A&A 395, 409-415 (2002)
DOI: 10.1051/0004-6361:20021264
H. K. Eriksen1 - A. J. Banday2 - K. M. Górski3,4
1 - Institute of Theoretical Astrophysics, University of Oslo, PO Box
1029 Blindern, 0315, Norway
2 -
Max-Planck-Institut für Astrophysik, Garching bei München, Germany
3 -
European Southern Observatory, Garching bei München, Germany
4 -
Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland
Recieved 19 June 2002 / Accepted 28 August 2002
Abstract
We calculate the two-, three- and (for the first time)
four-point correlation functions of the COBE-DMR 4-year sky
maps, and search for evidence of non-Gaussianity by comparing the
data to Monte Carlo-simulations of the functions. The analysis is performed for
the 53 and 90 GHz channels, and five linear combinations thereof.
For each map, we simulate an ensemble of 10 000 Gaussian realizations
based on an a priori best-fit scale-invariant cosmological power spectrum,
the DMR beam pattern and instrument-specific noise properties.
Each observed COBE-DMR map is compared to the ensemble using a
simple
statistic, itself calibrated by simulations.
In addition, under the assumption of Gaussian fluctuations, we find explicit
expressions for the expected values of the four-point functions in
terms of combinations of products of the two-point functions,
then compare the observed four-point statistics to those predicted by
the observed two-point function, using a redefined
statistic.
Both tests accept the hypothesis that the DMR maps are consistent
with Gaussian initial perturbations.
Key words: cosmic microwave background - cosmology: observations - methods: statistical
The study of CMB temperature anisotropies and their statistical properties has become an important theme in modern cosmology. In its most conventional interpretation, the distribution of anisotropies reflects the properties of the universe approximately 300 000 years after the Big Bang, at the surface of last scattering. Thus, by measuring statistical quantities such as the angular power spectrum or the angular two-point correlation function, we can infer the values of many interesting cosmological parameters.
For both theoretical and practical purposes, it is convenient to
expand the temperature anisotropy field into a sum of (complex)
spherical harmonics:
![]() |
(1) |
However, testing for non-Gaussianity is anything but trivial, and several qualitatively different tests are required in order to perform a complete analysis. At present the arsenal of available tests which have been applied to the COBE-DMR data consists of at least the following: bi- and trispectrum based analysis (Ferreira et al. 1998; Magueijo 2000; Sandvik & Magueijo 2001; Komatsu et al. 2002; Kunz et al. 2001), 3-point correlation function based tests (Kogut et al. 1996), methods utilizing wavelets (Cayón et al. 2001; Barreiro et al. 2000) and Minkowski functionals (Schmalzing & Górski 1998; Novikov et al. 2000). Indeed, there has been a small resurgence in interest in the possibility of non-Gaussian signals in the COBE-DMR maps as a consequence of the bispectrum work of Ferreira et al. (1998) and Magueijo (2000). These papers find non-Gaussian contributions using harmonic analyses at the 98% confidence limit, and although Banday et al. (2000) explain these tentative detections by appealing to the presence of a specific residual systematic artifact in the data, additional investigation is warranted.
In this paper we adopt N-point correlation functions as probes for non-Gaussianity. For a Gaussian field all odd N-point functions (such as the three-point function) have vanishing expectation values, while all even N-point functions can be reduced to expressions involving the two-point function. Thus, if the observed three-point function is significantly non-zero when compared to a Gaussian ensemble, its native distribution is probably non-Gaussian. Further, if the four-point function does not reduce into two-point functions, the same conclusion can be made.
The first part of this paper builds on ideas demonstrated in Kogut et al. (1996) and Hinshaw et al. (1995). We study the 4-year COBE-DMR sky maps, computing the two- and three-point functions, as has been performed previously, then proceeding to extend the analysis for the first time to the determination of several four-point functions. The definitions of these new functions are given in Sect. 2.
In Sect. 3 we compute the
various correlation functions for the four DMR channels
and five linear combinations thereof.
Next, we compute the same functions for 10 000 Monte Carlo simulated
Gaussian maps, which are used as the basis of the various statistical
tests of non-Gaussianity. Initially, we apply the
test as
defined by Kogut et al. (1996), by comparing the observed data
value to the distribution generated from the application
of the
statistic for each map in the simulated ensemble.
Subsequently, in Sect. 5, we provide
expressions for the expected value of several four-point functions
in terms of the two-point function, then explicitly
compare the observed four-point functions to those predicted by the
observed two-point function. We define a suitable
statistic
in order to quantitatively measure the degree of deviation, once again
calibrated by Monte Carlo-simulations.
An N-point correlation function is defined as the average product of
N temperatures with a fixed relative orientation on the sky:
![]() |
(2) |
Although the N-point functions are easily defined and relatively
simple to implement computationally, their evaluation is generally
CPU-intensive, which is especially problematic since detailed
assessment of results requires large Monte Carlo simulation data sets.
