A&A 399, 1063-1072 (2003)
DOI: 10.1051/0004-6361:20021868
A. M. S. Boonman 1 - E. F. van Dishoeck 1 - F. Lahuis 1,2 - S. D. Doty 3
1 - Sterrewacht Leiden, PO Box 9513, 2300 RA
Leiden, The Netherlands
2 - SRON National Institute for
Space Research, PO Box 800, 9700 AV Groningen, The Netherlands
3 - Department of Physics and Astronomy, Denison
University, Granville, Ohio 43023, USA
Received 4 November 2002 / Accepted 16 December 2002
Abstract
We present infrared spectra of gas-phase CO2 around 15 m toward
14 deeply embedded massive
protostars obtained with the Short Wavelength Spectrometer on board the
Infrared Space Observatory.
Gas-phase CO2 has been detected toward 8 of the sources. The excitation
temperature and the gas/solid ratio increase with the temperature of the
warm gas. Detailed radiative transfer models show that a jump in the
abundance of two orders of magnitude is present in the envelope of
AFGL 2591 at T>300 K. No such jump is seen toward the colder source
NGC 7538 IRS9. Together, these data indicate that gas-phase
CO2 shows the same
evolutionary trends as CO2 ice and other species, such as HCN, C2H2,
H2O, and CH3OH.
The gas-phase CO2 abundance toward cold sources can be explained by
gas-phase chemistry and possible freeze-out in the outer envelope.
Different chemical scenarios are proposed to explain the
gas-phase CO2 abundance of 1-
for T>300 K
and of
10-8 for T<300 K toward AFGL 2591.
The best explanation for the low abundance in the warm exterior is
provided by destruction of CO2 caused by the passage of a shock in the
past, combined with freeze-out in the coldest part at T<100 K.
The high abundance in the interior at temperatures where all oxygen
should be driven into H2O is unexpected, but may be explained
either by production of OH through
X-ray ionization leading to the formation of abundant gas-phase CO2,
or by incomplete destruction of evaporated CO2 for T>300 K.
Key words: stars: formation - ISM: abundances - ISM: molecules - infrared: ISM - ISM: lines and bands - molecular processes
Carbondioxide is predicted to be among the more abundant carbon- and oxygen-bearing gas-phase species in massive star-forming regions (e.g. Charnley 1997). However, the lack of a permanent dipole moment restricts observations of this molecule to infrared wavelengths. Due to its ubiquitous presence in the Earth's atmosphere, it was not until the launch of the Infrared Space Observatory (ISO) that a systematic search for CO2 toward star-forming regions could be performed. Van Dishoeck et al. (1996) made the first search for gas-phase CO2 in absorption toward a few deeply embedded massive protostars. Since then, ISO has detected gas-phase CO2 toward many astronomical objects, including other massive protostars (Dartois et al. 1998; van Dishoeck 1998), planetary atmospheres, and Asymptotic Giant Branch stars (e.g. Lellouch et al. 2002; Justtanont et al. 1998; Cami et al. 2000).
Van Dishoeck et al. (1996) derive tentative
gas-phase CO2 abundances of 10-7 averaged over the line of
sight.
Somewhat higher abundances of a few times 10-7 are found in the
direction of
Orion-IRc2/BN, whereas more than an order of magnitude lower abundances are
found toward the shocked regions Peak 1 and 2
(Boonman et al. 2003).
Envelope models by Doty et al. (2002) predict abundances of
a few times 10-8 for temperatures
100 K and a few times
10-7-10-6 for
-300 K.
Hot core models by Charnley (1997) also predict
abundances of
10-7-10-6 for
-300 K.
On the other hand, Charnley & Kaufman (2000) show that shocks
containing a high H/H2 ratio can destroy CO2, giving a possible
explanation for the lower abundances found for the Orion
shocked regions. Similarly, low gas-phase CO2 abundances of
10-8 are predicted by gas-grain chemistry in the post-shock gas
for dark-cloud type environments (Charnley et al. 2001).
In addition to gas-phase CO2, abundant CO2 ice has been
seen toward intermediate- to high-mass star-forming regions
(de Graauw et al. 1996; D'Hendecourt et al. 1996;
Gerakines et al. 1999; Nummelin et al. 2001).
