A&A 395, 969-974 (2002)
DOI: 10.1051/0004-6361:20021324
G. Galazutdinov
1,4,5 - A. Petlewski
4 - F. Musaev
1,4,5 - C. Moutou
2 - G. Lo Curto
3 - J. Kreowski
4
1 - Special Astrophysical Observatory, Nizhnij Arkhyz 369167, Russia
2 -
Laboratorie d'Astrophysique de Marseille, Traverse
du Siphon, Les trois Lucs, BP 8, 13376 Marseille Cedex 12, France
3 -
European Southern Observatory, Alonso De Cordova 3107, Vitacura, Santiago, Chile
4 -
Center for Astronomy, Nicholas Copernicus University, Gagarina 11, 87-100 Torun, Poland
5 -
Isaac Newton Institute of Chile, SAO Branch, Russia
Received 24 June 2002 / Accepted 6 September 2002
Abstract
We present an analysis of spectra of six stars taken
with high resolution (R=220 000). The stars are reddened by
molecular clouds that differ by the relative strength of the 5797
and 5780 diffuse interstellar bands (DIBs). The high signal-to-noise ratio of the spectra (S/N
700-1000) shows that the
abundance of the linear molecule C3 with respect to EB-Vvaries considerably from one star to an other. There is no
correlation with EB-V. The strong variations in the abundance
of C3 must therefore be caused by another circumstance. We point
out that this may be the case: from an analysis of the
interstellar potassium lines in the same spectra we conclude large
differences in the state of ionization produced by interstellar
photons with energies below the ionization potential of hydrogen.
The ratio of the abundances of C3 and C2 varies considerably in
different directions, even when the ratio between the strengths of
various DIBs remains approximately constant.
Key words: ISM: clouds - molecules
It seems of importance to check possible relations between
identified atomic and molecular features and diffuse interstellar
bands (DIBs) which remain unidentified since 1922. It has already
been suggested that all possible interstellar absorptions
(extinction, atomic and molecular lines, diffuse bands) change in
unison i.e. their strengths vary together from cloud to cloud
(Kreowski et al. 1992). This fact may be important as the
observations of well-identified spectral features can help us to
determine physical conditions in individual clouds and thus relate the observed variations of DIB strengths to physical
parameters such as temperature or density. This may be very
helpful for the task of identifying DIBs - the longest standing
unsolved problem in all of spectroscopy.
![]() |
Figure 1: Figure demonstrates the lack of Doppler splitting in atomic potassium interstellar lines in the spectra of the programme stars (excluding HD152236). The spectra are from Terskol observatory (R=120 000 coudé-echelle spectrometer, Musaev et al. 1999). Note that the set of targets splits into the subsets of objects in which the line is either strong or weak. Very recent paper (Welty & Hobbs 2001) based on the spectra from Ultra High Resolution Facility confirms this result. |
Open with DEXTER |
![]() |
Figure 2: The major diffuse interstellar bands observed in the spectra of our five selected targets using the McDonald Observatory echelle spectrometer. HD 152236 was not observed, but we consider it as "zeta''-type object (see text). |
Open with DEXTER |
Douglas (1977) proposed linear carbon molecules as possible carriers of DIBs. Bare carbon chains, being homonuclear species, do not create rotational transitions observable at radio wavelengths and thus only their electronic and/or vibrational spectral features can be compared with those observed. The latter may cover the spectral range from vacuum UV until far infrared. It seems thus of importance to estimate the abundances of simplest carbon molecules in interstellar clouds. They can be building blocks for many observed (due to radio rotational transitions) interstellar molecules which are often based on carbon skeletons (chains up to 11 atoms long).
