next previous
Up: Statistical properties of exoplanets


Subsections

   
2 Observations and spectroscopic analysis

2.1 Observations and data reduction

High resolution spectra for more than 50 planet hosts stars were obtained during several runs using 6 different spectrographs. The general characteristics of these instruments are presented in Table 1.


 

 
Table 1: Spectrographs used for the current study and their spectral coverage and resolution.
Spectrograph/Telescope Resolution Coverage
  ($\lambda$/ $\Delta\lambda$) (Å)
CORALIE/1.2-m Euler Swiss 50 000 3 800-6 800
FEROS/1.52-m ESO 48 000 3 600-9 200
UES/4-m William Hershel 55 000 4 600-7 800
SARG/3.5-m TNG 57 000 5 100-10 100
UVES/VLT 8-m Kueyen UT2 110 000 4 800-6 800
ELODIE/1.93-m OHP 48 000 3 800-6 800


The spectra have in general a S/N ratio between 150 and 400, but are as high as 1000 for the UVES spectra. Except for the UES spectra, all the others cover very well all the spectral domain without any significant gaps, permitting us to measure the Equivalent Widths for most of the spectral lines used (see Santos et al. (2000) - hereafter Paper I - and Paper II). But even in this case, the gaps did not imply any strong limitations, since the available lines still have a wide variety of equivalent widths and lower excitation potentials, essential to the precise determination of the stellar parameters (see next section).


 

