next previous
Up: On the detectability of


Appendix A: Partial derivatives for the Levenberg-Marquardt algorithm

As it was mentioned in Sect. 3, the following eight parameters can be adjusted in our non-linear Levenberg-Marquardt code: c0, P, $A\equiv a_{12}\sin{i'}/c$, e', $\omega'$, l'0, i', $D\equiv\Omega'-\Omega$. Here we list the analytical form of the partial derivatives of the Fourier-coefficients with respect to these parameters. The ak, bk symbols refer to the coefficients of the geometrical light-time effect, while a*k, b*k denote the dynamical terms. (We note that in the following: $A_k\equiv a_k+a^*_k$, $B_k\equiv b_k+b^*_k$.)

                                        $\displaystyle \frac{\partial{A_k}}{\partial A}=\frac{a_k}{A}+3\frac{M_{12}}{M_{123}+M_{12}}\frac{a^*_k}{A},$ (A.1)
    $\displaystyle \frac{\partial{B_k}}{\partial A}=\frac{b_k}{A}+3\frac{M_{12}}{M_{123}+M_{12}}\frac{b^*_k}{A},$ (A.2)
    $\displaystyle \frac{\partial{A_1}}{\partial{e'}}=-A\frac{e'}{2}\left[\frac{3}{2}\cos\left(l'_0+\omega'\right)+\cos\omega'\cos{l'_0}\right]+\frac{a^*_1}{e'},$ (A.3)
    $\displaystyle \frac{\partial{B_1}}{\partial{e'}}=-A\frac{e'}{2}\left[\frac{3}{2}\sin\left(l'_0+\omega'\right)+\cos\omega'\sin{l'_0}\right]+\frac{b^*_1}{e'},$ (A.4)
    $\displaystyle \frac{\partial{A_2}}{\partial{e'}}=\frac{a_2}{e'},$ (A.5)
    $\displaystyle \frac{\partial{B_2}}{\partial{e'}}=\frac{b_2}{e'},$ (A.6)
    $\displaystyle \frac{\partial{A_3}}{\partial{e'}}=\frac{2a_3+a^*_3}{e'},$ (A.7)
    $\displaystyle \frac{\partial{B_3}}{\partial{e'}}=\frac{2b_3+b^*_3}{e'},$ (A.8)
    $\displaystyle \frac{\partial a_1}{\partial\omega'}=A\left[\left(A.1-\frac{3e'^2}{8}\right)\sin\left(l'_0+\omega'\right)-\frac{e'^2}{4}\sin\omega'\cos{l'_0}\right],$ (A.9)
    $\displaystyle \frac{\partial b_1}{\partial\omega'}=-A\left[\left(A.1-\frac{3e'^2}...
...right)\cos\left(l'_0+\omega'\right)+\frac{e'^2}{4}\sin\omega'\sin{l'_0}\right],$ (A.10)
    $\displaystyle \frac{\partial a^*_1}{\partial\omega'}=-2A^*e'\left[{\cal{C}}\cos\left(l'_0+2\omega'\right)+{\cal{S}}\sin\left(l'_0+2\omega'\right)\right],$ (A.11)
    $\displaystyle \frac{\partial b^*_1}{\partial\omega'}=2A^*e'\left[{\cal{S}}\cos\left(l'_0+2\omega'\right)-{\cal{C}}\sin\left(l'_0+2\omega'\right)\right],$ (A.12)
    $\displaystyle \frac{\partial A_2}{\partial\omega'}=-\left(b_2+2b^*_2\right),$ (A.13)
    $\displaystyle \frac{\partial B_2}{\partial\omega'}=a_2+2a^*_2,$ (A.14)
    $\displaystyle \frac{\partial A_3}{\partial\omega'}=-\left(b_3+2b^*_3\right),$ (A.15)
    $\displaystyle \frac{\partial B_3}{\partial\omega'}=a_3+2a^*_3,$ (A.16)
    $\displaystyle \frac{\partial A_k}{\partial l'_0}=-k\left(b_k+b^*_k\right),$ (A.17)
    $\displaystyle \frac{\partial B_k}{\partial l'_0}=k\left(a_k+a^*_k\right),$ (A.18)
    $\displaystyle \frac{\partial A_1}{\partial i'}=-3\frac{M_{12}}{M_{123}+2M_{12}}a^*_1\cot{i'}$  
    $\displaystyle \qquad\quad +A^*e'\sin2i_{\rm m}\big\{\cos{u'_{\rm m}}\left[6\cos{l'_0}+\cos\left(l'_0+2\omega'\right)\right]$  
    $\displaystyle \qquad\quad +\sin{u'_{\rm m}}\sin\left(l'_0+2\omega'\right)\big\},$ (A.19)
    $\displaystyle \frac{\partial B_1}{\partial i'}=-3\frac{M_{12}}{M_{123}+2M_{12}}b^*_1\cot{i'}$  
    $\displaystyle \qquad\quad +A^*e'\sin2i_{\rm m}\big\{\cos{u'_{\rm m}}\left[6\sin{l'_0}+\sin\left(l'_0+2\omega'\right)\right]$  
    $\displaystyle \qquad\quad -\sin{u'_{\rm m}}\cos\left(l'_0+2\omega'\right)\big\},$ (A.20)
    $\displaystyle \frac{\partial A_2}{\partial i'}=-3\frac{M_{12}}{M_{123}+2M_{12}}a^*_2\cot{i'}$  
    $\displaystyle \qquad\quad -A^*\sin2i_{\rm m}\big[\cos{u'_{\rm m}}\cos2\left(l'_0+\omega'\right)$  
    $\displaystyle \qquad\quad +\sin{u'_{\rm m}}\sin2\left(l'_0+\omega'\right)\big],$ (A.21)
    $\displaystyle \frac{\partial B_2}{\partial i'}=-3\frac{M_{12}}{M_{123}+2M_{12}}b^*_2\cot{i'}$  
    $\displaystyle \qquad\quad -A^*\sin2i_{\rm m}\big[\cos{u'_{\rm m}}\sin2\left(l'_0+\omega'\right)$  
    $\displaystyle \qquad\quad -\sin{u'_{\rm m}}\cos2\left(l'_0+\omega'\right)\big],$ (A.22)
    $\displaystyle \frac{\partial A_3}{\partial i'}=-3\frac{M_{12}}{M_{123}+2M_{12}}a^*_3\cot{i'}$  
    $\displaystyle \qquad\quad -A^*\frac{7e'}{3}\sin2i_{\rm m}\big[\cos{u'_{\rm m}}\cos\left(A.3l'_0+2\omega'\right)$  
    $\displaystyle \qquad\quad +\sin{u'_{\rm m}}\sin\left(3l'_0+2\omega'\right)\big],$ (A.23)
    $\displaystyle \frac{\partial B_3}{\partial i'}=-3\frac{M_{12}}{M_{123}+2M_{12}}b^*_3\cot{i'}$  
    $\displaystyle \qquad\quad -A^*\frac{7e'}{3}\sin2i_{\rm m}\big[\cos{u'_{\rm m}}\sin\left(3l'_0+2\omega'\right)$  
    $\displaystyle \qquad\quad -\sin{u'_{\rm m}}\cos\left(3l'_0+2\omega'\right)\big],$ (A.24)
       