HD | SpL | V | EB-V | ![]() |
K I (4044.14 Å) | 5780 | 5797 | C2 | C3 | C2/C3 |
24398 | B1I | 2.96 | 0.34 | 59 | - | 98 ![]() |
57 ![]() |
3.95(12) ![]() |
1.74(11) ![]() |
22.7 ![]() |
149757 | O9V | 2.60 | 0.29 | 379 | - | 70 ![]() |
29 ![]() |
4.25(12) ![]() |
1.96(11) ![]() |
21.7 ![]() |
179406 | B3V | 5.36 | 0.30 | 170 | - | 143 ![]() |
79 ![]() |
1.92(13) ![]() |
2.02(11) ![]() |
95 ![]() |
210121 | B3Vj | 7.83 | 0.40 | <20 | - | 57 | - | 1.6(13)d | 6.8(11) ![]() |
23.5 ![]() |
143275 | B0.3V | 2.30 | 0.19 | 200 | - | 79 ![]() |
14 ![]() |
- | ![]() |
- |
144217 | B0.5V | 2.62 | 0.17 | 130 | 0.19 ![]() |
161 ![]() |
15.3 ![]() |
![]() |
![]() |
- |
147165 | B1III | 2.89 | 0.32 | 53 | 0.22 ![]() |
243 ![]() |
26.0 ![]() |
- | ![]() |
- |
148184 | B2V | 4.40 | 0.44 | 118 | 1.23 ![]() |
104 ![]() |
48 ![]() |
7.15(12) ![]() |
3.4(11) ![]() |
21 ![]() |
149757 | O9V | 2.60 | 0.30 | 379 | 0.8 ![]() |
70 ![]() |
29 ![]() |
4.25(12) ![]() |
2.2(11) ![]() |
19.3 ![]() |
152236 | B1I | 4.80 | 0.65 | 60 | 0.5 ![]() |
- | - | 3.06(12) ![]() |
2.6(11) ![]() |
11.8 ![]() |
a Chaffee et al. (1980);
b Danks & Lambert (1983);
c Federman et al. (1994);
d Gredel et al. (1992);
e Maier et al. (2001);
f Roueff et al. (2001);
g Lambert et al. (1995);
h van Discoeck & de Zeeuw (1984);
i van Dishoeck & Black (1989).
The gas-phase optical spectra of linear carbon chains are known for C2, C3, C4 and C5 (e.g. Motylewski et al. 1999). The first pure carbon molecule, the two-atom homonuclear C2, was discovered by means of near infrared spectroscopy in 1977 by Souza & Lutz in the spectrum of the opaque cloud obscuring the star Cyg OB2 No. 12. The same authors failed to find the Phillips band (2-0) near 8760 Å in the spectrum of HD 149757 because of the weakness of the features, seemingly correlated with the reddening.
![]() |
Figure 3: C3 band observed in the spectra of our six targets: relatively strong towards "zeta'' objects and below the level of detection in "sigma'' ones (bottom panel). The neighbour KI interstellar lines are also presented but in another scale as they are deeper than C3 features. The "synthetic'' spectrum of C3shows only the wavelengths of the subsequent transitions. It does not carry any physical information. |
Open with DEXTER |
The latter, Phillips (2-0) band of C2 was found in the
spectrum of HD 149757 by Hobbs & Campbell (1982) and confirmed in
higher S/N spectra by Danks & Lambert (1983). Both teams
estimated the C2 column densities to be of the order
in the case of this, well known object
characterized by EB-V close to 0.3. The estimate of van Dishoeck & Black (1986) based on (3-0) Philips band around
7720 Å gave a very similar result. The estimates given for
another targets by Danks & Lambert (1983) proved that the ratio
of the C2 column density and EB-V is rather similar in
cases of other reddened stars. Also Crawford (1990) found similar
(relative to EB-V) C2 column densities towards Sco OB1
stars. The largest existing survey by van Dishoeck & Black (1989)
supports also the above mentioned results. The estimates based on
the HST spectra which contain the Mulliken system at 2313 Å
are below those based on the infrared spectra by a factor of 1.5-2 (Lambert et al. 1995). The extensive survey of
C2 abundances, based on the Phillips 2-0 band (published by
van Dishoeck & Black 1989) contains 18 objects. The most
recent compilation of Federman et al. (1994) was able to give
estimates of the C2 column densities towards 32 reddened stars
plus a couple of upper limits. Not less important seems the fact
that vacuum-UV Mulliken band of C2 has not been detected in
the HST spectra of HD's: 144217, 143018 and 144470 despite a substantial reddening and the presence of reasonably strong
diffuse interstellar bands observed towards them (Westerlund &
Kre
owski 1988).
