next previous
Up: Oscillator strengths for transitions Mn XX


3 Results and discussion


 

 
Table 1: Target levels of K XIV and Sc XVI, and their threshold energies (in Ryd).
  K XIV Sc XVI

Index
Configuration Level Expt.a GRASP Configuration Level Expt.a GRASP

1......
1s22s22p2 3P0 0.0000 0.0000 1s22s22p2 3P0 0.0000 0.0000
2...... 1s22s22p2 3P1 0.1206 0.1196 1s22s22p2 3P1 0.2092 0.2076
3...... 1s22s22p2 3P2 0.2572 0.2564 1s22s22p2 3P2 0.4103 0.4099
4...... 1s22s22p2 1D2 0.8740 0.9017 1s22s22p2 1D2 1.1241 1.1495
5...... 1s22s22p2 1S0 1.6304 1.6390 1s22s22p2 1S0 1.9931 1.9996
6...... 1s22s2p3 5S ${^{\circ}}{_2}$ 2.2840 2.2160 1s22s2p3 5S ${^{\circ}}{_2}$ 2.7460 2.6986
7...... 1s22s2p3 3D ${^{\circ}}{_2}$ 4.1805 4.2224 1s22s2p3 3D ${^{\circ}}{_2}$ 4.8899 4.9325
8...... 1s22s2p3 3D ${^{\circ}}{_1}$ 4.1873 4.2293 1s22s2p3 3D ${^{\circ}}{_1}$ 4.9000 4.9433
9...... 1s22s2p3 3D ${^{\circ}}{_3}$ 4.2010 4.2413 1s22s2p3 3D ${^{\circ}}{_3}$ 4.9393 4.9800
10...... 1s22s2p3 3P ${^{\circ}}{_0}$ 4.8972 4.9500 1s22s2p3 3P ${^{\circ}}{_0}$ 5.7280 5.7816
11...... 1s22s2p3 3P ${^{\circ}}{_1}$ 4.9029 4.9556 1s22s2p3 3P ${^{\circ}}{_1}$ 5.7432 5.7965
12...... 1s22s2p3 3P ${^{\circ}}{_2}$ 4.9203 4.9722 1s22s2p3 3P ${^{\circ}}{_2}$ 5.7813 5.8332
13...... 1s22s2p3 3S ${^{\circ}}{_1}$ 6.1757 6.2936 1s22s2p3 3S ${^{\circ}}{_1}$ 7.1293 7.2478
14...... 1s22s2p3 1D ${^{\circ}}{_2}$ 6.1643 6.2994 1s22s2p3 1D ${^{\circ}}{_2}$ 7.1601 7.2941
15...... 1s22s2p3 1P ${^{\circ}}{_1}$ 6.8805 7.0246 1s22s2p3 1P ${^{\circ}}{_1}$ 7.9900 8.1345
16...... 1s22p4 3P2 9.3869 9.5251 1s22p4 3P2 10.824 10.9652
17...... 1s22p4 3P1 9.5740 9.7092 1s22p4 3P1 11.129 11.2655
18...... 1s22p4 3P0 9.6248 9.7608 1s22p4 3P0 11.188 11.3278
19...... 1s22p4 1D2 10.104 10.2920 1s22p4 1D2 11.714 11.9019
20...... 1s22p4 1S0 11.435 11.6672 1s22p4 1S0 13.226 13.4574
21...... 1s22s22p3s 3P ${^{\circ}}{_0}$ ...... 32.6831 1s22s22p3s 3P ${^{\circ}}{_0}$ ...... 41.8443
22...... 1s22s22p3s 3P ${^{\circ}}{_1}$ ...... 32.7250 1s22s22p3s 3P ${^{\circ}}{_1}$ 41.970 41.8981
