A&A 401, 863-872 (2003)
DOI: 10.1051/0004-6361:20021819
N. A. Tikhonov1,2 - O. A. Galazutdinova1,2 - A. Aparicio3
1 - Special Astrophysical Observatory, Russian Academy
of Sciences, N. Arkhyz, KChR 369167, Russia
2 - Isaac Newton Institute of Chile, SAO Branch, Russia
3 - Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife, Spain
Recieved 11 December 2000 / Accepted 6 December 2002
Abstract
We report V -band and I -band CCD stellar and surface photometry
of the galaxy NGC 404 , taken with HST WFPC2 and
the 2.5 m Nordic telescope. The colour-magnitude diagram for the stars in
this galaxy is typical of that of spheroidal systems (i.e. it lacks
luminous, young stars but contains a large number of Asymptotic Giant Branch (AGB) and
Red Giant Branch (RGB) stars). The disk of the galaxy is mostly dominated
by red giant stars while its bulge consists of both the AGB and RGB
population. Using the distance indicator technique, based on the tip
of the red giant branch (TRGB), we find a distance of
Mpc for
this galaxy.
Global photometric characteristic of this galaxy were then measured
out to a radius of 3
,
giving
and
.
We find
(V-I) = 0.3 for the nucleus of NGC 404. The integral colour of the
galaxy changes slightly along the radius, and its mean value is (V-I) = 1.1.
On the HST images situated at 9
from the galaxy center there are many
red giants. This means that the size of the disk of NGC 404
exceeds 20 kpc. The value of the mean metallicity of the red giants in the disk
is
.
Key words: galaxies: individual: NGC 404 - galaxies: stellar content - galaxies: photometry - galaxies: distance and redshifts
NGC 404 is a prominent example of an early-type galaxy that gives strong
evidence of being in a more active state than the "classical" early type. A detailed
study of the stellar content of the dwarf S0 galaxy NGC 404 is
crucial because of the following reasons. Firstly, its relatively small
radial velocity (Stromberg 1925) indicates that it is likely to be a
member of the Local group (Baars & Wendker 1976). Secondly, the galaxy is
rather isolated (i.e. not affected by interaction and environmental
effects), making it an interesting source for exploring the evolutionary
scenarios of galaxies. Thirdly, the galaxy is classified as a LINER, due to the presence of
very narrow emission lines [OII] 3727, [OIII] 5007, H,
[NII] 6583, [SII] 6716,
6731, together with high order Balmer absorption (Humason et al. 1956;
Burbidge & Burbidge 1965; Ho et al. 1993; Pogge et al. 2000) in its nuclear
spectrum. Fourthly, NGC 404 contains both atomic gas and a prominent
dust component (Barbon et al. 1982; Gallagher 1986; Ravindranath et al. 2001).
The gas-dust system observed close to the center of the galaxy is likely to turn into a region of active star-formation. Wiklind & Henkel (1990) supposed that CO emission was associated with a prominent dust lane in the central region of NGC 404, which might be part of an annular structure around the nucleus. The kinematical data indicate rotational motion of the gas around the center. Baars & Wendker (1976) noted peculiar radio properties of NGC 404. Larkin et al. (1998) obtained NIR spectra and reported the detection of strong [Fe II] emission suggesting X-ray heating to be at work. The detection of the UV core with HST was presented by Maoz et al. (1998), who explained the data by the presence of a central star cluster. The X-ray emission of NGC 404 is consistent with originating completely from discrete stellar sources, given the galaxy's blue luminosity (Komossa et al. 1999).
The physical parameters of the galaxy (diameter, mass, luminosity) depend on which distance is accepted. Measurements of the distance to this galaxy give estimates from 1 Mpc (Baars & Wendker 1976) via 3.9 Mpc (De Vaucouleurs & Olson 1984) to as high as 10 Mpc (Plana et al. 1998). So far NGC 404 has not been resolved into stars, making it impossible to measure the distance directly. We filled this gap and determined distance, size, stellar content, metallicity, colour, luminosity of the NGC 404 on the basis of stellar and surface photometry.