Abundances up to 10-5 have been found, much higher than the
gas-phase CO2 abundances. The ice abundances are highest
for the coldest sources, implying that grain-mantle evaporation is
important for the chemistry in warmer sources
(van Dishoeck 1998).
One of the main questions is whether abundances of gas-phase CO2
as high as
10-5 are observed in any star-forming region.
In this paper, observations of the
ro-vibrational band of
gas-phase CO2 around
15
m toward 14 embedded massive young stars are presented.
All sources in our sample
have luminosities between
and do have complementary ISO data on ices and other gas-phase molecules
(e.g. Lahuis & van Dishoeck 2000; Gerakines et al. 1999; Keane et al. 2001b).
The observations and reduction of the data are summarized in
Sect. 2. Section 3 describes the
analysis, using pure
absorption models to derive abundances and
gas/solid ratios. Radiative transfer effects are taken into account in
Sect. 4 and the results are discussed
in Sect. 5.
Finally, the conclusions are presented in Sect. 6.
![]() |
Figure 1:
ISO-SWS spectrum of AFGL 2136 between 14.5 and 16 ![]() ![]() |
Open with DEXTER |
![]() |
Figure 2:
Normalised ISO-SWS spectra in the region of the gas-phase
CO2 ![]() |
Open with DEXTER |
The
ro-vibrational band of gas-phase CO2 around
15
m has been observed with the Short
Wavelength Spectrometer (SWS) in the AOT6 grating mode toward all sources.
The spectra have been reduced using the ISO-SWS Interactive Analysis System
SIA using the ISO Off-line Processing (OLP version 10) software
modules and calibration files. In addition, the instrumental fringes have
been removed by a combination of an optimized spectral response
calibration and robust sine wave fitting (Lahuis & van Dishoeck 2000).
The spectra have been rebinned to an effective spectral resolution of
m. The S/N ratio on the continuum
is typically 50-100 in the final spectra.
The
ro-vibrational band of gas-phase CO2 has been detected
toward the sources AFGL 2136, AFGL 2591, AFGL 4176, MonR2 IRS3, NGC 7538 IRS1,
NGC 7538 IRS9, W 33 A, and W 3 IRS5.
The spectra of AFGL 2136, AFGL 2591, AFGL 4176, and NGC 7538 IRS9
have been analysed previously by van Dishoeck et al. (1996).
The reduced spectra presented here are however of much higher quality.
Both the instrument calibration and the reduction routines
within the ISO-SWS pipeline as well as the SWS Interactive Analysis have
improved significantly since 1996.
In addition for AFGL 2136, AFGL 2591, and AFGL 4176,
the spectra of multiple independent observations of the same source have
been combined, leading to an additional increase in the final S/N ratio.
An example of the resulting spectra is shown in Fig. 1 together with a fit to the CO2 ice band, using an ice mixture similar to that found by Gerakines et al. (1999). Although the laboratory ice fit follows the solid-state feature quite well, it shows some small deficiencies, which could be due to the presence of other solid-state features that are not accounted for in the ice fit. Therefore the final spectra have been divided by a manual fit to the CO2 ice band, resulting in the normalised spectra presented in Fig. 2. Different fits to the continuum have been made to investigate their effect on the shape and depth of the gas-phase CO2 band and these have been taken into account in the analysis of the spectra.
The modeling of the spectra has been performed by computing synthetic spectra
using the method described in Lahuis & van Dishoeck (2000).
In this method, the source is assumed to be a homogeneous sphere with a
single temperature
and column density N. Here it is assumed that only absorption
takes place and that emission can be neglected. The effects of adopting a
non-homogeneous source and including emission are discussed
in Sect. 4.
The models are not sensitive to the CO2
line width as long as the lines are not saturated,
which becomes important only for
km s-1.
A mean Doppler b-value of 3 km s-1 is adopted (see also Boonman
et al. 2003),
but values up to b=10 km s-1 have been explored. Similar values
are used in the modeling of other observed ro-vibrational absorption lines
in the same wavelength region toward these sources (e.g. Lahuis & van
Dishoeck 2000; Keane et al. 2001a). For comparison,
Mitchell et al.
(1990) derive line widths of
-7 km s-1
from high-resolution observations of the
CO ro-vibrational band around 4.7
m.
The resulting synthetic spectra have been convolved to the nominal spectral
resolution of the ISO-SWS spectra
for comparison with the data.