23...... 1s22s22p3s 3P ${^{\circ}}{_2}$ ...... 32.9437 1s22s22p3s 3P ${^{\circ}}{_2}$ 42.330 42.2547
24...... 1s22s22p3s 1P ${^{\circ}}{_1}$ ...... 33.1109 1s22s22p3s 1P ${^{\circ}}{_1}$ 42.490 42.4381
25...... 1s22s22p3p 1P1 ...... 33.7630 1s22s22p3p 3D1 ...... 43.0839
26...... 1s22s22p3p 3D1 ...... 33.9296 1s22s22p3p 1P1 ...... 43.3261
27...... 1s22s22p3p 3D2 ...... 33.9419 1s22s22p3p 3D2 ...... 43.3370
28...... 1s22s22p3p 3P0 ...... 34.1207 1s22s22p3p 3P0 ...... 43.5175
29...... 1s22s22p3p 3D3 ...... 34.1253 1s22s22p3p 3P1 ...... 43.6380
30...... 1s22s22p3p 3S1 ...... 34.1557 1s22s22p3p 3D3 ...... 43.6360
31...... 1s22s22p3p 3P1 ...... 34.2616 1s22s22p3p 3S1 ...... 43.7675
32...... 1s22s22p3p 3P2 ...... 34.3046 1s22s22p3p 3P2 ...... 43.8172
33...... 1s22s22p3p 1D2 ...... 34.6637 1s22s22p3p 1D2 ...... 44.2242
34...... 1s22s22p3p 1S0 ...... 35.0815 1s22s22p3d 3F ${^{\circ}}{_2}$ 44.000 44.6449
35...... 1s22s22p3d 3F ${^{\circ}}{_2}$ ...... 35.1118 1s22s22p3p 1S0 ...... 44.6965
36...... 1s22s22p3d 3F ${^{\circ}}{_3}$ 35.281 35.2249 1s22s22p3d 3F ${^{\circ}}{_3}$ ...... 44.8108
37...... 1s22s22p3d 1D ${^{\circ}}{_2}$ ...... 35.2784 1s22s22p3d 1D ${^{\circ}}{_2}$ ...... 44.8758
38...... 1s22s22p3d 3F ${^{\circ}}{_4}$ ...... 35.3805 1s22s22p3d 3D ${^{\circ}}{_1}$ 45.070 45.0389
39...... 1s22s22p3d 3D ${^{\circ}}{_1}$ ...... 35.4403 1s22s22p3d 3F ${^{\circ}}{_4}$ ...... 45.0710
40...... 1s22s22p3d 3D ${^{\circ}}{_2}$ 35.540 35.5013 1s22s22p3d 3D ${^{\circ}}{_2}$ 45.100 45.1766
41...... 1s22s22p3d 3D ${^{\circ}}{_3}$ 35.646 35.5992 1s22s22p3d 3D ${^{\circ}}{_3}$ 45.330 45.3115
42...... 1s22s22p3d 3P ${^{\circ}}{_2}$ 35.715 35.6591 1s22s22p3d 3P ${^{\circ}}{_2}$ 45.400 45.3875
43...... 1s22s22p3d 3P ${^{\circ}}{_1}$ ...... 35.6754 1s22s22p3d 3P ${^{\circ}}{_1}$ 45.430 45.4037
44...... 1s22s22p3d 3P ${^{\circ}}{_0}$ ...... 35.6872 1s22s22p3d 3P ${^{\circ}}{_0}$ ...... 45.4177
45...... 1s22s22p3d 1P ${^{\circ}}{_1}$ 36.075 36.0297 1s22s22p3d 1P ${^{\circ}}{_1}$ 45.820 45.8118
46...... 1s22s22p3d 1F ${^{\circ}}{_3}$ 36.046 36.0519 1s22s22p3d 1F ${^{\circ}}{_3}$ 45.810 45.8299