 
Table 2: Stellar parameters derived in the current study. $\xi _t$ denotes the microturbulence parameters. For a list of the planet discovery papers see tables at http://obswww.unige.ch/exoplanets/ and http://cfa-www.harvard.edu/planets/. A more complete table with the number of Fe I and Fe II lines used and the dispersions will be available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/363
Star $T_{{\rm eff}}$ $\log{g}$ $\xi _t$ [Fe/H] Inst. $M_\star^{\dag\dag\dag }$ Star $T_{{\rm eff}}$ $\log{g}$ $\xi _t$ [Fe/H] Inst. $M_\star^{\dag\dag\dag }$
  (K) (cgs) (km s-1)   (a) ($M_{\odot}$)   (K) (cgs) (km s-1)   (a) ($M_{\odot}$)
HD 142 6290 4.38 1.91 0.11 [2] 1.26 HD 117176 5530 4.05 1.08 -0.05 [4] 0.92
HD 2039 5990 4.56 1.24 0.34 [1] 1.20 HD 128311 4950 4.80 1.00 0.10 [3] 0.76
HD 4203 5650 4.38 1.15 0.40 [2] 0.93 HD 130322 5430 4.62 0.92 0.06 [4] 1.04
HD 4208 5625 4.54 0.95 -0.23 [2] 0.86 HD 134987 5780 4.45 1.06 0.32 [4] 1.05
HD 8574 6080 4.41 1.25 0.05 [4] 1.17 HD 136118 6175 4.18 1.61 -0.06 [4] 1.28
HD 9826 6120 4.07 1.50 0.10 [4] 1.29 HD 137759 4750 3.15 1.78 0.09 [4] -
HD 10697 5665 4.18 1.19 0.14 [4] 1.22 HD 141937 5925 4.62 1.16 0.11 [3] $^{\dag\dag }$ 1.10
HD 12661 5715 4.49 1.09 0.36 [3] 1.05 HD 143761 5835 4.40 1.29 -0.21 [4] 0.95
HD 19994 6165 4.13 1.49 0.23 [1]$^\dag $ 1.34 HD 145675 5255 4.40 0.68 0.51 [4] 0.90
  6250 4.27 1.56 0.30 [2]$^\dag $ 1.35 HD 147513 5880 4.58 1.17 0.07 [1] 1.11
  6105 4.02 1.51 0.18 [5] 1.34 HD 150706 6000 4.62 1.16 0.01 [3] 1.21
(average) 6175 4.14 1.52 0.21   1.34 HD 160691 5820 4.44 1.23 0.33 [1] $^{\dag\dag }$ 1.10
HD 20367 6100 4.55 1.31 0.14 [6] 1.17 HD 168443 5600 4.30 1.18 0.06 [4] 0.96
HD 23079 5945 4.44 1.21 -0.11 [2] 1.00 HD 177830 4840 3.60 1.18 0.32 [4] 1.03
HD 23596 6125 4.29 1.32 0.32 [3] 1.30 HD 179949 6235 4.41 1.38 0.21 [1] $^{\dag\dag }$ 1.25
HD 27442 4890 3.89 1.24 0.42 [2] 0.83 HD 186427 5765 4.46 1.03 0.09 [4] 0.99
HD 30177 5590 4.45 1.07 0.39 [1] 1.00 HD 187123 5855 4.48 1.10 0.14 [4] 1.05
HD 33636 5990 4.68 1.22 -0.05 [2] 1.12 HD 190228 5360 4.02 1.12 -0.24 [3]$^\dag $ 0.84
HD 37124 5565 4.62 0.90 -0.37 [3] 0.76   5325 3.95 1.10 -0.23 [4] 0.82
HD 39091 5995 4.48 1.30 0.09 [1]$\dag $ 1.10 (average) 5340 3.99 1.11 -0.24   0.83
HD 46375 5315 4.54 1.11 0.21 [3] 0.83 HD 190360 5590 4.48 1.06 0.25 [3] 0.96
HD 50554 6050 4.59 1.19 0.02 [3] 1.11 HD 192263$^{\star}$ 4995 4.76 0.90 0.04 [2] 0.75
HD 74156 6105 4.40 1.36 0.15 [2] 1.27 HD 195019 5845 4.39 1.23 0.08 [4] 1.06
HD 75732A 5307 4.58 1.06 0.35 [3] 0.88   5832 4.34 1.24 0.09 [1] $^{\dag\dag }$ 1.05
HD 80606 5570 4.56 1.11 0.34 [3] 1.03 (average) 5840 4.36 1.24 0.08   1.06
HD 82943 6025 4.54 1.10 0.33 [1]$^\dag $ 1.15 HD 196050 5905 4.41 1.40 0.21 [1] 1.10
  6025 4.53 1.15 0.30 [5] 1.15 HD 209458 6120 4.56 1.37 0.02 [5] 1.15
(average) 6025 4.54 1.12 0.32   1.15 HD 210277 5575 4.44 1.12 0.23 [2]$^\dag $ 0.94
HD 92788 5820 4.60 1.12 0.34 [1] 1.10   5560 4.46 1.03 0.21 [4] 0.93
HD 95128 5925 4.45 1.24 0.05 [4] 1.05 (average) 5570 4.45 1.08 0.22   0.94
HD 106252 5890 4.40 1.06 -0.01 [1] $^{\dag\dag }$ 1.02 HD 213240 5975 4.32 1.30 0.16 [1] 1.22
HD 108874 5615 4.58 0.93 0.25 [3] 0.96 HD 216435 5905 4.16 1.26 0.22 [1] 1.26
HD 114386 4875 4.69 0.63 0.00 [1] 0.68 HD 216437 5875 4.38 1.30 0.25 [1] 1.06
HD 114729 5820 4.20 1.03 -0.26 [3] 0.94 HD 217014 5805 4.51 1.22 0.21 [2] 1.04
HD 114762 5870 4.25 1.28 -0.72 [5] 0.80 HD 222582 5850 4.58 1.06 0.06 [3] 1.02
HD 114783 5160 4.75 0.79 0.16 [4] 0.88              
a The instruments are [1] CORALIE, [2] FEROS, [3] UES, [4] SARG, [5] UVES, and [6] ELODIE.
$\dag $ Already published in Santos et al. (2001a) (Paper II).
$\dag\dag $ Already published in Santos et al. (2001b).
$\dag\dag\dag $ From the isochrones of Schaller et al. (1992), Schaerer et al. (1993) and Schaerer et al. (1992).
$\star$ The existence of a planet around HD192263 was recently put in cause by Henry et al. (2002); we think, however,
that these authors have not shown enough evidences against the presence of a planet, and thus we prefer to keep
this star in the planet-hosts sample (Santos et al., in preparation).