The next member of the possible family of carbon molecules, C3,
is much more difficult to be observed. It was discovered by Hinkle
et al. (1988) in the infrared spectrum of the circumstellar shell
of the star IRC +10216. This spectral range is, however, not
covered with observations of interstellar, translucent clouds due
to relatively low opacity. The possible discovery of this molecule
(its absorption band 1
-
1
+ near 4052 Å) was described by Haffner & Meyer
(1995). It was based on several spectra of the heavily reddened
star HD 147889 in which the possible C3 feature appeared as a very weak one. The detailed structure of this band was found
towards four nearby reddened stars in July 2000 (Maier et al. 2001; Roueff et al. 2002). The summary of already existing
observations gives Table 1. The data in which DIBs have been
measured are McDonald R=60 000 spectra (Kre
owski & Sneden 1993), except the case of HD 210121.
The table contains also C2column densities, calculated as averages of published equivalent
widths of two strong transitions Q(2) and Q(4) with the oscillator
strengths given by Federman et al. (1994). The column densities of
the C3 species were calculated in a similar way using
Q(4), Q(6), Q(8), Q(10), Q(12) lines of
1
-
1
+ transition; all of the same oscillator
strength
= 0.0073 (Roueff et al. 2002).
![]() |
Line | HD 149757 | HD 148184 | HD 152236 |
4049.963 | R(16) | 0.07 ![]() |
0.26 ![]() |
- |
4050.081 | R(14) | 0.12 ![]() |
0.31 ![]() |
0.13 ![]() |
4050.206 | R(12) | 0.13 ![]() |
0.12 ![]() |
0.11 ![]() |
4050.337 | R(10) | 0.12 ![]() |
0.16 ![]() |
0.22 ![]() |
4050.495 | R(8) | 0.13 ![]() |
0.19 ![]() |
- |
4050.67 | R(6) | 0.173 ![]() |
0.26 ![]() |
0.23 ![]() |
4050.866 | R(4) | 0.102 ![]() |
0.31 ![]() |
0.21 ![]() |
4051.069 | R(2) | 0.16 ![]() |
0.32 ![]() |
0.23 ![]() |
4051.519 | Q(4) | 0.25 ![]() |
0.28 ![]() |
0.26 ![]() |
4051.59 | Q(6) | 0.27 ![]() |
0.35 ![]() |
0.28 ![]() |
4051.681 | Q(8) | 0.23 ![]() |
0.41 ![]() |
0.29 ![]() |
4051.793 | Q(10) | 0.21 ![]() |
0.39 ![]() |
0.31 ![]() |
4051.929 | Q(12) | 0.23 ![]() |
0.40 ![]() |
0.27 ![]() |
4052.473 | Q(18) | 0.128 ![]() |
- | - |
4052.698 | Q(20) | 0.16 ![]() |
0.28 ![]() |
0.14 ![]() |
4052.792 | P(8) | 0.13 ![]() |
0.28 ![]() |
0.24 ![]() |
4053.591 | P(12) | 0.13 ![]() |
- | - |
4053.794 | Q(28) | 0.08 ![]() |
0.19 ![]() |
- |
![]() |
Figure 4: Equivalent widths of the subsequent transitions inside the C2 (left panels) and C3 (right panels) bands for individual targets. Panels of each molecule are shown in the same wavelength and intensity scale for better clearness. Note the different relative abundances of the considered species. The measurements of C3 features in the spectrum of HD 210121 are less certain because of the relatively low resolution of the spectra applied. EW data are taken from: a Federman et al. (1994); b Danks & Lambert (1983); c Chaffee et al. (1980); d van Dishoeck & Black (1989); e van Discoeck & de Zeeuw (1984); f Gredel et al. (1992). |
Open with DEXTER |
However, the existing data on C3 do not allow to compare the
abundances of this species in different environments. All the
existing observations concern "zeta'' type clouds i.e. the objects
in which the narrow DIBs and the spectral features of simple
molecules are relatively strong. The lack of C2 in certain
("sigma'' type, where molecular and narrow DIBs are typically very
weak) objects may suggest that one should expect C3 to be very
weak as well. However, if the Douglas hypothesis is correct, the
abundances of longer carbon chains may start growing starting from
a certain length. Our observations were made in order to make the
simplest test of this possibility i.e. to estimate the abundances
of the C3 bare carbon chain in "sigma'' and "zeta'' environments
as defined by Kreowski & Sneden (1995).