a NIST.


 

 
Table 2: Target levels of Ti XVII and V XVIII, and their threshold energies (in Ryd).
  Ti XVII V XVIII

Index
Configuration Level Expt.a GRASP Configuration Level Expt.a GRASP

1......
1s22s22p2 3P0 0.0000 0.0000 1s22s22p2 3P0 0.0000 0.0000
2...... 1s22s22p2 3P1 0.2703 0.2683 1s22s22p2 3P1 0.3450 0.3427
3...... 1s22s22p2 3P2 0.5070 0.5078 1s22s22p2 3P2 0.6210 0.6216
4...... 1s22s22p2 1D2 1.2817 1.3057 1s22s22p2 1D2 1.4663 1.4888
5...... 1s22s22p2 1S0 2.2069 2.2141 1s22s22p2 1S0 2.4500 2.4565
6...... 1s22s2p3 5S ${^{\circ}}{_2}$ 3.0405 2.9745 1s22s2p3 5S ${^{\circ}}{_2}$ 3.3439 3.2770
7...... 1s22s2p3 3D ${^{\circ}}{_2}$ 5.2752 5.3180 1s22s2p3 3D ${^{\circ}}{_2}$ 5.6850 5.7271
8...... 1s22s2p3 3D ${^{\circ}}{_1}$ 5.2863 5.3304 1s22s2p3 3D ${^{\circ}}{_1}$ 5.6957 5.7402
9...... 1s22s2p3 3D ${^{\circ}}{_3}$ 5.3469 5.3878 1s22s2p3 3D ${^{\circ}}{_3}$ 5.7860 5.8260
10...... 1s22s2p3 3P ${^{\circ}}{_0}$ 6.1824 6.2364 1s22s2p3 3P ${^{\circ}}{_0}$ 6.6692 6.7221
11...... 1s22s2p3 3P ${^{\circ}}{_1}$ 6.2049 6.2588 1s22s2p3 3P ${^{\circ}}{_1}$ 6.7016 6.7542
12...... 1s22s2p3 3P ${^{\circ}}{_2}$ 6.2584 6.3107 1s22s2p3 3P ${^{\circ}}{_2}$ 6.7739 6.8256
13...... 1s22s2p3 3S ${^{\circ}}{_1}$ 7.6395 7.7588 1s22s2p3 3S ${^{\circ}}{_1}$ 8.1770 8.2966
14...... 1s22s2p3 1D ${^{\circ}}{_2}$ 7.7014 7.8347 1s22s2p3 1D ${^{\circ}}{_2}$ 8.2781 8.4102
15...... 1s22s2p3 1P ${^{\circ}}{_1}$ 8.5970 8.7398 1s22s2p3 1P ${^{\circ}}{_1}$ 9.2441 9.3859
16...... 1s22p4 3P2 11.586 11.7279 1s22p4 3P2 12.381 12.5239
17...... 1s22p4 3P1 11.967 12.1049 1s22p4 3P1 12.856 12.9921
18...... 1s22p4 3P0 12.026 12.1671 1s22p4 3P0 12.905 13.0481
19...... 1s22p4 1D2 12.578 12.7659 1s22p4 1D2 13.490 13.6767
20...... 1s22p4 1S0 14.187 14.4184 1s22p4 1S0 15.202 15.4332
21...... 1s22s22p3s 3P ${^{\circ}}{_0}$ ...... 46.8526 1s22s22p3s 3P ${^{\circ}}{_0}$ ...... 52.1481
22...... 1s22s22p3s 3P ${^{\circ}}{_1}$ 46.870 46.9122 1s22s22p3s 3P ${^{\circ}}{_1}$ 52.170 52.2135
23...... 1s22s22p3s 3P ${^{\circ}}{_2}$ 47.320 47.3586 1s22s22p3s 3P ${^{\circ}}{_2}$ 52.720 52.7656