    $\displaystyle \frac{\partial A_1}{\partial D}=2A^*e'\big\{I_1\left[6\cos{l'_0}-\cos\left(l'_0+2\omega'\right)\right]-I_2\sin\left(l'_0+2\omega'\right)$  
    $\displaystyle \qquad\quad -\cos{i'}\left[{\cal{C}}\cos\left(l'_0+2\omega'\right)+{\cal{S}}\sin\left(l'_0+2\omega'\right)\right]\big\},$ (A.25)
    $\displaystyle \frac{\partial B_1}{\partial D}=2A^*e'\big\{I_1\left[6\sin{l'_0}-\sin\left(l'_0+2\omega'\right)\right]+I_2\cos\left(l'_0+2\omega'\right)$  
    $\displaystyle \qquad\quad -\cos{i'}\left[{\cal{C}}\sin\left(l'_0+2\omega'\right)-{\cal{S}}\cos\left(l'_0+2\omega'\right)\right]\big\},$ (A.26)
    $\displaystyle \frac{\partial A_2}{\partial D}=2b^*_2\cos{i'}+2A^*\left[I_1\cos2\left(l'_0+\omega'\right)+I_2\sin2\left(l'_0+\omega'\right)\right],$  
      (A.27)
    $\displaystyle \frac{\partial B_2}{\partial D}=-2a^*_2\cos{i'}+2A^*\left[I_1\sin2\left(l'_0+\omega'\right)-I_2\cos2\left(l'_0+\omega'\right)\right],$  
      (A.28)
    $\displaystyle \frac{\partial A_3}{\partial D}=2b^*_3\cos{i'}+A^*\frac{14e'}{3}\big[I_1\cos\left(3l'_0+2\omega'\right)$  
    $\displaystyle \qquad\quad +I_2\sin\left(3l'_0+2\omega'\right)\big],$ (A.29)
    $\displaystyle \frac{\partial B_3}{\partial D}=-2a^*_3\cos{i'}+A^*\frac{14e'}{3}\big[I_1\sin\left(3l'_0+2\omega'\right)$  
    $\displaystyle \qquad\quad -I_2\cos\left(3l'_0+2\omega'\right)\big],$ (A.30)

where
                            $\displaystyle I_1=-I\sin{i'}\sin{i_{\rm m}}\sin{u'_{\rm m}},$ (A.31)
    $\displaystyle I_2=I\sin{i'}\sin{i_{\rm m}}\cos{u'_{\rm m}}.$ (A.32)

Acknowledgements
We thank Dr. László Szabados and Mr. Szilárd Csizmadia for their comments on the manuscript, as well as Mrs. Rita Borkovits-József and Mr. Imre Barna Bíró for the linguistic corrections. This research has made use of NASA's Astrophysics Data System Bibliographic Services.


next previous
Up: On the detectability of

Copyright ESO 2003