A&A 396, 787-792 (2002)
DOI: 10.1051/0004-6361:20021391
L. Foschini1 - L. C. Ho2 - N. Masetti1 - M. Cappi1 - M. Dadina1 - L. Bassani1 - G. Malaguti1 - E. Palazzi1 - G. Di Cocco1 - P. Martini2 - S. Ravindranath2,3 - J. B. Stephen1 - M. Trifoglio1 - F. Gianotti1
1 - Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF-CNR) -
Sezione di Bologna, via Gobetti 101,
40129, Bologna, Italy
2 -
The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara
Street, Pasadena, CA 91101, USA
3 -
Department of Astronomy, University of California, Berkeley, CA 94720, USA
Received 5 August 2002 / Accepted 20 September 2002
Abstract
We report the identification of the optical and radio counterparts
of the ultraluminous X-ray (ULX) source XMMU J124825.9+083020 (NGC 4698-ULX1).
The optical spectrum taken with the VLT yields a redshift of
z=0.43, which implies that the ULX is not associated with the nearby galaxy
NGC 4698. The spectral energy distribution calculated from the available data
indicates that the source is likely to be a BL Lac object. The possible
synchrotron peak at X-ray energies suggests that this source may be a
-ray emitter.
Key words: galaxies: active - galaxies: Seyfert - galaxies: BL Lacertae objects: general
In recent years, the improved imaging capabilities and increased sensitivity
of ROSAT, Chandra and XMM-Newton have allowed us to
effectively study discrete sources in nearby galaxies beyond the Local Group.
Particularly intriguing is the discovery of off-nuclear X-ray sources with
luminosities well above the Eddington limit for a typical neutron star,
1038 erg s-1, and up to
erg s-1 (e.g., Read et al.
1997; Colbert & Mushotzky 1999; Roberts & Warwick 2000; Makishima et al.
2000; Fabbiano et al. 2001). These sources are typically called ultraluminous
X-ray sources (ULXs). Despite much effort, little is presently known about
these sources. The identification of their optical counterparts is often
problematical when the sources are superposed against regions of high surface
brightness in the host galaxy. To date, only two ULXs appear to have a clear
optical identification (Roberts et al. 2001; Wu et al. 2002), while for others
it has been possible to study only the nearby environment (Pakull & Mirioni
2002; Wang 2002).
We have started a search for ULXs in a sample of nearby galaxies (Foschini et al. 2002). This paper concerns follow-up observations of the ULX in NGC 4698. We discuss the radio and optical counterparts and give a redshift estimate. We identify the source with a background source, most likely a BL Lac object at z = 0.43.
![]() |
Figure 1:
R-band image from VLT-U3/FORS1, superimposed in contours the
smoothed image from the XMM-Newton EPIC-MOS2 data in the 0.5-10 keV
energy band (white over NGC 4698, black in the remaining field). North is up
and East to the left. The D25 ellipse
![]() |
Open with DEXTER |
NGC 4698 is an Sab spiral galaxy located in the Virgo cluster (d=16.8 Mpc). It hosts an active nucleus, classified as a Seyfert 1.9 by Ho et al. (1997). The galaxy was observed on 16 December 2001 using the European Photon Imaging Camera (EPIC) on board the XMM-Newton satellite. EPIC is composed of two instruments: the PN-CCD camera (Strüder et al. 2001) and two MOS-CCD detectors (Turner et al. 2001). The effective exposure time was 9.2 ks.
We find only one ULX apparently associated with NGC 4698 (Foschini et al.
2002), located
from the optical nucleus of the galaxy, at
and
(J2000). The
point source centroid is measured to precision of better than
,
and the absolute pointing uncertainty is <
(Jansen et al. 2001). We
detected 198 photons with MOS1, in a circle of radius
,
249with MOS2, and 414 with PN. These statistics are sufficient to perform
spectral fitting with simple models. The ones we use are the power law (PL),
black body (BB), bremsstrahlung (BR), and the multicolor black body disk (MCD,
diskbb in Xspec) by Mitsuda et al. (1984). Fluxes were corrected
according to the energy encircled fraction (Ghizzardi 2001).
For the processing, screening, and analysis of the data we used the standard
tools in the XMM-SAS software (v. 5.2) and HEAsoft Xspec (v. 11.0.1).