24...... 1s22s22p3s 1P ${^{\circ}}{_1}$ 47.000 47.5500 1s22s22p3s 1P ${^{\circ}}{_1}$ 52.890 52.9651
25...... 1s22s22p3p 3D1 ...... 48.1722 1s22s22p3p 3D1 ...... 53.5478
26...... 1s22s22p3p 1P1 ...... 48.4584 1s22s22p3p 1P1 ...... 53.8823
27...... 1s22s22p3p 3D2 ...... 48.4708 1s22s22p3p 3D2 ...... 53.8979
28...... 1s22s22p3p 3P0 ...... 48.6474 1s22s22p3p 3P0 ...... 54.0667
29...... 1s22s22p3p 3P1 ...... 48.8317 1s22s22p3p 3P1 ...... 54.3316
30...... 1s22s22p3p 3D3 ...... 48.8459 1s22s22p3p 3D3 ...... 54.3637
31...... 1s22s22p3p 3S1 ...... 48.9724 1s22s22p3p 3S1 ...... 54.4834
32...... 1s22s22p3p 3P2 ...... 49.0232 1s22s22p3p 3P2 ...... 54.5329
33...... 1s22s22p3p 1D2 ...... 49.4567 1s22s22p3p 1D2 ...... 54.9960
34...... 1s22s22p3d 3F ${^{\circ}}{_2}$ 49.860 49.8455 1s22s22p3d 3F ${^{\circ}}{_2}$ ...... 55.3380
35...... 1s22s22p3p 1S0 ...... 49.9541 1s22s22p3p 1S0 ...... 55.5161
36...... 1s22s22p3d 3F ${^{\circ}}{_3}$ ...... 50.0419 1s22s22p3d 3F ${^{\circ}}{_3}$ ...... 55.5678
37...... 1s22s22p3d 1D ${^{\circ}}{_2}$ 50.130 50.1092 1s22s22p3d 1D ${^{\circ}}{_2}$ ...... 55.6347
38...... 1s22s22p3d 3D ${^{\circ}}{_1}$ 50.290 50.2727 1s22s22p3d 3D ${^{\circ}}{_1}$ ...... 55.7988
39...... 1s22s22p3d 3F ${^{\circ}}{_4}$ ...... 50.3724 1s22s22p3d 3F ${^{\circ}}{_4}$ ...... 55.9829
40...... 1s22s22p3d 3D ${^{\circ}}{_2}$ 50.500 50.4702 1s22s22p3d 3D ${^{\circ}}{_2}$ 56.100 56.0732
41...... 1s22s22p3d 3D ${^{\circ}}{_3}$ 50.630 50.6220 1s22s22p3d 3D ${^{\circ}}{_3}$ 56.260 56.2403
42...... 1s22s22p3d 3P ${^{\circ}}{_2}$ 50.730 50.7071 1s22s22p3d 3P ${^{\circ}}{_2}$ 56.380 56.3353
43...... 1s22s22p3d 3P ${^{\circ}}{_1}$ ...... 50.7224 1s22s22p3d 3P ${^{\circ}}{_1}$ 56.450 56.3488
44...... 1s22s22p3d 3P ${^{\circ}}{_0}$ ...... 50.7374 1s22s22p3d 3P ${^{\circ}}{_0}$ ...... 56.3646
45...... 1s22s22p3d 1P ${^{\circ}}{_1}$ 51.140 51.1544 1s22s22p3d 1P ${^{\circ}}{_1}$ ...... 56.8048
46...... 1s22s22p3d 1F ${^{\circ}}{_3}$ 51.150 51.1723 1s22s22p3d 1F ${^{\circ}}{_3}$ 56.800 56.8221