![]() |
Figure 3:
The strength of the CO2
(02
![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 4:
Example of a good fitting model for the observed CO2
spectrum
toward AFGL 2136, using the best fit parameters from
Table 2 (dashed line). The dotted line shows the
contribution of the (02
![]() ![]() |
Open with DEXTER |
![]() |
Figure 5:
Example of the ![]() ![]() ![]() ![]() |
Open with DEXTER |
The molecular line data have been taken from the HITRAN 2000 database
(http://www.hitran.com).
The model includes the fundamental
(01
0) band at 14.983
m,
the hotbands (02
0) and (02
0)
at 14.976 and 16.18
m respectively, and
the (10
0) band at 13.87
m.
The (02
0) and (10
0) bands
are not detected. The (02
0) hotband coincides
with the fundamental Q-branch, making it difficult to detect.
Figure 3 shows the
shape and strength of the CO2 fundamental and the
(02
0) hotband for different
excitation temperatures. This shows that for
K
the (02
0) hotband starts to play a role.
This hotband was not included in the
previous modeling of the CO2 spectra by van Dishoeck et al.
(1996).
The best fit to the data has been
determined using the reduced
-method.
Since the P-branches of the C2H2
and HCN
ro-vibrational bands extend into the region of the CO2
band,
these bands are included in the modeling, using the best fit parameters
from Lahuis & van Dishoeck (2000). For all sources, their
contribution is less than the noise level, but they are included for
consistency.
The best fitting model parameters are listed in Table 2
for all sources.
The uncertainty in the excitation temperature includes
errors due to different continuum fits.
The results show that warm CO2 gas at K is detected toward
half of the sources and suggest that for the hottest
sources, AFGL 2591, AFGL 2136,
and AFGL 4176, also the (02
0) hotband contributes.
The gas-phase 13CO2 band near 15.4
m is not detected
in our sources.
A good fitting CO2 model is presented in Fig. 4.
Figure 5 shows an example of
contours
for the source AFGL 2136.
It illustrates that the
column density of the gas-phase CO2 is well
constrained, but that the excitation temperature shows a larger spread.
Comparison of our results for AFGL 2136 to those by
Sandford et al. (2001) shows a lower
excitation temperature than their
of 580 K.
Also, their column density in the 580 K gas is more than an order of
magnitude higher than that found here.
This discrepancy is likely caused by the low signal-to-noise in the
spectrum presented by Sandford et al. (2001), which is
also hampered by the presence of instrumental fringes. These fringes are
carefully removed in our spectra. In addition, our AFGL 2136 spectrum
shows
the detection of a few
P- and R-branch lines
(Fig. 4), which poses an extra constraint on the
excitation temperature and column density. The fact that the CO2
ice fit shown in
Fig. 1 does not match the observed continuum very well
between 14.6 and 14.8
m introduces an uncertainty of
100 K in
the excitation temperature, which is accounted for in the results in
Table 2.
Therefore, the newly reduced spectra presented here allow a more reliable
estimate of the excitation temperature and column density of the CO2
ro-vibrational band.
Figure 6 presents a comparison of the CO2 excitation
temperature
(CO2) and that of C2H2,
a good tracer of the warm gas (Lahuis & van Dishoeck 2000).
It is seen that
(CO2) increases with
(C2H2), indicating that CO2 also traces warm gas.
However, the increase is not as strong as for C2H2
(Fig. 6).
Note that for NGC 7538 IRS1 a C2H2 excitation temperature
of
500 K is found from a new, updated reduction of the spectra,
much lower than the
(C2H2)=800 K listed in Lahuis &
van Dishoeck (2000).
![]() |
Figure 6:
Correlation between the CO2 excitation
temperature
![]() ![]() |
Open with DEXTER |
![]() |
Figure 7:
The CO2 gas-phase abundances from
Table 2 (left panel)
and the CO2 ice abundances from Gerakines et al. (1999) (right panel) versus
![]() ![]() |
Open with DEXTER |
The CO2 column densities have been
converted into abundances, using the total H2 column densities
(cold + warm components) derived from infrared observations
of 13CO (e.g. Mitchell et al. 1990).
A 12CO/13CO
ratio of 60 and a 12CO/H2 ratio of
have been assumed (Lahuis & van Dishoeck 2000;
Lacy et al. 1994).
Typical derived CO2 abundances are a few
10-7
(Table 2).