The observational material has been collected at ESO with the aid
of the CES (Coude Echelle Spectrograph) fed by the fiber link with
the Cassegrain focus of the 3.6 m telescope of the La Silla
Observatory. All the stars have been observed with the highest
resolving power, using the Very Long Camera in the spectral range
from 4040 to 4066 Å. Centering CES at a wavelength of 4053 Å we determined
by the full width at half maximum of
2.7 pixel for a narrow line in the spectrum.
The instrument is equipped with an image
slicer which splits the starlight into a dozen of
well-illuminated slices. The detector is an EEV 2K
4K CCD
(pixel size 15
15
m) with 80% quantum efficiency in
the domain of interest.
The objects for this project were chosen using the existing sample
of McDonald spectra (Kreowski & Sneden 1993) which includes
the NaI D1 and D2 lines as well as the major 5780 and 5797 DIBs. Spectra of some objects have been acquired also using the
high resolution (R=120 000) echelle spectrometer fed with the 2 m.
telescope of the Terskol Observatory (Northern Caucasia) - in
this case the KI line at
7700 Å was observed. The chosen
targets are listed in Table 1 where HD numbers, spectral types,
luminosity classes, colour excesses and rotational velocities are
given. We also added some other interstellar data such as
intensities of the 5780 and 5797 Å major DIBs (measured in the
McDonald spectra) and the column densities of the C2 molecule
(found in publications). The targets were selected using the
profiles of atomic interstellar lines i.e. they do not show
Doppler splitting (Fig. 1). Such a choice of targets is necessary
to see the closely packed rotational features of the C3 band
resolved. We have added HD 152236, a relatively bright, reddened
southern star. This star is known to have relatively strong CH,
CN and C2 interstellar lines (Crawford 1990; Crawford 1995), what leads, together with the enormous strength of the
5850 Å diffuse band, usually well correlated with the 5797 Å DIB (Jenniskens et al. 1996), to the conclusion that it is the
"zeta'' type object, although the behaviour of major DIBs is not
known directly. The brightness of all our targets was crucial to allow the achievement of high S/N ratio.
Figure 1 clearly demonstrates that some of the targets, selected
for the project and listed in Table 1, show very strong KI lines
while the others - very weak. The same division can be made using
the intensity ratio of the major DIBs: 5780 and 5797 as a criterion - see Fig. 2. Apparently the 5797/5780 ratio grows
together with that of KI/E(B-V) i.e the band 5797 seems to be
correlated with interstellar atomic lines as suggested by
Kreowski et al. (1997). Narrow DIBs generally look stronger in
"zeta'' type interstellar clouds than in "sigma'' ones as already
suggested by Kre
owski & Sneden (1995). Our sample
deliberately contains both "sigma'' and "zeta'' type objects to make
a comparison of the behaviour of the C3 chain in both
environments possible.
Every target, listed in the lower part of Table 1, was observed at least twice to make a successful removal of cosmic ray spikes possible. The exposure times were selected to achieve the S/N ratio higher than 500 as the expected depths of the C3 features are of the order of 1% of the continua. Our target list contains HD 149757, observed also by Maier et al. (2001) to allow a direct comparison between the existing and new measurements.
Our reduction of the spectra was made using the DECH code (Galazutdinov 1992). This program allows a flat-field division, bias/background subtraction, one-dimensional spectrum extraction from the 2-dimensional images, correction for the diffuse light, spectrum addition, excision of cosmic ray features, etc. The DECH code also allows location of a fiducial continuum, measurements of the line equivalent widths, line positions and shifts, etc.
Figure 3 presents the six reduced spectra. Our very high resolution and S/N ratio makes the very narrow C3 features detectable. The C3 band is evidently seen in three of spectra - they are all "zeta'' type objects in which the bands of C2 are also quite strong. The C3 bands are below the level of detection towards the remaining three "sigma'' type objects. Only the upper limits can be estimated which makes a measurement of C2 to C3 abundance ratio impossible in these environments.
It seems of importance to compare the intensities of C3 transitions, measured in our spectra with those from the publication of Maier et al. (2001). The comparison is given in Fig. 5. It is evident that the observed features are usually of the same equivalent width, especially the strongest ones. The weaker features differ sometimes between the two sets of data. Thus it seems well-advised to use only the strongest C3 features to estimate the abundance of this species towards some chosen targets. It may be also concluded that the resolution of R=120 000is high enough to allow precise measurements of the narrow C3 features.