a NIST.


 

 
Table 3: Target levels of Cr XIX and Mn XX, and their threshold energies (in Ryd).
  Cr XIX Mn XX

Index
Configuration Level Expt.a GRASP Configuration Level Expt.a GRASP

1......
1s22s22p2 3P0 0.0000 0.0000 1s22s22p2 3P0 0.0000 0.0000
2...... 1s22s22p2 3P1 0.4357 0.4329 1s22s22p2 3P1 0.5420 0.5410
3...... 1s22s22p2 3P2 0.7514 0.7525 1s22s22p2 3P2 0.8980 0.9020
4...... 1s22s22p2 1D2 1.6822 1.7034 1s22s22p2 1D2 1.9342 1.9540
5...... 1s22s22p2 1S0 2.7220 2.7311 1s22s22p2 1S0 3.0352 3.0422
6...... 1s22s2p3 5S ${^{\circ}}{_2}$ 3.6748 3.6090 1s22s2p3 5S ${^{\circ}}{_2}$ 4.0374 3.9730
7...... 1s22s2p3 3D ${^{\circ}}{_2}$ 6.1203 6.1628 1s22s2p3 3D ${^{\circ}}{_2}$ 6.5858 6.6282
8...... 1s22s2p3 3D ${^{\circ}}{_1}$ 6.1307 6.1747 1s22s2p3 3D ${^{\circ}}{_1}$ 6.5892 6.6358
9...... 1s22s2p3 3D ${^{\circ}}{_3}$ 6.2588 6.2985 1s22s2p3 3D ${^{\circ}}{_3}$ 6.7701 6.8092
10...... 1s22s2p3 3P ${^{\circ}}{_0}$ 7.1913 7.2424 1s22s2p3 3P ${^{\circ}}{_0}$ 7.7488 7.8016
11...... 1s22s2p3 3P ${^{\circ}}{_1}$ 7.2366 7.2871 1s22s2p3 3P ${^{\circ}}{_1}$ 7.8080 7.8617
12...... 1s22s2p3 3P ${^{\circ}}{_2}$ 7.3334 7.3826 1s22s2p3 3P ${^{\circ}}{_2}$ 7.9333 7.9863
13...... 1s22s2p3 3S ${^{\circ}}{_1}$ 8.7470 8.8644 1s22s2p3 3S ${^{\circ}}{_1}$ 9.3451 9.4660
14...... 1s22s2p3 1D ${^{\circ}}{_2}$ 8.8959 9.0259 1s22s2p3 1D ${^{\circ}}{_2}$ 9.5581 9.6872
15...... 1s22s2p3 1P ${^{\circ}}{_1}$ 9.9388 10.0787 1s22s2p3 1P ${^{\circ}}{_1}$ 10.685 10.8245
16...... 1s22p4 3P2 13.215 13.3569 1s22p4 3P2 14.086 14.2310
17...... 1s22p4 3P1 13.800 13.9329 1s22p4 3P1 14.796 14.9331
18...... 1s22p4 3P0 13.833 13.9737 1s22p4 3P0 14.798 14.9467
19...... 1s22p4 1D2 14.455 14.6399 1s22p4 1D2 15.476 15.6618
20...... 1s22p4 1S0 16.286 16.5100 1s22p4 1S0 17.432 17.6580
21...... 1s22s22p3s 3P ${^{\circ}}{_0}$ ...... 57.7323 1s22s22p3s 3P ${^{\circ}}{_0}$ ...... 63.6071
22...... 1s22s22p3s 3P ${^{\circ}}{_1}$ ...... 57.8035 1s22s22p3s 3P ${^{\circ}}{_1}$ ...... 63.6839
23...... 1s22s22p3s 3P ${^{\circ}}{_2}$ ...... 58.4790 1s22s22p3s 3P ${^{\circ}}{_2}$ ...... 64.5025
24...... 1s22s22p3s 1P ${^{\circ}}{_1}$ ...... 58.6867 1s22s22p3s 1P ${^{\circ}}{_1}$ ...... 64.7184
25...... 1s22s22p3p 3D1 ...... 59.2125 1s22s22p3p 3D1 ...... 65.1680
26...... 1s22s22p3p 1P1 ...... 59.5998 1s22s22p3p 1P1 ..... 65.6133
27...... 1s22s22p3p 3D2 ...... 59.6202 1s22s22p3p 3D2 ..... 65.6400
28...... 1s22s22p3p 3P0 ...... 59.7770 1s22s22p3p 3P0 ...... 65.7798
29...... 1s22s22p3p 3P1 ...... 60.1408 1s22s22p3p 3P1 ..... 66.2625
30...... 1s22s22p3p 3D3 ...... 60.1932 1s22s22p3p 3D3 ...... 66.3386
31...... 1s22s22p3p 3S1 ...... 60.3047 1s22s22p3p 3S1 ...... 66.4407
32...... 1s22s22p3p 3P2 ...... 60.3497 1s22s22p3p 3P2 ..... 66.4770
33...... 1s22s22p3p 1D2 ...... 60.8463 1s22s22p3p 1D2 ...... 67.0120
34...... 1s22s22p3d 3F ${^{\circ}}{_2}$ ...... 61.1247 1s22s22p3d 3F ${^{\circ}}{_2}$ ...... 67.2078
35...... 1s22s22p3p 1S0 ...... 61.3854 1s22s22p3d 3F ${^{\circ}}{_3}$ ...... 67.5120
36...... 1s22s22p3d 3F ${^{\circ}}{_3}$ ...... 61.3904 1s22s22p3p 1S0 ...... 67.5645
37...... 1s22s22p3d 1D ${^{\circ}}{_2}$ ...... 61.4547 1s22s22p3d 1D ${^{\circ}}{_2}$ ...... 67.5718
38...... 1s22s22p3d 3D ${^{\circ}}{_1}$ ...... 61.6191 1s22s22p3d 3D ${^{\circ}}{_1}$ ...... 67.7359
39...... 1s22s22p3d 3F ${^{\circ}}{_4}$ ...... 61.9066 1s22s22p3d 3F ${^{\circ}}{_4}$ ...... 68.1478
40...... 1s22s22p3d 3D ${^{\circ}}{_2}$ ...... 61.9896 1s22s22p3d 3D ${^{\circ}}{_2}$ ...... 68.2234
41...... 1s22s22p3d 3D ${^{\circ}}{_3}$ ...... 62.1706 1s22s22p3d 3D ${^{\circ}}{_3}$ ...... 68.4171
42...... 1s22s22p3d 3P ${^{\circ}}{_2}$ ...... 62.2760 1s22s22p3d 3P ${^{\circ}}{_2}$ ...... 68.5336
43...... 1s22s22p3d 3P ${^{\circ}}{_1}$ ...... 62.2865 1s22s22p3d 3P ${^{\circ}}{_1}$ ...... 68.5390
44...... 1s22s22p3d 3P ${^{\circ}}{_0}$ ...... 62.3028 1s22s22p3d 3P ${^{\circ}}{_0}$ ...... 68.5544
45...... 1s22s22p3d 1P ${^{\circ}}{_1}$ ...... 62.7629 1s22s22p3d 1P ${^{\circ}}{_1}$ ...... 69.0318
46...... 1s22s22p3d 1F ${^{\circ}}{_3}$ ...... 62.7836 1s22s22p3d 1F ${^{\circ}}{_3}$ ...... 69.0611

a NIST.

