/F6.75(s)] | c | d |
(1) | (2) | (3) | (4) | (5) |
1 | S | 1.15 | - | - |
4 | - | - | - | - |
17 | S | 3.48 | - | - |
24 | S | 0.43 | - | - |
26 | - | - | - | - |
66 | S | 8.53 | 0.555 | -1.536 |
81 | S | - | - | - |
87 | S | 2.77 | - | - |
92 | S | 3.63 | 0.632 | -1.555 |
130 | - | - | - | - |
152 | S | 10.10 | 1.151 | -4.827 |
159 | S | - | - | - |
169 | - | - | - | - |
171 | - | - | - | - |
207 | - | - | - | - |
318 | S | 1.68 | - | - |
425 | - | - | - | - |
459 | T | 3.42 | - | - |
460 | S | 1.65 | 0.620 | -1.951 |
655 | S | 5.31 | - | - |
664 | S | 2.29 | - | - |
666 | - | - | - | - |
692 | S | 5.17 | - | - |
793 | S | - | - | - |
802 | - | - | - | - |
809 | S | 4.23 | - | - |
836 | S | 7.30 | 0.622 | -1.141 |
848 | S | 1.70 | - | - |
857 | S | 1.79 | - | - |
873 | S | 12.68 | 0.847 | -2.698 |
890 | - | - | - | - |
912 | S | 3.75 | - | - |
945 | S | - | - | - |
950 | S | - | - | - |
971 | S | 2.49 | - | - |
984 | S | 0.57 | - | - |
995 | S | 1.62 | - | - |
1001 | - | - | - | - |
1002 | S | 7.30 | 1.133 | -5.148 |
1003 | S | 1.10 | - | - |
1043 | S | 1.46 | 0.569 | -0.838 |
1047 | S | - | - | - |
1106 | - | - | - | - |
1110 | S | 1.06 | - | - |
1121 | - | - | - | - |
1158 | S | 0.69 | - | - |
1189 | S | 4.17 | - | - |
1196 | S | 0.71 | - | - |
1200 | S | - | - | - |
1217 | S | 1.67 | - | - |
1253 | S | 0.74 | 0.678 | -2.555 |
1257 | - | - | - | - |
1287 | - | - | - | - |
1313 | S | - | - | - |
1326 | S | 1.66 | - | - |
1356 | S | - | - | - |
1368 | S | 0.58 | - | - |
1377 | S | - | - | - |
1379 | S | 7.41 | 0.757 | -3.368 |
1403 | - | - | - | - |
1410 | S | 5.55 | - | - |
1411 | S | - | - | - |
1412 | S | 0.59 | - | - |
1419 | S | 1.55 | - | - |
1426 | S | - | - | - |
1448 | S | - | - | - |
1450 | S | 11.32 | - | - |
1486 | S | - | - | - |
1552 | S | 1.01 | - | - |
1554 | S | 10.18 | 0.903 | -2.677 |
1569 | S | 1.58 | - | - |
1575 | S | 10.38 | - | - |
1581 | S | - | - | - |
1596 | - | - | - | - |
VCC | stellar fit | [F6.75(d+s)/F6.75(s)] | c | d |
(1) | (2) | (3) | (4) | (5) |
1644 | - | - | - | - |
1673 | S | 6.33 | - | - |
1675 | T | - | - | - |
1676 | S | 8.14 | 0.671 | -1.487 |
1678 | S | - | - | - |
1686 | S | 5.75 | - | - |
1690 | S | 3.76 | 0.461 | -0.583 |
1699 | S | 2.87 | - | - |
1725 | S | 2.07 | - | - |
1726 | S | - | - | - |
1727 | S | 1.91 | 0.075 | 1.601 |
1730 | S | 2.67 | - | - |
1750 | - | 1.78 | - | - |
1757 | S | - | - | - |
1758 | S | 2.94 | - | - |
1784 | - | - | - | - |
1789 | S | 2.49 | - | - |
1791 | S | 3.23 | - | - |
1804 | S | 1.04 | - | - |
1811 | S | 7.28 | 0.863 | -3.643 |
1813 | S | 0.80 | - | - |
1822 | S | 4.70 | - | - |
1869 | S | - | 0.659 | -3.058 |
1885 | - | - | - | - |
1918 | - | 5.73 | - | - |
1929 | S | 4.60 | - | - |
1932 | S | 16.83 | 0.784 | -2.629 |
1952 | - | - | - | - |
1970 | - | - | - | - |
1972 | S | 12.67 | 0.962 | -3.348 |
1987 | S | 11.78 | 0.659 | -1.480 |
1992 | S | 3.03 | - | - |
1999 | S | 0.51 | - | - |
2006 | - | 0.94 | - | - |
2007 | - | 4.23 | - | - |
2023 | S | 1.83 | - | - |
2033 | S | 1.06 | - | - |
2034 | S | 0.51 | - | - |
2037 | S | - | - | - |
2058 | S | 4.90 | 0.675 | -2.473 |
2066 | S | 3.33 | 0.044 | 0.357 |
2070 | S | 0.67 | 0.000 | 0.301 |
2087 | S | 0.44 | - | - |
2094 | - | 17.81 | - | - |
Column 1: VCC name.
Column 2: S indicates galaxies with a fitted Bruzual & Charlot spectrum determined from UV, optical and near-IR spectro-photometry, T for galaxies whose fit is Bruzual & Charlot spectrum of the template.
Column 3: The ratio of the total flux (star plus dust) to the stellar flux at 6.75
Columns 4 and 5: the fit of the radio continuum data, where a and b are the slope and the
intercept of the relation
|