![]() |
(1) |
![]() |
(2) |
Region | Date | Band | Exposure | PEP ID |
S0 | 06.09.1995 | F814w | 160 | 5999 |
S1 | 13.01.2001 | F606w | 600 | 8601 |
F814w | 600 | 8601 | ||
S2 | 25.12.1994 | F606w | 1200 | 5369 |
F814w | 2100 | 5369 | ||
S3 | 25.12.1994 | F606w | 1200 | 5369 |
F814w |
![]() |
5369 | ||
Nordic | 27.07.1997 | I |
![]() |
|
V |
![]() |
|||
I | 30 |
To study the resolved stellar population of the galaxy and to measure its
distance we obtained images of the four regions (S0, S1, S2, S3) of NGC 404
(Fig. 1) from the HST archive. We used data from programs 8601, 5369, 5999
(Table 1). All observations were preprocessed through the standard STScI
pipeline, as described by Holtzmann et al. (1995a). After removing cosmic
ray hits we applied point-spread-function (PSF) fitting packages
DAOPHOTII and ALLSTAR in MIDAS (Stetson 1994). These programs use automatic star-finding
algorithms and then measure stellar magnitudes by fitting a PSF that is
constructed from other uncrowded parts of images.
A total of about 12 000 (S1 region), 860 (S2 region), 1250 (S3 region) stars were
measured in the F606W and F814W filters with aperture radius of 1.5 pixels.
Then we determined the aperture correction from the 1.5 pixel radius aperture
to the standard
radius aperture size for the WFPC2 photometric
system using bright uncroweded stars. The F606W and F814W instrumental
magnitudes has been transformed to standard magnitudes in the Jonson-Cousins
system using the prescriptions of Holtzmann et al. (1995b).
Background galaxies, unresolved blends and stars contaminated by
CCD blemishes which have
"quality" parameters as defined in ALLSTAR in MIDAS of
were excluded from list.
![]() |
Figure 1:
DSS-2 20
![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 2:
The isophotes of NGC 404 (Nordic,
![]() ![]() |
Open with DEXTER |
![]() |
Figure 3: The change of ellipticity with radius. A significant difference in value is due to the influence of gas-dust clouds. |
Open with DEXTER |
The reason for this unusual approach was associated
with the insufficient size of the CCD and the presence of nearby bright star.
Our photometry was done by calculating "growth curves" where the light is
integrated in a concentric quadrant of increasing
radius, corresponding to a simulated aperture photometry. We used the results
of the photometry of the one quadrant to obtain global parameters of the
whole galaxy, assuming that the other three quadrants resemble the first
one closely. The correctness of this assumption is confirmed by the consistency
of our results with those obtained by other authors.
The derived results are shown in Fig. 4.
In Fig. 4a we present radial surface brightness profiles in the V and I bands.
These profiles are typical for disk galaxies. The regions of the
bulge and exponential disk are clearly visible. In Fig. 4b we show the total V and
I magnitudes as a function of radius.
It is seen that the curve of luminosity variation with increasing aperture has
not reached its asymptotic value, i.e. the radius of the galaxy is more that 3
0.
The extent of the disk beyond 3
0 can be seen in
studying the distribution of red giants; however, it is difficult to extend integral photometry
to a radius of over 3
0 because of the insufficient size of the
CCD field.
In Figs. 4c, d are shown the radial and total (V - I) colour profiles as a function of
radius.
The integral colour of the galaxy (Fig. 4d) changes slightly
with increasing aperture since the contribution of the outer regions of the
galaxy is small because of their low brightness. The gradual variation of the
galaxy colour along the radius (Fig. 4c) can be explained by the variation of
the stellar population. The sharp change in colour near
the limiting aperture value (
)
is probably due to our errors of
measurement at low surface brightness.
![]() |
Figure 4: Global photometric parameters of the NGC 404: a) Radial surface brightness profile in the V and I bands. b) The total V and I magnitudes with respect to the radius from the galaxy center. c) Radial (V - I) colour profile. d) The total (V - I) colour as a function radius. |
Open with DEXTER |
![]() |
Figure 5:
The colour map (V - I) of the central part of the NGC 404.