In Tables 1-3 we list the energy levels arising from the (1s2) 2s22p2, 2s2p3, 2p4, 2s22p3s, 2s22p3p and 2s22p3d configurations of C-like ions, and compare our threshold energies for K XIV, Sc XVI, Ti XVII, V XVIII, Cr XIX and Mn XX with the experimental values compiled by NIST (National Institute for Standards and Technology: www.physics.nist.gov/PhysRefData). Since the ordering of the energy levels is not the same for all C-like ions, the levels are listed in Tables 1-3 for each ion. The first column of each table provides an index for the corresponding level. However, it may be noted that the experimental values are not available for all levels, and the accuracy for some of these, especially those among the 2s22p3s, 2s22p3p and 2s22p3d configurations, is not very high. The theoretical values available in the literature are mostly confined to the lowest 20 levels, but corresponding results involving some of the higher excited levels have been reported by Fawcett (1987) and Zhang & Sampson (1997) in the form of transition wavelengths.

The agreement of our level energies with the experimental ones is excellent (within 3%) for all levels and for all ions. It may be noted that the energy order of the theoretical and experimental energy levels is slightly different in a few instances; see, for example, the highest two levels of K XIV and Sc XVI. However, the energy differences for such levels are very small ($\le$0.03 Ryd). This problem of energy order is frequently encountered in all theoretical work, especially when the energy separation of the levels is very small. Furthermore, in the absence of definitive experimental level energies in most of the cases, a correct energy order cannot be confirmed. In any event, it does not affect the computed values of the oscillator strengths and collision strengths.

In Tables 4-9 we present our oscillator strengths and radiative rates (in length form only) for allowed transitions in K XIV, Sc XVI, Ti XVII, V XVIII, Cr XIX and Mn XX. The indices used to represent the levels of a transition are already given in Tables 1-3. Since the indices of the various levels are not the same for all the ions, we have included in these tables the shorter forms of the lower and upper levels of a transition. This should facilitate their identification.

The other values available in the literature for oscillator strengths (f-values) and radiative rates (A-values), apart from those of Fawcett (1987), are of Zhang & Sampson (1996) for a few transitions among the lowest 20 levels. Their results are not only the most recent for the present ions, but are also similar and comparable to our present calculations, as they too have adopted the GRASP code, but have restricted the inclusion of CI among the first three configurations only, i.e. 2s22p2, 2s2p3 and 2p4. Zhang & Sampson (1997) have performed a larger calculation including the levels of the 2s22p3s, 2s22p3p and 2s22p3d configurations, but have not reported any data for the ions under discussion here. However, a comparison between our present and their earlier results for oscillator strengths shows agreement within 20% for the available common transitions for all ions. This is an expected result considering the limited amount of CI included by them.

Among the higher excited levels, the only results available in the literature are by Fawcett (1987), who has adopted the Hartree-Fock relativistic (HFR) code of Cowan (1981). In Table 10 we compare our values of oscillator strengths for a few representative transitions with his HFR results. The indices used to represent a transition correspond to those of K XIV, but a shorter form of the transitions has been included in Col. 3 in order to facilitate an easy identification of the same transition in different ions. Generally, our GRASP and earlier HFR f-values agree within 10%, but for a few transitions (such as 2-40 and 5-45) the differences are up to 30%, and for the 2-45 (2s22p2 3P1-2s22p3d 1P ${^{\circ}}{_1}$) and 4-37 (2s22p2 1D2-2s22p3d 1D ${^{\circ}}{_2}$) transitions, the two sets of results differ by a factor of two. However, the transitions for which differences between the two sets of calculations are significant are weaker transitions, whose f-values are comparatively small. These differences arise due to different amount of CI included in the calculations.

 

 
Table 10: Comparison between our present GRASP (first rows) oscillator strengths with the HFR (second rows) results of Fawcett (1987) for a few transitions of C-like ions. ( $a \pm b \equiv a\times 10^{{\pm }b}$).