Correction for vignetting has not been applied because the source is close to
the center of the field of view (<
)
and most of the detected
photons have energies less than 5 keV (see Lumb 2002).
The best fit (Fig. 3) is found using the power-law model with
(
,
), giving a flux of
erg cm-2 s-1. If the source is located in
NGC 4698, for which we assume a distance of 16.8 Mpc, the corresponding
luminosity, assuming isotropic emission, is
erg s-1. For
z = 0.43, as discussed below, the luminosity becomes
erg s-1. Additional information on the fits using the other models is given in
Table 1.
The VLA observations of NGC 4698 were performed by Ho & Ulvestad (2001) on
29 August 1999 (20 cm) and 31 October 1999 (6 cm). The source detection at
6 cm was reported by Ho & Ulvestad (2001); the flux density is 1.13 mJy and
the background noise is 0.072 mJy beam-1. The source, which appears
largely unresolved at a resolution of
,
is located at
and
(J2000); the radio position is accurate to
.
A reanalysis of the VLA data detected the source also at 20 cm. It is
unresolved with the 1
beam, and its 20 cm position is consistent with
that measured at 6 cm. We find a flux density of 0.34 mJy, with a
background noise of 0.032 mJy beam-1. The spectral index, defined as
,
is
.
![]() |
Figure 2: Archival Hubble Space Telescope image of the region around XMMU J 124825.9+083020 taken in the F814W filter. North is up and East to the left. |
Open with DEXTER |
Model | Parameter | ![]() |
FX | LX |
(1) | (2) | (3) | (4) | (5) |
PL |
![]() |
18.3/24 | 8.6 | 3.9 |
BB |
![]() |
34.5/24 | 4.5 | |
BR | ![]() |
19.0/24 | 6.7 | |
MCD |
![]() |
23.7/24 | 5.4 |
The optical counterpart of the source is visible on the DSS and the HST observations of NGC 4698. We are certain of the identification from the
relative offset between the nucleus and the optical counterpart. From the
Automatic Plate Measurement
(APM)
catalog, the point source has R = 18.9 mag and B = 21.9 mag, indicating
a very red color (B-R=3.0 mag). The original observation was made with the
48 inch Schmidt telescope at Palomar Observatory on 17 February 1950.
![]() |
Figure 3: XMM-Newton spectrum of XMMU J124825.9+083020. Data are from MOS1, MOS2, and PN. |
Open with DEXTER |
Basic data reduction was performed using the IRAF package. The individual
spectroscopic frames were corrected for overscan, flat-fielded using domeflats
and summed to obtain the final object frame. The spectral extraction was done
by summing the counts within an aperture of 6 pixels (
).
Wavelength calibration was achieved using a polynomial fit to the lines in the
sky spectrum.
The spectrum in the range
5000-7000 Å is approximately described by the
form
.
![]() |
Figure 4:
Normalized VLT spectrum with identifications of absorption lines
marked. Telluric absorption lines are marked with the symbol ![]() |
Open with DEXTER |
Two spectra, both with an exposure time of 570 s, were acquired on 21 April
2002, starting at 4:52:50 UT. The spectra were acquired using Grism #150I
plus order separator GG435, which avoids overlapping of spectral orders over
a given wavelength; this limited the spectral range to
4500-9000 Å. The
slit width was
for both spectra, and this setup secured a final
dispersion of 5.5 Å pixel-1, corresponding to a FWHM resolution of 13 Å. Before the spectroscopic observation, a one minute R-band acquisition
image was obtained on the same night starting at 04:42:52 UT under very good
seeing conditions (
0
6). The object
appeared clearly elliptical and extended, with a bright core and a fuzzy
halo. Moreover, an irregular spot located around 1
north of the
object core is apparent in the VLT image.
After correction for flat-field and bias, the spectra were background subtracted and optimally extracted (Horne 1986) using IRAF. He-Ne-Ar and Hg-Cd lamps were used for wavelength calibration. The wavelength calibration was checked against the position of night sky lines; the typical error was 0.5 Å. Finally, the two spectra were stacked together in order to increase the signal-to-noise ratio. We encountered problems during observation of the spectrophotometric standard, and hence our spectra are not flux calibrated.