Data reduction was done using IRAF[*] tools in the echelle package. Standard background correction, flat-field, and extraction procedures were used. In all the cases, the wavelength calibration was done using a ThAr lamp spectrum taken during the same night.

We have compared the Equivalent Widths (EW) for some stars for which we have obtained spectra using different instruments to check for possible systematics. In all cases, the average difference of the EWs is within 1-2 mÅ, and usually lower than 1 mÅ. As can be also verified from Table 2 of this article and Table 2 from Paper II, these possible small systematics do not seem to affect significantly the analysis of the atmospheric parameters and metallicity. The only star that has large variations in the derived atmospheric parameters is HD 19994. This variation might be connected with the fact that this late F dwarf has a high rotational velocity $v~\sin{i}=$ 8.1 km s-1 (from the calibration of the CORALIE Cross-Correlation Function presented in Santos et al. 2002a), a sign of relative youth and (most probably) activity related phenomena.

2.2 Stellar parameters and chemical analysis

In this paper we use the same technique, line-lists, and model atmospheres as in Papers I and II. The abundance analysis was done in standard Local Thermodynamic Equilibrium (LTE) using a revised version of the code MOOG (Sneden 1973), and a grid of Kurucz (1993) ATLAS9 atmospheres.

The atmospheric parameters were obtained from the Fe I and Fe II lines by iterating until the correlation coefficients between $\log{\epsilon}$(Fe I) and $\chi_l$, and between $\log{\epsilon}$(Fe I) and $\log{({W}_\lambda/\lambda)}$ were zero, and the mean abundance given by Fe I and Fe II lines were the same. This procedure gives very good results since the set of Fe I lines has a very wide range of excitation potentials.


  \begin{figure}
\par\includegraphics[width=14.8cm,clip]{H3996F1.eps}\end{figure} Figure 1: Left: metallicity distribution for stars with planets (hashed histogram) compared with the same distribution for the field dwarfs presented in Paper II (empty histogram). The vertical lines represent stars with brown dwarf candidate companions. Right: the cumulative functions of both samples. A Kolmogorov-Smirnov test shows the probability for the two populations being part of the same sample is around 10-7.

The results of our analysis are presented in Table 2. The number of measured Fe I and Fe II lines is always between 24 and 39, and 4 and 8, respectively. The rms around the mean individual abundances given by the lines has values between 0.03 and 0.07 dex in most cases. The errors in $T_{{\rm eff}}$, $\log{g}$, $\xi _t$ and [Fe/H] were computed as in Gonzalez & Vanture (1998). For a typical measure the uncertainties are usually lower than 50 K, 0.15 dex, 0.10 km s-1, and 0.06 dex, respectively (see Paper II)[*]. The only important exceptions are the cases of HD 20367 (for which the lower quality ELODIE spectra with S/N $\sim $ 80-100 were responsible for errors of the order of 100 K, 0.20 dex, 0.15 km s-1, and 0.10 dex in $T_{{\rm eff}}$, $\log{g}$, $\xi _t$ and [Fe/H], respectively) and for HD 137759, a giant star for which the dispersion in the [Fe/H] values for individual lines was quite high[*]. The masses were then determined from the theoretical isochrones of Schaller et al. (1992), Schaerer et al. (1993) and Schaerer et al. (1992), using MV computed from Hipparcos parallaxes (ESA 1997) and $T_{{\rm eff}}$ obtained from spectroscopy. We adopt a typical error of 0.1 $M_{\odot}$ for the masses.


next previous
Up: Statistical properties of exoplanets

Copyright ESO 2003