i
j Transition K XIV Sc XVI Ti XVII V XVIII Cr XIX Mn XX

1
22 3P0-3P ${^{\circ}}{_1}$ 5.995-2 5.813-2 5.748-2 5.697-2 5.655-2 5.619-2
      6.600-2 6.400-2 6.400-2 6.300-2 6.300-2 6.300-2
1 24 3P0-1P ${^{\circ}}{_1}$ 2.042-3 2.044-3 1.941-3 1.789-3 1.605-3 1.404-3
      2.000-3 2.000-3 2.000-3 2.000-3 2.000-3 2.000-2
1 39 3P0-3D ${^{\circ}}{_1}$ 1.235-0 1.262-0 1.274-0 1.285-0 1.295-0 1.305-0
      1.320-0 1.340-0 1.349-0 1.359-0 1.368-0 1.377-0
2 37 3P1-1D ${^{\circ}}{_2}$ 1.507-1 2.593-1 3.113-1 3.567-1 3.944-1 4.250-1
      1.600-1 2.720-1 3.253-1 3.713-1 3.790-1 3.487-1
2 39 3P1-3D ${^{\circ}}{_1}$ 1.039-1 9.406-2 9.002-2 8.645-2 8.327-2 8.045-2
      1.077-1 9.500-2 9.100-2 8.730-2 8.430-2 8.130-2
2 40 3P1-3D ${^{\circ}}{_2}$ 6.162-1 5.015-1 4.480-1 4.019-1 3.643-1 3.347-1
      6.400-1 5.200-1 4.647-1 4.177-1 4.090-1 4.397-1
2 42 3P1-3P ${^{\circ}}{_2}$ 6.010-2 7.564-2 8.093-2 8.484-2 8.756-2 8.927-2
      7.700-2 8.970-2 9.400-2 9.700-2 9.900-2 1.000-1
2 43 3P1-3P ${^{\circ}}{_1}$ 2.081-1 2.226-1 2.290-1 2.352-1 2.414-1 2.482-1
      2.280-1 2.400-1 2.457-1 2.510-1 2.563-1 2.617-1
2 44 3P1-3P ${^{\circ}}{_0}$ 1.035-1 1.051-1 1.059-1 1.066-1 1.072-1 1.072-1
      1.100-1 1.110-1 1.120-1 1.130-1 1.133-1 1.140-1
2 45 3P1-1P ${^{\circ}}{_1}$ 5.607-3 7.545-4 6.570-3 1.004-2 1.421-2 2.039-2
      7.700-3 6.700-3 9.000-3 8.000-3 8.700-3 1.070-2
3 22 3P2-3P ${^{\circ}}{_1}$ 1.695-2 1.760-2 1.808-2 1.863-2 1.921-2 1.979-2
      1.840-2 1.960-2 1.960-2 2.020-2 2.080-2 2.140-2
3 23 3P2-3P ${^{\circ}}{_2}$ 4.530-2 4.247-2 4.088-2 3.918-2 3.737-2 3.550-2
      4.940-2 4.600-2 4.420-2 4.220-2 4.020-2 3.820-2
3 35 3P2-3F ${^{\circ}}{_2}$ 1.136-2 1.751-2 2.107-2 2.482-2 2.866-2 3.244-2
      1.060-2 1.700-2 2.080-2 2.480-2 2.880-2 3.260-2
3 36 3P2-3F ${^{\circ}}{_3}$ 5.376-2 8.743-2 1.078-1 1.300-1 1.536-1 1.781-1
      5.120-2 8.540-2 1.062-1 1.292-1 1.536-1 1.788-1
3 37 3P2-1D ${^{\circ}}{_2}$ 1.190-2 1.988-2 2.387-2 2.757-2 3.086-2 3.367-2
      1.720-2 2.600-2 3.020-2 3.400-2 2.300-2 3.120-2
3 41 3P2-3D ${^{\circ}}{_3}$ 7.378-1 7.170-1 7.020-1 6.845-1 6.650-1 6.443-1
      7.902-1 7.642-1 7.466-1 7.264-1 7.040-1 6.808-1
3 42 3P2-3P ${^{\circ}}{_2}$ 3.398-1 3.213-1 3.082-1 2.927-1 2.753-1 2.565-1
      3.564-1 3.328-1 3.174-1 2.998-1 2.804-1 2.600-1
3 43 3P2-3P ${^{\circ}}{_1}$ 8.213-2 7.940-2 7.726-2 7.453-2 7.114-2 6.678-2
      8.580-2 8.440-2 7.980-2 7.680-2 7.370-2 6.920-2
3 46 3P2-1F ${^{\circ}}{_3}$ 4.921-3 1.299-2 1.943-2 2.760-2 3.730-2 4.809-2
      6.400-3 1.600-2 2.360-2 3.320-2 4.420-2 5.640-2
4 24 1D2-1P ${^{\circ}}{_1}$ 4.696-2 4.428-2 4.305-2 4.185-2 4.066-2 3.947-2
      5.440-2 5.040-2 4.860-2 4.700-2 4.520-2 4.360-2
4 35 1D2-3F ${^{\circ}}{_2}$ 3.957-2 3.449-2 3.153-2 2.839-2 2.517-2 2.198-2
      5.280-2 3.060-2 2.860-2 2.600-2 2.320-2 2.040-2
4 37 1D2-1D ${^{\circ}}{_2}$ 1.170-1 8.670-2 7.182-2 5.856-2 4.729-2 3.798-2
      1.356-1 9.600-2 7.840-2 6.300-2 5.020-2 7.540-2
4 42 1D2-3P ${^{\circ}}{_2}$ 2.728-2 4.809-2 6.188-2 7.782-2 9.554-2 1.145-1
      3.120-2 5.480-2 7.020-2 8.740-2 1.064-1 1.262-1
4 45 1D2-1P ${^{\circ}}{_1}$ 1.263-2 9.475-3 1.235-2 1.292-2 1.332-2 1.330-2
      7.400-3 8.200-3 8.600-3 7.400-3 8.800-3 9.400-3