Figure 4 shows the normalized VLT spectrum, with several absorption
lines identified (see Laurent-Muehleisen et al. (1998) for a discussion on
optical identification of BL Lacs). The detected lines include Ca II H&K
,
the G band
,
H
,
and Fe I
:
they all indicate
.
The line strengths are heavily diluted by the featureless continuum, but the
spectrum shares close similarity to that of the BL Lac object 0548-322
(Barth et al. 2002). We shifted the spectrum of 0548-322, which has a
redshift of 0.069, to z = 0.43.
By using two-point spectral indices, namely the radio-to-optical
and optical-to-X-ray
,
it is
possible to show that different objects populate different regions of the
-
plane (e.g., Brinkmann et al.
1997; Laurent-Muehleisen et al. 1999). Another method has been suggested by
Maccacaro et al. (1988), who proposed a nomograph to link the X-ray flux in
the energy band 0.3-3.5 keV and the visual magnitude. The values of
and
for the present source are 0.42 and 0.95, respectively, thus placing it in the region of X-ray
selected BL Lacs (Brinkmann et al. 1997), or high-energy peaked BL Lacs in the
diagram of Laurent-Muehleisen
et al. (1999). The nomograph of Maccacaro et al. (1988) gives a ratio
between 1.3 and 3.8 (depending on whether
we use the HST optical magnitudes through the F606W or F450W filter,
respectively), in the regime of AGNs and BL Lacs.
The spectral indices can be used to deduce some general properties of the
dominant radiation mechanism. If
,
the source may exhibit relativistic beaming, while if
,
it may fulfill the conditions of
the homogeneous synchrotron model (Harris & Krawczynski 2002). In our case,
we have
,
so that
we cannot clearly discriminate between these two cases. If the source
is a high-frequency peaked BL Lac, however, it is likely that the homogeneous
synchrotron model is more applicable.
This is confirmed by the
test of Sambruna et al.
(1996): in this case, the difference by
is
approximately equal to zero, so avoiding a clear discrimination between the
physical mechanism of the source.
The spectral energy distribution (Fig. 5) is comparable to those of
BL Lac objects peaked in the -ray domain (e.g., Fossati et al. 1998),
but the third EGRET catalog (Hartman et al. 1999) does not have any source
within several degrees of XMMU J124825.9+083020.
![]() |
Figure 5: The spectral energy distribution of XMMU J124825.9+083020, assembled from data taken with the VLA, DSS, HST, and XMM. |
Open with DEXTER |
XMM-Newton observations of the Lockman Hole (Hasinger et al. 2001)
show that the number of background sources in the energy band 0.5-2 keV with
flux greater than
erg cm-2 s-1 (the best fit
value from Table 1) is 15 deg-2. In the energy band 2-10 keV, there are 40 sources deg-2 with flux higher than
erg cm-2 s-1. Assuming the same
relation, and considering that the D25 area of NGC 4698 is about
7.9 arcmin2, we expect 0.08 background objects in the 2-10 keV energy
band and 0.03 in the energy band 0.5-2 keV. However, despite these low
values, we have found, in the present case, that the only ULX is
a background AGN.
The above calculations could be underestimated in the present case because the VLT images show an unknown concentration of galaxies north-east of NGC 4698 (see Fig. 1), thus suggesting the possibility of a statistically meaningful excess of background sources. However, no additional X-ray sources is seen in the present XMM-Newton observation. Perhaps, a longer exposure may reveal soft X-ray emission or additional sources, if NGC 4698 lies along the line of sight to a galaxy cluster. The three X-ray sources identified to date, however, have three redshifts: XMMU J124825.9+083020 has z=0.43, NGC 4698 has z=0.0033, and the ROSAT source 1RXS J124828.1+083103 has been recently identified with a Seyfert nucleus at z=0.12 (Xu et al. 2001). Therefore, these three sources are not members of a single cluster.
Acknowledgements
We would like to thank A. Pizzella for useful discussion about NGC 4698, the Service Mode Observations personnel at ESO, and in particular M. Romaniello, for the help in the preparation of VLT observations. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). This research has made use of the NASA Astrophysics Data System Abstract Service and of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We acknowledge the partial support of the Italian Space Agency (ASI) to this research. L.C.H. is grateful for financial support from the Carnegie Institution of Washington and from NASA grants.