The inferred abundances do not show a clear trend with temperature
(Fig. 7).
Using the H2 column densities in the warm gas only increases
the gas-phase CO2 abundance by a factor of
2 for most sources,
but does not change the lack of a trend with temperature.
The abundances differ by less than a factor of
4 between
the sources, except for G 333.3-0.4 (Fig. 7).
However, for G 333.3-0.4 the H2 column density is determined from
the C17O J=2-1 submillimeter transition, resulting in an upper limit
on the H2 column density, and consequently a rather uncertain
CO2 abundance.
The derived CO2 abundances for AFGL 2591, AFGL 2136, and AFGL 4176
are a factor of 2.5-4 higher than the tentative values from
van Dishoeck et al. (1996). For NGC 7538 IRS9 the
tentative value falls within the error bars of the CO2 abundance derived
here.
The inferred CO2 abundances agree well with the abundance range
found toward Orion IRc2/BN (Table 2).
![]() |
Figure 8:
Gas/solid ratio for CO2 versus
![]() ![]() |
Open with DEXTER |
Gas/solid ratios can be determined by
combining the derived gas-phase CO2
column densities with those for CO2 ice for the same sources
from Gerakines et al. (1999) (see Fig. 7).
This ratio increases
with temperature, consistent with the location of CO2 in the warm
inner part of the envelope, above the evaporation temperature
(Fig. 8).
However, the increase is less strong and the ratios are lower
than for H2O,
although pure CO2 ice is more volatile than H2O
(Fig. 8;
Boonman & van Dishoeck 2003). This is probably due to the fact
that toward our sources CO2 ice is mostly embedded in a H2O ice matrix
and that its column density is only 10-23% of that of H2O ice
(Gerakines et al. 1999).
In addition, gas-phase H2O abundances of up to 10-4 are
easily formed above T>230-300 K, thus rapidly increasing the
H2O gas/solid ratios (Charnley 1997).
In this section, the effect of possible emission along the line of sight
on the derived CO2 column densities and abundances is investigated.
To this purpose a similar excitation model as that described in
Boonman et al. (2003) has been set-up. This excitation model
includes energy
levels for CO2 up to J=40 in both the
and 1 vibrational states.
The level populations
are calculated adopting a Boltzmann distribution using
from Table 2. As a central radiation
source, a blackbody with
T=300 to 600 K has been explored.
Adopting a homogeneous source as before, but including both absorption and
emission along the
line of sight, shows that the CO2 column densities needed to match the
observations are up to 30% higher than those listed in
Table 2
as long as the excitation temperature is less than
250-300 K.
This is within the listed error bars.
The emission only becomes important for
-300 K, i.e.
for the sources W 3 IRS5, AFGL 2136, AFGL 4176, NGC 7538 IRS1, and AFGL 2591
(see also Boonman et al. 2003). For these sources, the CO2
column density
that best matches the observations can be up to a factor of
3 higher
than that derived from the pure absorption models (Table 2).
Note that this model does not include other radiative
transfer effects, such as infrared pumping,
nor does it include temperature and density gradients,
so that the derived CO2 abundances within this model
are not very accurate.
Van der Tak et al. (2000b) show that a density and temperature
gradient is present
in their sample of deeply embedded massive young stars, which is a sub-set of
the sample studied here.
Since radiative transfer effects are expected to be largest for the
warmer sources, AFGL 2591 is taken as a test case.
Adopting the physical model for AFGL 2591 derived by
van der Tak et al. (2000b), the level populations and
radiative transfer are calculated
with the Monte Carlo code of Hogerheijde & van der Tak
(2000) on a grid of concentric shells, assuming
spherical geometry.
The calculations include energy levels up to J=40 in both the
and
states, the same as in the excitation model
described in Sect. 4.1.
The collisional rate coefficients used are taken from Allen
et al. (1980).
Radiative excitation through the 15
m band due to
warm dust mixed with the gas is included, using grain opacities from
Ossenkopf & Henning (1994) and assuming
.
No external radiation field apart from the 2.73 K cosmic background
radiation was applied. The resulting level populations are used in the
excitation model described above to calculate a synthetic model spectrum
including both emission and absorption along the line of sight.
As a central radiation
source a blackbody at
in the innermost
shell is chosen.
The resulting model spectrum is then compared with the observed
absorption spectrum.