 
Table 10: continued.

i
j Transition K XIV Sc XVI Ti XVII V XVIII Cr XIX Mn XX

4
46 1D2-1F ${^{\circ}}{_3}$ 1.032-0 1.033-0 1.028-0 1.020-0 1.009-0 9.956-1
      1.072-0 1.068-0 1.060-0 1.050-0 1.036-0 1.020-0
5 22 1S0-3P ${^{\circ}}{_1}$ 3.358-3 3.595-3 3.560-3 3.443-3 3.263-3 3.041-3
      4.000-3 4.000-3 4.000-3 4.000-3 4.000-3 4.000-3
5 24 1S0-1P ${^{\circ}}{_1}$ 7.402-2 7.097-2 6.978-2 6.876-2 6.788-2 6.712-2
      7.800-2 7.500-2 7.300-2 7.200-2 7.100-2 7.000-2
5 39 1S0-3D ${^{\circ}}{_1}$ 1.092-2 1.320-2 1.384-2 1.410-2 1.402-2 1.362-2
      1.300-2 1.500-2 1.500-2 1.500-2 1.500-2 1.500-2
5 43 1S0-3P ${^{\circ}}{_1}$ 2.246-3 3.195-3 3.803-3 4.507-3 5.294-3 6.115-3
      2.000-3 3.000-3 3.000-3 4.000-3 4.000-3 5.000-3
5 45 1S0-1P ${^{\circ}}{_1}$ 1.337-0 1.174-0 1.314-0 1.281-0 1.198-0 1.004-0
      1.394-0 1.387-0 1.368-0 1.334-0 1.365-0 1.344-0


In general, inclusion of larger CI improves the wavefunctions, and hence leads to a more accurate determination of energy levels and radiative rates for a majority of transitions. However, occasionally it may also result in comparatively reduced accuracy for a few transitions, as has specifically been discussed by Aggarwal (1998) for transitions in Fe XXI. A further example of this is provided by the 2-45 (2s22p2 3P1-2s22p3d 1P ${^{\circ}}{_1}$) transition in Sc XVI, whose f-value of  $7.545\times 10^{-4}$ is incongrous with the corresponding f-values of other ions as shown in Table 10. Our calculations with 6, 12, 15, 16, 19 and 20 configurations yield the f-values $3.807\times10^{-3}$, $1.535\times10^{-4}$, $7.545\times 10^{-4}$, $5.168\times10^{-3}$, $5.184\times10^{-3}$ and $5.130\times10^{-3}$, respectively. Clearly, the f-value for this transition should be $\sim$10-3, and the presently reported result of $7.545\times 10^{-4}$ is underestimated by a factor of seven. There could be some other similar examples, but a majority of transitions are unaffected by such inconsistencies.

The accuracy of the calculated f- or A-values is generally (but not conclusively) determined by the agreement between their length and velocity forms. In any large calculation involving a large number of transitions, as in the present work, the agreement between the two forms for all the transitions is never satisfactory. Weak transitions (f < 0.10) being sensitive to mixing often show large variations, which can be over an order of magnitude. However, these transitions are not very important, in general. For transitions whose f-values are significantly larger ($\ge$0.10), the agreement between the two forms is within 20%, and the only exception is the 33-46 (2p3p 1D2-2p3d 1F ${^{\circ}}{_3}$) transition in K XIV, for which the length form is higher by a factor of two. For transitions with f-values $\ge$0.01, the two forms agree within a factor of two for all transitions in all ions. In fact, for a majority of weak transitions the two forms agree to better than 40%. This is highly satisfactory.

The measurements of A-values, in the form of lifetimes, can provide a good check on the theoretical results, and hence can help to improve the accuracy. However, to the best of our knowledge there are no experimental values available in the literature for the ions considered here. Some experiments have reported the lifetimes for the 2s22p2 1S0, 1D2 and 2s2p3 5S ${^{\circ}}{_2}$ levels in other C-like ions, (see, for example, Trabert 2002 and references therein). We hope experiments in the future will be performed for other C-like ions also, which will help us in improving upon the accuracy of the calculated atomic data.


next previous
Up: Oscillator strengths for transitions Mn XX

Copyright ESO 2003