The full computation of an N-point correlation function scales as
,
and is therefore virtually impossible to
compute for high-resolution maps for any order N greater than
two. For this reason we choose to compute only a
subset of the possibilities in the N-dimensional configuration
space, designed to reduce the complexity of the problem. As an example
consider the pseudo-collapsed three-point function for which we
require two points to coincide, effectively reducing the geometry to
that of the two-point function. Such subsets typically scale somewhere
between
and
.
Thus,
with some effort put into the implementation these functions can be
computed even for rather high-resolution maps.
Previous work has considered two special three-point functions, namely the collapsed and the equilateral functions (Kogut et al. 1996; Hinshaw et al. 1995). As mentioned above, the collapsed function is defined by requiring two of the three point to coincide, while the equilateral function requires the three points to span an equilateral triangle on the sphere.
In this paper, we shall also consider several simple four-point configurations. These functions are, in order of complexity:
Several of the functions defined above are so-called collapsed
functions, i.e. one pixel is multiplied one or more times with itself.
Unfortunately, for noisy maps this renders the function completely
noise dominated.
To remedy this problem we substitute the collapsed
functions by so-called pseudo-collapsed versions, as introduced by Hinshaw et al. (1995).
For the COBE-DMR experiment the beam size is approximately
,
while the pixel size is - necessarily for adequate
sampling -
1.8
(for the HEALPix
pixelization used here). Therefore the CMB signal component
between two neighboring pixels is highly coherent, whereas
the noise contributions are independent. Thus, instead of multiplying
a given pixel by itself several times, we multiply the pixel by one or more
of its immediate neighbors, then sum over all such possible products,
effectively multiplying by an average over the nearest
neighbors.
Hence, we more generally define a pseudo-collapsed function as an average
product of pixels where at least one pixel is multiplied in the
pseudo-collapsed sense, i.e. by an average over its neighbors.
The golden rule for our analysis is that no pixel is
ever multiplied with itself. This definition is then not completely
equivalent to that introduced by Hinshaw et al. (1995) They
defined the pseudo-collapsed function as the average product
of 1) a center pixel, 2) one of its neighbors and 3) a far point,
where the far point was not allowed to be the center pixel. However,
it was allowed to be the neighboring pixel. Although not a major
problem for the three-point function, we have determined that
the inclusion of such a product renders the first bin of the
four-point functions completely noise dominated.
![]() |
Figure 1: Three- and four-point correlation functions of the co-added 4-year DMR map. Solid line shows the most likely value for each bin, dark shading shows the 68% confidence region and light shading the 95% confidence region, as computed by Monte Carlo-simulations. Dots represent functions for the uncorrected co-added map, and boxes shows the functions for the map for which high-latitude Galactic emission has been removed. Note the different angular units on the horizontal axis, reflecting the fact that the various functions are defined on different angular intervals. |
Open with DEXTER |
We also introduce one further small change compared to Hinshaw et al. (1995) in that we exclude the zeroth angular bin (for
which all N pixels coincide) as any cosmological information here is
heavily suppressed due to the low signal-to-noise ratio. Indeed, the
inclusion of the zeroth bin only acts to increase the
variance of the
statistic, and is therefore better omitted.
The COBE-DMR experiment resulted in six independent maps, two for each
of the three frequencies at 31.5, 53 and 90 GHz. In this work
we only include the maps from the 53 and 90 GHz channels, as they
are superior in terms of the signal-to-noise ratio.
The maps are analyzed in the
HEALPix
pixelization
scheme (Hivon et al. 1998),
with a resolution parameter of
,
corresponding to 12 288 pixels on the sky.
At each frequency we compute the "sum'' (A+B)/2 and
"difference'' (A-B)/2 combinations, which yield, respectively,
maps with enhanced signal-to-noise or noise content alone.
In addition, we also generate a co-added map from the four basic
channels using weights to achieve the optimal signal-to-noise ratio.
The two-, three- and four-point correlation functions for these nine
map combinations are then computed. All pixels corresponding to the extended
Galactic cut (Banday et al. 1997 but recomputed explicitly for the
HEALPix scheme) are rejected from the analysis, leaving a total of 7880 accepted
pixels. The best-fitting monopole, dipole and quadrupole are
subtracted from each map before the N-point functions are evaluated.
The observed correlation functions are also computed
after correction for the diffuse foreground emission at high Galactic
latitude, using information from the (appropriately scaled)
DIRBE
map (Górski et al. 1996).
For our Monte Carlo ensemble, we simulate 10 000 individual
realizations of the CMB sky, based on an a priori best-fit
cosmological power spectrum. In particular, we consider
scale-invariant Gaussian temperature fluctuations (
with n=1) with
(Górski et al. 1996). The power-spectrum is filtered through the DMR
beam and pixel window functions.