![]() |
Figure 9:
Results from the detailed radiative transfer models including
temperature and density gradients (see Sect. 4.2).
The solid line shows the data, the dashed line the model spectrum.
a) Model spectrum for AFGL 2591 using a constant CO2
abundance of n(CO2)/n(H
![]() ![]() ![]() ![]() |
Open with DEXTER |
For AFGL 2591 it is found that a constant CO2 abundance
x(CO2)=n(CO2)/n(H2)
throughout the envelope
produces a synthetic spectrum with a Q-branch that is too narrow
compared to the observations (Fig. 9).
This indicates that the constant abundance
model is dominated
by absorption from gas at T<300 K. Therefore a model with a jump in
the abundance at T=300 K
has been tried.
It is found that a model spectrum with a CO2 abundance
of 1-
for T>300 K and 10-8 for T<300 K
can reasonably explain the observed spectrum (Fig. 9).
Applying a jump
at lower temperatures, e.g. at T=200 K or T=100 K produces a
Q-branch that is too narrow.
This indicates that the observed Q-branch represents warm CO2 gas from
the inner part of the molecular envelope at
K, in agreement with
that inferred from the pure absorption models.
It also shows that the CO2 abundance in the outer envelope is much lower,
about two orders of magnitude.
Similar jumps in the abundance have been seen for other molecules
toward AFGL 2591, such as
HCN, H2O, and SO2
(Boonman et al. 2001; Boonman & van Dishoeck 2003;
Keane et al. 2001a; van der Tak et al. 2003).
Similarly one of the colder sources,
NGC 7538 IRS9, is modeled for comparison using the physical
model derived by van der Tak et al. (2000b).
It is found that a constant CO2 abundance of
can reproduce the observed spectrum.
A model with a jump in the abundance at T=100 K and
x(CO
for T > 100 K and x(CO
for T < 100 K gives a similarly good fit in terms of
.
This indicates that for NGC 7538 IRS9 no evidence for
a jump in the abundance at temperatures
K is found.
The result that a jump in the abundance at T = 100 K fits the observed
spectrum equally well as
the constant abundance model may suggest that most of the CO2
is frozen-out onto the grains below this temperature.
The corresponding CO2 column densities for the best fit models
for AFGL 2591 and NGC 7538 IRS9 are
a factor of 2-4 and
1.5-2 higher
than those listed in Table 2 respectively.
On the other hand, the abundance toward NGC 7538 IRS9 is somewhat lower
than that derived from the pure absorption models (Table 2).
The above results indicate that a jump in the CO2 abundance is present for the warmer, more evolved sources, but that no such jump is seen toward the colder objects. This suggests that also for AFGL 2136, AFGL 4176, and NGC 7538 IRS1 a jump in the CO2 abundance is present.
Observations of the intermediate-mass protostars AFGL 490 and AFGL 7009S
show CO2 abundances of a few 10-7, similar to those
derived from the pure absorption models in Sect. 3.2
(Schreyer et al. 2002; Dartois et al. 1998).
These CO2 abundances do not
show a clear trend with temperature (Fig. 7).
However the results from the detailed radiative
transfer models
indicate much higher CO2 abundances in the warm inner part of the envelope
for the more evolved sources. Combined with the somewhat lower
CO2 abundance toward the cold source NGC 7538 IRS9, this
suggests that the CO2 abundance increases with
temperature and evolutionary state.
In Sect. 3 it is shown that
(CO2)
increases with
(C2H2), indicating that it is a tracer
of the warm gas. The gas/solid ratio also increases with the
temperature of the warm gas and the CO2 ice abundance decreases
(Figs. 7 and 8).
The higher ratios for the warmer
sources suggest that they are in a later evolutionary stage than
the sources with low gas/solid ratios,
with the higher temperatures due to dispersion
of a larger fraction of the molecular envelope (van der Tak et al.
2000b; van Dishoeck & van der Tak 2000).
Although the abundances derived from the pure absorption models do not show a clear trend with temperature, the results from the jump models in Sect. 4.2 suggest that the CO2 abundance increases with temperature. In addition, the same sources with a high CO2 excitation temperature and correspondingly a higher gas/solid ratio also show evidence for thermal processing of 13CO2 and CO2 ice (Boogert et al. 2000; Gerakines et al. 1999). Together, this shows that CO2 can be used as an evolutionary tracer.