The black areas correspond to red regions and
the white areas to bluish ones. The size of the image
is 28
![]() |
Open with DEXTER |
The errors in the photometry have multiple sources: possible asymmetry of the galaxy, calibration errors,
flatfielding and sky subtraction, readout noise, foreground stars and
background galaxies. In our measurements the largest contributions to
the errors in the global photometric parameters are dominated by the
non-flatness of the sky background because of the nearby bright star.
The calibration error is negligible (<
). The errors in the
total magnitude determination are less than
.
The photometric profile of the galaxy in the B band up to
is
presented in the paper by Barbon et al. (1982). A comparison of these results
with our measurements (Fig. 4a) shows good agreement provided that the
mean colour of the galaxy is assumed to be
(B-V) = 0.94. In an earlier work
on the measurement of the brightness profile (Johnson 1961) only relative
measurements of brightness were made, and we did not compare them with
ours. Quite recently, based on photographic observations Baggett et al. (1998)
have represented the surface brightness of NGC 404 by the sum of two
components (bulge and disk) up to a radius of 5
,
without discussing
the effect of the close bright star. Our surface brightness measurements
differ from the result of these researchers by about 0
4.
Our measurements for
have yielded
and
with an accuracy of
,
and for the maximum diameter
we have obtained
and
with an accuracy of
.
For diameter
Longo et al. (1983) presented colour and luminosity values:
(B-V)=0.95 and
.
One can see a good agreement of this result with ours
in the V band in spite of the great difference in the methods used.
We obtained the distribution of (V-I)throughout the central parts of the galaxy by dividing I and V images. Figure 5 shows
the colour of the central part of the NGC 404.
The dark parts on the picture correspond to the reddened regions of the galaxy
due to the light absorption in gas-dust clouds. The huge dark cloud
visible in the galaxy image (Fig. 5) has been investigated by
Wiklind & Henkel (1990). Sage (1990) believes
that the gas of this cloud formed while the stars evolved, and there is
no evidence of an external origin. However Bertola et al. (1992),
based on measurement of the rotation curves of the gas and the galaxy,
consider the gas to be of external origin.
The white areas in Fig. 5 correspond to regions that are bluer
than the main body of the galaxy. The existence of this particular
region near the nucleus and a second region that is similar but fainter and further
extended from the nucleus, is likely to indicate the possibility of weak star
formation.
This is confirmed by the revealing of an extended region with emission
in H
and OIII (Plana et al. 1998).
At the edge of the central blue diffuse region (Fig. 5)
there is a star-like object with colour (V-I) = 0.3. The construction of
isophotes has shown that this blue bright object is the center of the galaxy.
Its size is less than
(Maoz et al. 1995).
We have done median smoothing of the V image and subtracted
the smoothed image from the original one. After this procedure we revealed
the extended system of gas-dust clouds (Fig. 6) which cannot be seen on the initial images.
We used the B image of the 6 m telescope (BTA) (Fig. 6, bottom) and HST image
(S0 region) (Fig. 6, middle) to confirm the reality of this structure. In the HST
image the structure is faint because of the short exposure. In the V band of the
Nordic image the faintest gas-dust filaments have a contrast of 2%. In
the I band this structure is not visible.
The white areas in Fig. 6 correspond to gas-dust clouds which form a radial and slightly spiral structure. It can be seen from this
figure that the single, very massive cloud near the center is not the only one.
The colour (V-I) of this massive cloud and neighbouring regions differ by only
.
The other gas-dust clouds have the same or smaller colour contrast.
After comparing the distribution of colour (Fig. 5) and brightness
(Fig. 6), we concluded that in these spiral-like regions there is no violent
star formation.
NGC 404 is not a unique S0 galaxy with a gas-dust spiral-like
structure. The galaxy NGC 4550 has a similar asymmetrical structure
(Wiklind & Henkel 2001).
