next previous
Up: Structure of the DM


Appendix

In Dutrey et al. (1994), we use the following parametrizations for the physical laws in the type 0 model:
Kinetic temperature:

 
$\displaystyle T_k = T_{\rm o} (r/r_{\rm o})^{-q}.$     (A.1)

Velocity:
 
$\displaystyle v(r) = v_{\rm o} (r/r_{\rm o})^{-v},{\rm Keplerian~case{:}\ } v = 0.5.$     (A.2)

Surface density:
$\displaystyle \Sigma(r) = \Sigma_{\rm o} (r/r_{\rm o})^{-p}.$     (A.3)

Volume density:
                   n(r) = $\displaystyle \frac{\Sigma(r)}{\sqrt{\pi} \cdot H(r)}$ (A.4)
  = $\displaystyle n_{\rm o} (r/r_{\rm o})^{-s}$ (A.5)
s = h + p = 1 + v +p - q/2 (A.6)
n(r,z) = $\displaystyle n(r) {\rm e}^{-(\frac{z}{H(r)})^2}.$ (A.7)

Hydrostatic scale height:
               H(r) = $\displaystyle \sqrt{\frac{2k r^3 T_k(r)}{G M_* m_{\rm o}}}$ (A.8)
  = $\displaystyle \sqrt{\frac{2k}{m_{\rm o}}} \frac{r}{v(r)} \sqrt{T_k(r)}$ (A.9)
  = $\displaystyle H_{\rm o} (r/r_{\rm o})^h$ (A.10)
h = 1 + v -q/2. (A.11)

This also implies that $H(r) = \sqrt{2}C_{\rm s}/\Omega$ (where $C_{\rm s}$ is the sound speed). G, M* and $m_{\rm o}$ are the gravitational constant, the stellar mass and the mean molecular weight, respectively.

For the $m_{\rm o}$, we take the value of $2 \times 1.3 m_{\rm H}$ where $m_{\rm H}$is the hydrogen mass (Beckwith & Sargent 1993).

Note that other groups (in particular those working on theoretical dust disk modelling) usually use the following definition for $H(r) =
C_{\rm s}/\Omega$, which leads to:

\begin{displaymath}n(r,z) = n_{\rm o} {\rm e}^{-(\frac{z}{2 H(r)})^2}.
\end{displaymath}

This is the case for the definition of H given in Chiang & Goldreich (1997) and d'Alessio et al. (1998). Therefore, comparing both scale heights imply that "our H'' is $\sqrt{2}$ larger. Note that the scale heights presented for comparison in the Fig. 9 take into account this factor.


next previous
Up: Structure of the DM

Copyright ESO 2003