Envelope models by Doty et al. (2002)
predict gas-phase CO2 abundances
of a 10-7-10-6 at
K for
-105 yrs.
This indicates that pure gas-phase chemistry can explain the observed
abundances toward the colder sources, such as NGC 7538 IRS9, that show no
evidence for a jump in the abundance for
K
(Sect. 4.2).
In the colder sources, the high CO2 ice abundances and low gas/solid ratios indicate that a large fraction of the envelope still contains cold material. This suggests that the observed gas-phase CO2 absorption is dominated by the colder outer envelope where evaporation has not yet taken place. However, these sources may still hide a small region in the inner envelope containing hot, abundant gas-phase CO2, which cannot be detected with the present observations, e.g. due to continuum optical depth effects.
The high inferred gas-phase CO2 abundance in the
inner envelope of AFGL 2591 for T>300 K but lack of a jump
at K in Sect. 4.2
is unexpected.
Such a jump is observed for simple ice constituents
such as H2O and CH3OH in
hot-core type objects (e.g. van der Tak et al. 2000a;
Maret et al. 2002), which is
due to evaporation of H2O-rich ices
around
-110 K (Fraser et al. 2001).
Since most of the CO2 ice
is embedded in H2O ice, it will evaporate
around the same temperature (Fig. 10).
The high gas/solid ratio and low
CO2 ice abundance of
(Gerakines et al. 1999) toward AFGL 2591
indicate that evaporation of CO2 ice does occur (see also
Fig. 7, right panel).
The lack of a jump around 100 K then indicates that CO2
must be rapidly destroyed in the gas phase after
evaporation in the
-300 K zone.
At T > 300 K, either the CO2 is only
partially destroyed or it has quickly reformed in the gas-phase.
Second, the CO2 solid-state abundances toward the cold sources with little or no ice evaporation are an order of magnitude higher than the gas-phase CO2 abundance in the inner hot envelope of AFGL 2591 (Fig. 7). This suggests that CO2 is originally formed on grain surfaces, and not simply due to freeze-out of CO2 gas. The discrepancy between the observed gas-phase and solid-state CO2 abundances provides further evidence for rapid destruction of CO2 in the gas-phase after evaporation from the grains. Charnley & Kaufman (2000) propose that shocks can be responsible for this.
A study of the Orion shocked regions Peak 1 and 2 shows gas-phase
CO2 abundances of 0.3-
,
which are best
explained by destruction of the CO2 in a shock containing a high
H/H2 ratio of
0.01, and subsequent reformation in the gas-phase
(Boonman et al. 2003). A similar abundance of
10-8
is found in
the envelope of AFGL 2591 for T < 300 K in Sect. 4.2.
This suggests that the outflow may have (partially) destroyed the CO2
in the envelope of AFGL 2591 in the past, and that it has not yet been
reformed. However, such a shock model cannot explain
the high abundance in the inner envelope at T > 300 K,
unless destruction is much less efficient in the densest inner part
due to e.g. a lower H/H2 ratio.
Doty et al. (2002) propose that a heating event can also destroy
CO2 through the reaction
CO
O. Recent calculations
by Talbi & Herbst (2002) however show that this reaction
is not likely to play a dominant role in the interstellar medium.
![]() |
Figure 10:
Gas-phase CO2 abundances in the envelope of AFGL 2591
for chemical ages of
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
The primary formation route of CO2 in the gas-phase is through the
reaction
which proceeds rapidly
at
K (Charnley 1997). Above
-300 K most of
the OH is driven into H2O, thus reducing the formation of CO2
through gas-phase reactions.
This formation route predicts gas-phase CO2 abundances
of
10-6 at T=100 K to a few
10-7 at
T=300 K (Charnley 1997).
This is much lower than the inferred CO2 abundance
of 1-
for T>300 K toward AFGL 2591.
On the other hand, gas-phase CO2 can also be formed through
the reaction of
O, but this reaction
has an energy barrier of
K, preventing
production of significant CO2 in the molecular envelope.
Alternatively, the UV flux from the protostar
may be high enough in the inner envelope to produce OH through
direct photodissociation of H2O.
This could maintain sufficient OH in the gas-phase to form
abundant gas-phase CO2 in the interior at K.
However, photodissociation is estimated to play a role only
up to
cm from the central source, much smaller than the
inner radius of the physical model used in Sect. 4.2.