![]() |
Figure 6:
After median smoothing one can see the radial structure of
the gas-dust clouds. The black areas correspond to higher
brightness and white areas to lower brightness. The size of the Nordic and HST (S0 region) images
is
![]() ![]() |
Open with DEXTER |
The closeness of the bright star
And has a strong effect on the accuracy of the
integral parameters of the surface photometry, but it has absolutely no influence
on the stellar photometry with DAOPHOT II
(Stetson 1987, 1994).
We have conducted stellar photometry of the HST (S1, S2, S3) and Nordic
images (Fig. 1). Figures 7a-c show the final I vs. (V-I) colour-magnitude
diagrams (CMD) of NGC 404. The deepest images are S2 and S3 (see Table 1).
As has been expected, bright blue and red supergiants are lacking completely
in the diagrams, and the main population of the galaxy consists of
red giants (RGB) and asymptotic giant branch stars (AGB).
We show the CMD of the S2 and S3 regions in Fig. 7a. This picture shows that
there is a narrow RGB extending up to I=23.67. Also
a small number of bright red stars is seen extending up to
above the tip of the RGB. These are
AGB stars. We show the CMD of the S1 region in Fig. 7b.
There is a wide band of RGB stars with a number of AGB
stars. The groundbased CMD (Fig. 7c) mainly consists of AGB
stars. The RGB stars are poorly seen due to their faintness.
A number of objects in this CMD are unresolved background galaxies.
Figure 8 shows the error distributions for the stellar photometry. Completeness
tests were performed using the usual procedure of artificial star trials
(Stetson 1987). A total of 6000 artificial stars was added to the F606W
and F814W frames of NGC 404 (we used only the WF4 chip frames in S1 and
S3) in several steps of 600 stars each with magnitudes and colours in
the range
F814W
.
The completeness curves (input magnitudes -
fraction recovered) are shown in Figs. 9a, b.
![]() |
Figure 7: [ (V - I), I] Colour-Magnitude diagrams of different fields of NGC 404. a) CMD of stars in far regions of NGC 404 (S2 and S3) obtained with WFPC2 HST. b) CMD of stars in the bulge of NGC 404 (S1). c) CMD of images of the Nordic telescope. The dashed line shows the position of the TRGB. |
Open with DEXTER |
![]() |
Figure 8: Residuals of the fitting of the PSF models versus magnitude for stars included in the final photometric list of NGC 404: a) in the far region (S3). b) in the bulge (S1). c) in the Nordic images. |
Open with DEXTER |
![]() |
Figure 9: Completeness levels of the WFPC2 photometry (S1(a) and S3(b) regions, WF4-chip) based on artificial star tests. |
Open with DEXTER |
![]() |
Figure 10:
Smoothed luminosity function LF (solid lines) and edge-detection
filter output (dotted lines). The position of the TRGB is indentified
with the peak in the filter output function:
a) LF for S2 and S3 regions.
![]() ![]() ![]() |
Open with DEXTER |
We estimate the distance of NGC 404 using the tip of the red giants
branch (TRGB method) as described by Lee et al. (1993) and by Da Costa & Armandroff
(1990).
The best uncrowded fields for measuring the distance are the S2 and S3
regions. These fields are situated at large radii from the galaxy center and they
have lower contamination by AGB stars.
To obtain the magnitude of the TRGB we used the luminosity function (LF)
of the stars in the colour interval
.
We computed the LF by counting the stars lying inside a bin of
.
The central value was varied in steps of
to obtain the value of the LF while
reducing the dependence of the results upon the particular choice of bin center.
Measurements of the RGB tip positions can be made using a Sobel
filter (Sakai et al. 1996) to determine objectively the positions of
the TRGB. The LF and the Sobel filtered LF are shown in Fig. 10a. The position
of the TRGB is identified with the highest peak in the filter output
function. For the S2 and S3 regions we obtained
.
The position of the S1 region is in the bulge of NGC 404 and its CMD is
contaminated by AGB stars, which tend to smear out the "edge'' defining
the TRGB in the luminosity function (Sakai & Madore 1999). To estimate the
distance of NGC 404 we used the WF3 and WF4 chip only, because of the stellar
crowding in other chips. For S1 we obtained
(Fig. 10b).