To each simulated CMB sky, we add four noise realizations
based on the rms noise levels and observation patterns of the
observed 53 and 90 GHz sky maps. These are then combined to generate
the corresponding sum, difference and co-added sky maps.
These are then processed in an identical fashion to the DMR data.
We note that we have also assumed that there are no significant
pixel-pixel noise correlations, although
some will indeed be present as a consequence of the differential nature
of the radiometers which couple observations separated by
on the sky. Lineweaver et al. (1994)
have investigated this effect in detail, and find a small
excess signal is present in the 2-point correlation function at
for maps containing noise signal alone. However, we do not
expect our results to be compromised by this assumption.
Figure 1 shows the results from these calculations for the co-added maps. The observed functions lie comfortably within the confidence region defined by the Monte Carlo-simulations and there are no striking deviations visible by simple inspection.
In order to quantitatively measure the agreement between the DMR maps
and the simulated ensemble, we utilize the same
methodology
described by Kogut et al. (1996):
![]() |
In Kogut et al. (1996) the results for the pseudo-collapsed and the equilateral three-point functions are given for the 53 GHz (A+B)/2 map; they find the fractions to be respectively 0.66 and 0.31, while we find 0.65 and 0.29. Considering the minor changes in the definitions of the correlation functions and the different pixelizations used, the agreement is most satisfactory.
Overall, the numbers indicate that the COBE-DMR maps agree very well with the simulations. The optimal co-added map, for which the signal-to-noise ratio is the highest, returns results comfortably in the accepted range, as does the combined analysis of all N-point functions. We conclude that the DMR maps are compatible with the Gaussian hypothesis as measured by this test.
![]() |
Figure 2: Comparison of the observed and the "reduced'' four-point functions for the co-added DMR sky map. Boxes indicate the function predicted by the two-point functions, while shaded areas represent the 68% and 95% confidence intervals computed from Monte Carlo-simulations. The observed four-point functions are shown with a solid line. |
Open with DEXTER |
![]() |
(5) |
![]() |
(6) |
Thus, if the CMB temperature anisotropy field is in fact Gaussian distributed
with zero mean, then all even N-point functions can be reduced to combinations
of products of the two-point function. In particular, the four-point function reduces
to:
![]() |
(12) |
This procedure has one major advantage compared to the one described in Sect. 3: the power spectrum only mildly affects the result. That is, the two most important contributions to the analysis come from the map itself, in the form of a two-point and a four-point function. The assumed power spectrum is only used for estimating the acceptable deviations, not the overall shape. Therefore, this procedure provides a more direct test for Gaussianity than the previous one.
![]() |
The results are shown for the co-added map in
Fig. 2. The observed function lies well
within the confidence regions about the predicted function
for all four cases.
For a more quantitative measure of the perceived agreement,
we define a
statistic, incorporating the new degree of freedom provided
by the predicted four-point function by simply replacing the average
correlation function with that new function:
![]() |
(13) |
![]() |
(14) |
Table 2 summarizes the results, which again support the hypothesis that the DMR sky maps are consistent with a scale-invariant cosmological model with Gaussian initial fluctuations.
By performing Monte Carlo-simulations we have studied the statistical properties of the COBE-DMR 53 GHz and 90 GHz channels. The basic ingredients for this analysis were various N-point correlation functions, and, in particular, four different four-point functions which have been presented for the first time. We have additionally taken advantage of a result from statistical theory, relating all even N-point functions to reductions in terms of the two-point function. This allowed us to define a test for Gaussianity in which the assumed power spectrum only plays a secondary role. This test could therefore prove better suited for situations in which we do not have access to the optimal power spectrum.
Comparison of the DMR N-point correlation functions with the Monte-Carlo ensemble indicates no evidence for possible non-Gaussian behavior, in agreement with the earlier analysis of Kogut et al. (1996). Furthermore, the agreement between the observed DMR functions and the simulated ensembles also supports the validity of our model assumptions, namely that of a scale-invariant power law model for the anisotropies, and uncorrelated noise.
On the other hand, the excellent agreement between the simulated and the observed correlation functions poses an intriguing problem: tests of Gaussianity based on a harmonic analysis of the DMR data - the bispectrum work of Ferreira et al. (1998) and trispectrum results of Kunz et al. (2001) - show compelling evidence for non-Gaussian features (although these have subsequently been associated with systematic artifacts in the DMR data by Banday et al. 2000), while tests based on real-space high-order statistics such as those presented here do not. The resolution of such apparently contradictory results is most likely rather mundane: the source of the non-Gaussian signal was found to be strongly located at the multipole order l=16. Since the correlation functions are by definition (weighted) averages over the full multipole range, the reduced sensitivity to this type of non-Gaussian structure is certainly not unexpected.
Acknowledgements
We acknowledge use of the HEALPix software and analysis package for deriving the results in this paper. H.K.E. acknowledges useful discussions with Per B. Lilje.