Doty et al. (2002) suggest that
cosmic-ray or X-ray ionization can also produce significant OH, which
is then channelled into CO2.
Using the chemical model from Doty et al. (2002) for
AFGL 2591 and adopting
a zero initial gas-phase CO2 abundance corresponding to
the destruction of CO2 by a shock,
indeed predicts enhanced CO2 abundances of
10-6-10-5 in the interior for T>200 K
if a high ionization rate of
s-1 is adopted
(Fig. 10).
This illustrates that a high ionization rate
in the inner envelope can produce a jump in the CO2 abundance at
temperatures larger than 100 K as found for AFGL 2591.
This model adopts an artificially low cosmic-ray ionization rate of
s-1 in the outer envelope,
predicting gas-phase CO2 abundances of
10-8 for
K, consistent
with that found in Sect. 4.2. Adopting
s-1
as derived by van der Tak & van
Dishoeck (2000) from HCO+ observations
results in much higher abundances
of
10-6-10-5 for
-200 K
and
10-7 for T < 100 K, somewhat higher than
that found for AFGL 2591.
However, freeze-out of CO2 onto the grains is likely to
play a role for T < 100 K, which is not included in the model.
Doty et al. (2002) note that the
ionization rate needs to be at least
on the order of
s-1
in the interior, in order to account for the high gas-phase HCN abundances
for
K. This is consistent with our proposed chemical scenario of
a high ionization rate in the inner envelope, explaining the jump in
the CO2 abundance for
K.
Although the production of CO2 through X-ray ionization involves
destruction of gas-phase H2O and CO, the predicted enhanced
CO2 abundances in Fig. 10 are
10% of those
predicted for H2O and CO. In addition, abundant gas-phase
H2O and CO are observed in the warm inner envelope from infrared
absorption (e.g. Boonman et al. 2000;
Mitchell et al. 1990), suggesting that
these molecules are not significantly affected by X-rays.
Since the cosmic-ray ionization rate is expected to be roughly constant
or potentially decreases inward within the molecular envelope, the enhanced
ionization rate in the warm interior seems more likely caused by X-rays
from the young star than
cosmic rays from outside the molecular envelope.
Using the photoionization cross section from Wilms et al. (2000),
it is estimated that X-rays of a few keV can affect the chemistry
up to radii at
which
K in the envelopes of massive protostars.
Recently, X-ray emission within this energy range
has been detected toward MonR2 IRS3, one of our
warm sources, further suggesting that X-ray ionization may be important for
the CO2 chemistry in the inner envelope of massive young stars
(Preibisch et al. 2002; Kohno et al. 2002).
Another possibility is that gas-phase CO2 in the interior results
from ice evaporation at K in the past, and
is subsequently heated as the protostar
evolves to higher
temperatures at the same point in the envelope, without being destroyed.
However, material initially at T< 100 K will
consequently be heated to T> 100 K,
where ice evaporation occurs almost instantaneously
(Fraser et al. 2001).
This predicts
gas-phase CO2 abundances of
10-6-10-5 between 100
and 300 K, contrary to the inferred abundance of
10-8.
A second scenario to consider would be the dynamical transport of gas-phase CO2 formed between 100 and 300 K inward to the T > 300 K region, e.g. through infall motions. In this case, however, the CO2-ice containing material at T < 100 K would be transported inward to the T = 100-300 K region. At this point, the CO2 ice would evaporate immediately, thus maintaining a large gas-phase CO2 abundance for T = 100-300 K.
At present, a combination of the destruction of CO2 by a past shock in the outflow, and either a high X-ray ionization rate in the interior which rapidly reforms gas-phase CO2 for T> 300 K or incomplete destruction of evaporated CO2 for T> 300 K, seems the most likely explanation for the inferred jump in the gas-phase CO2 abundance for T> 300 K toward AFGL 2591. As noted by Doty et al. (2002), more experimental work on the chemistry of gas-phase CO2 is needed to obtain a better knowledge of the formation and/or destruction pathways of gas-phase CO2 in the envelopes of massive protostars.
The main conclusions of this work are:
Acknowledgements
This work was supported by the NWO grant 614-41-003, a Spinoza grant, and a grant from the Research Corporation (SDD). The authors would like to thank W. Schutte for providing the CO2 ice column density toward MonR2 IRS3 and X. Tielens for useful comments.