To compare C3 and C2 abundance ratios we preferred to use direct results of observations (equivalent widths) instead of published column density values, calculated using various oscillator strengths. Ratio of equivalent widths of C3 and C2 absorption bands may be a very sensitive parameter, characterizing individual interstellar clouds. Figure 4 demonstrates a comparison between the intensities of single transitions inside C2 and C3 bands. In the case of C3 it is quite evident that the column density of this species can be estimated using the four strongest transitions (Q6 till Q12). Their equivalent widths (listed in Table 2) are similar and thus the level, based on the intensities of these features is a good measurement of the C3 column density towards a chosen target. In the case of C2 we used Q(2) and Q(4) transitions as they have been measured in all targets of Table 1. One can see from the Fig. 4 that the abundance ratio of the two bare carbon species: C2 and C3 is variable; it is very high towards the HD 179406 star which is known to be shining through a very special cloud. The latter produces very narrow but also very strong DIBs (Walker et al. 2001). We would like to emphasize that a C3 abundance estimate should be rather uncertain in the case of HD 210121 (Roueff et al. 2002) due to relatively low spectral resolution evidently not enough to make reliable measurements of equivalent widths.
The plotted spectra suggest that C3 molecule, as well as C2, is hardly detectable in the observed "sigma'' type clouds. It generally behaves in a way very similar to that of the neighbour KI (4044.136 and 4047.206 Å) lines (see also Fig. 1). This observation confirms that the C2 and C3 abundances depend on the ionization level of elements characterized by the ionization potential lower than that of hydrogen. Apparently the molecular abundances depend on the density of high frequency photons originating in neighbour, hot stars.
![]() |
Figure 5: A comparison of the equivalent widths of subsequent features of the C3 band in the spectrum of HD 149757 observed by Maier et al. (2001) with those from the present work. |
Open with DEXTER |
![]() |
Figure 6: Illustration of differences in C3 abundance in "zeta'' (HD 149757) and "sigma'' (HD 147165 and HD 144217) objects. Demonstrated spectra were achieved by shifting all rotational lines to point zero at radial velocity scale and combining them to get as a result one narrow structure that represents average absorption of all rotational levels. |
Open with DEXTER |
The proximity of KI lines allows an additional test of the
presence of C3 features in "sigma'' type objects. While the
wavelengths of potassium lines are shifted to the rest wavelength
frame, C3 transitions coincide with those, published by Roueff
et al. (2002) up to the third decimal point! In this case the
identification of the molecular band leaves no doubt. The high
precision of the wavelengths of different transitions inside the
C3 band allows us to add the same spectrum up to 40 times
in the scale of radial velocities. The spectrum is being shifted
to zero radial velocity of subsequent transitions and then all
spectra prepared in this way are combined. This creates just one
strong feature at the zero radial velocity which may represent the
total strength of the band. The S/N ratio of the spectrum prepared
in this way is 5-6 times higher than the original one (Fig. 6).
However, even this procedure has not allowed to measure directly
the band intensity towards "sigma'' type objects; we can only
make a better estimate of their upper limits. Table 1 gives the
observed column densities of C3 molecule and 3
upper
limits for "sigma'' type stars derived from
C3 molecule was thus proved to be below the level of detection towards "sigma'' type targets as well as the shorter C2 molecule (Lambert et al. 1995). Apparently the environments, characterized by relatively strong broad diffuse bands and weak polar molecules do not contain short, bare carbon chain species.
C2 and C3 molecules are much more likely observed towards targets characterized by strong narrow DIBs and the features of simplest polar molecules as well as high far-UV extinction ("zeta'' type objects). In these cases both carbon species are usually observable but their mutual abundance ratio may be variable.
As it is clearly seen in Fig. 4 the C2 and C3 abundances are not simply related to EB-V; they must depend on other parameters of intervening clouds as well.
Neither C2 nor C3 can be considered as carriers of any of the diffuse interstellar bands. However, they are likely precursors of the species in which narrow DIBs (such as 5797) are originated.
An extension of the sample of C3 observations towards reddened stars seems highly desirable as the above conclusions are inferred from extremely scarce samples of reddened stars.
Acknowledgements
The authors want to express their gratitude to the staff of the ESO for the technical help during the observations. JK acknowledges the financial support of the French-Polish project JUMELAGE. GAG wants to express his thanks to Russian Foundation for Basic Research for financial support under the grant No 02-02-174423.