One can see that
(S1)
(S2,S3). This means that RGB stars of the S2 and S3 region belong to NGC 404 and that its disk has a very extended
size of up to 20
.
The second argument that regions S2 and S3 belong to NGC 404
consists of star distribution. The star density in the S2 and S3 regions increases
towards the center of NGC 404 and remains constant in the direction perpendicular to the
radius (see the discussion in Sect. 8).
We estimated the mean metallicity of the RGB stars of the S2 and S3 regions
using the (V-I) colours at
(
fainter than the TRGB) (Da Costa & Armandroff 1990; Lee et al. 1993).
Based on a gaussian fit to the colour distribution of the giant stars
in the range
we derive a mean colour of the RGB
stars of
(V-I)-3.5 = 1.60. Galactic extinction values by Schlegel et al. (1998)
are
AI =0.114 and
AV = 0.194. The dereddened colour of the RGB stars is
(V-I)0,-3.5 = 1.52. The values for mean metallicity and intrinsic magnitude
of the TRGB are
and
MI = -4.11. Finally, the
distance modulus of NGC 404 is obtained:
(corresponding to a distance of 3.42 Mpc).
The CMD of the S1 field has a wide RG branch with numerous AGB stars.
The considerable width of the RGB can be the result of different factors such
as crowding, uncertainty of internal extinction, intrinsic spread of the
RGB stars metallicity and insufficient photometric limit of these images.
The mean metallicity of S1 is about the same as for the S2 and S3
fields, but it has a higher uncertainty.
The comparison between theoretical isochrones (Bertelli et al. 1994) and
the CMD of the stars in NGC 404, corrected with
and
,
is shown in Figs. 11a, b. We obtain Z=0.001 which
corresponds to the value of the mean metallicity derived by us (see Sect. 6).
The brightest AGB stars are seen near the center of the galaxy, i.e.
on the Nordic CMD (Fig. 11a). This figure supports the result that
the youngest stars in the bulge of NGC 404 were formed 0.3 Gyr ago. The age of
the remaining stars is essentially greater, up to 6 Gyr.
There may also be even older stars among the bulge population,
but our results are insufficient to select these. The age of the red
giants of the disk (S2 + S3 fields) is in the range of 6.0-15 Gyr (Fig. 11b).
In this figure one can see a few stars which have MI< -4.0.
They may be foreground stars. In this case, the age of the disk
stars is at least 15 Gyr.
Our results imply that star formation in this S0 galaxy took
place 300 Myr ago in the central regions only and that the disk has an
ancient stellar population.
At first sight our results contradict the hypothesis that
the older population should be in the bulge and the younger in the disk of S0 and Sa galaxies.
(Larson 1976; Caldwell 1983; Bothun & Gregg 1990).
A new model for the origin of bulges and disks
(Noguchi 1999) can explain our results. Our
recent investigations of NGC 5206 (unpublished), an S0 galaxy in the Centaurus
group, indicate the same space distribution of AGB and RGB stars.
The younger stars are concentrated towards the center of the galaxy and the older
stars constitute an extended disk.
It is interesting to note that in
irregular galaxies the intermediate and old populations have similar space distributions
(Drozdovsky et al. 2001; Aparicio & Tikhonov 2000;
Lynds et al. 1998).
![]() |
Figure 11: Isochrones (Bertelli et al. 1994) for metallicity z = 0.001 are shown superposed on CMD of NGC 404: a) Nordic data. Isochrones are for populations of ages 0.3, 1.0, 6.3 Gyr. b) HST data for S2 and S3 regions. Isochrones are for populations of ages 6.3, 15.0 Gyr. |
Open with DEXTER |
Using the TRGB as the border we can separate all visible stars into two
groups: AGB (MI<-4.2) and RGB+AGB (MI>-4.2) stars. The
first group consists of AGB stars of different ages (Fig. 11) from 300 Myr (
)
to 6 Gyr (
).
In the second group the number of
AGB stars is negligible and their presence does not affect a statistical
investigation of the RGB stars. The mean age of RGB stars exceeds the mean age of
the AGB stars (Fig. 11).
We have derived the distribution
of surface density of the AGB and RGB stars along the radius of the galaxy
in the regions S1, S2 and S3 (Fig. 12). The surface density of red giants
decreases slowly from the center to the edge of the galaxy, which
corresponds to an extended disk with an exponential falloff.
The decrease of the surface density of red giants in the bulge and their
complete absence near the galaxy center is due only to the crowding
of the stars. To prove this we added artificial stars (
)
uniformly over the whole field and conducted the usual photometry procedure. We show the results of
this test in Fig. 13. One can see the absence of stars
near the centre of the galaxy
and the increase
in their number with increasing galactocentric radius.
We find the following dependence of the surface density of RGB stars in
the disk on galactocentric radius:
![]() |
(3) |
When studying the spatial distribution of stars we found a
segregation of stars by luminosity. This is due to the fact that younger
AGB stars are located only in the bulge,
whereas the disk consists of old RGB stars and a small number of faint
AGB stars. The study of the surface distribution of bright stars shows that
all stars brighter than
are background stars. Stars from
are bright AGB stars and most of them are located
in the bulge of the galaxy.
![]() |
Figure 12:
The distribution of AGB and RGB stars along galactocentric
radius of NGC 404. The data at
![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 13: The map of the resulting distribution of artificial stars from centre to outskirts of the galaxy after using FIND and ALLSTAR routines. The absence of the stars near the central part of the galaxy is due to crowding. |
Open with DEXTER |
It is seen from Fig. 12 that the surface density of bright AGB stars quickly
drops with increasing distance from the center and becomes negligible
at
.
The following relation obtained:
![]() |
(4) |
We have measured integral characteristics of NGC 404:
ELL = (1 - b/a) = 0.05 for
,
and
for
.
The galaxy colour (V-I) has been found
to decrease along the galactocentric radius from 1.12 to 0.9. A system of
gas-dust clouds which form a
radially-spiral structure has been revealed in the bulge.
The morphology of the central parts of the galaxy, which has a blue star-like
nucleus and complex system of gas clouds has been studied.
For the first time this nearest S0 galaxy has been resolved into stars
and the CMD for its stars has been constructed. Using
the TRGB as the border we separated all stars of the galaxy into two
groups: AGB + RGB and AGB stars.
Examination of the stellar
population has shown that the bulge of the galaxy is composed mainly of
AGB stars with ages of more that 300 Myr, whereas the galaxy disk consists
of RGB stars with an age from 6.0 up to 15 Gyr. The mean metallicity estimated
using RGB colour, is
in the outer disk. Using the
brightness of the tip of the RGB we derive a mean distance modulus to
NGC 404 of
corresponding to a distance of 3.42 Mpc.
The space distribution of two groups of stars in NGC 404 suggests that the
majority of AGB stars are located within the bulge, while
RGB stars constitute the disk, which has a size of more than
20
,
corresponding to 20 kpc.
Up to now the stellar population of the
S0 galaxies has been insufficiently investigated and we were unable to
compare the spatial distribution of AGB and RGB
stars along the radius in NGC 404 with results for other galaxies.
There are many theoretical models for the formation of S0 galaxies
(Farouki & Shapiro 1980; Larson et al. 1980;
Icke 1985; Byrd & Valtonen 1990;
Evrard 1991; Bekki 1998), but almost all of them are
related to S0 galaxies that are
members of clusters. Applying these models to our
data may be invalid as
NGC 404 is a rather isolated galaxy. Nevertheless, it should
be remarked that
these models predict that the disk of the galaxy is younger
than the bulge.
This is in contrast with results of the spatial
distribution of the stars in NGC 404.
Hopefully our data will be useful for future modelling of S0 galaxies.
Acknowledgements
This work has been financially supported by grant RFBR 00-02-16584. Data from the NASA/IPAC Extragalactic Database have been used.