A&A 394, 801-805 (2002)
DOI: 10.1051/0004-6361:20021202
A. Malizia
- G. Malaguti
- L. Bassani
- M. Cappi
-
A. Comastri
- G. Di Cocco
- E. Palazzi
- C. Vignali
1 - IASF/CNR, via Piero Gobetti 101, 40129 Bologna, Italy
2 -
INAF/Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy
3 -
Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab,
University Park, PA 16802, USA
Received 20 June 2002 / Accepted 5 August 2002
Abstract
High energy emission has been discovered serendipitously by
the BeppoSAX/PDS telescope in the 1.3
field of view
around the Piccinotti source H0917-074. A re-pointing of
BeppoSAX/NFI has allowed the association of this emission
with the Seyfert 2 galaxy MCG-1-24-12 which lies within the original HEAO1/A2
error box of H0917-074. This is the first PDS serendipitous discovery
of a Seyfert 2 galaxy and the first detection of MCG-1-24-12 in the X-ray
domain. The measured 2-10 keV flux of MCG-1-24-12 is
1
10-11 erg cm-2 s-1 compatible with the Piccinotti HEAO-1/A2
observation. This is a factor of
6 greater
than that observed from EXO0917.3-0722, originally suggested as the counterpart
of the Piccinotti source. The 2-10 keV spectrum of MCG-1-24-12 shows the presence of Fe
K
emission together with an absorption feature at
8.7 keV. At high energies, the Seyfert 2 still dominates and the observed 20-100 keV flux is
4
10-11 erg cm-2 s-1.
Key words: X-rays: galaxies - galaxies: Seyfert - galaxies: individual: MCG-1-24-12
The BATSE instrument on board CGRO provided, for the first time, a systematic coverage of the whole sample at higher energies (20-100 keV range, Malizia et al. 1999) and for the brightest sources OSSE observations in the 50-500 keV band have also been performed (McNaron-Brown et al. 1995; Zdziarski et al. 2000). BeppoSAX has observed almost the whole Piccinotti sample in the broad band 0.1-200 keV energy range, with the exception of the three Seyfert galaxies: IIIZW2, MKN 590 and NGC 3227.
We have carried out a multiyear project to observe with BeppoSAX-NFI the poorly studied (i.e. fainter) sources of the Piccinotti sample among which is the galaxy H0917-074 which was identified with the QSO EXO0917.3-0722. Thanks to the BeppoSAX-PDS observation we discovered that EXO0917.3-0722 is contaminated by another hard X-ray source subsequently identified with the Seyfert 2 galaxy MCG-1-24-12, which is the true X-ray emitter detected by the A2 instrument.
It is worth noting that the high sensitivity of the PDS instrument (Frontera et al. 1997) on board the BeppoSAX satellite has provided the opportunity to increase the number of Seyfert 2s detected up to 100 keV, improving our understanding of the high energy characteristics of this type of object. BeppoSAX observations of Seyfert 2 galaxies have demonstrated that these objects can be powerful hard X-ray emitters (above 10 keV) even though their 2-10 keV radiation is severely attenuated by absorption in thick material (Bassani et al. 1999). In fact, hard X-ray spectra are probably the best tool to directly measure the absorption affecting Seyfert 2 nuclei.
In this paper the BeppoSAX broad band spectrum of the first PDS
serendipitous discovery of a Seyfert 2 galaxy, MCG-1-24-12, is presented.
From this study, which is also the first of this source in the X-ray
domain, MCG-1-24-12 turns out to be a Compton thin Seyfert 2 galaxy
(
atoms cm-2) with a
slightly peculiar spectrum.
![]() |
Figure 1:
The LECS MECS and PDS spectrum of H0917-074 (April 2000 pointing) fitted with a simple
power law model of
![]() |
Open with DEXTER |
The region of the sky around EXO0917.3-0722 was searched for possible high
energy sources, and the only possible candidate found was the
Seyfert 2 MCG
-1-24-12 (z=0.0198), which also lies
within the original HEAO 1/A2 error box (Piccinotti et al. 1982).
In Fig. 2 the original A2 error box for
H0917-074 is shown with the position of MCG-1-24-12 superimposed.
MCG-1-24-12 has an optical magnitude of mv=15 and it is in the 2MASS
catalogue (mJ=14.2, mH=13.3, mK=12.8);
it belongs to the 60 m sample of warm IRAS galaxies (de Grijp et al. 1992; Kinney et al. 2000) with a
(Chatzichristou 2000).
It is also a radio galaxy with a
mJy and its 3.6 cm radio contours show a
70 pc
elongation towards the west (Schmitt et al. 2001),
but it was never observed in the X-ray band.
After finding MCG-1-24-12 as the possible candidate, we were able
to obtain a pointed observation with BeppoSAX
and found that its 2-10 keV flux of
erg cm-2 s-1
is more consistent with that reported in the original Piccinotti source
list (Piccinotti et al. 1982) than that observed from EXO0917.3-0722.
This result indicates that the Seyfert 2 is the correct identification of H0917-074.
Also BATSE detected from this region a 20-100 keV flux of
5
erg cm-2 s-1 (Malizia et al. 1999) which is in perfect agreement with
the PDS 20-100 keV flux of
4
erg cm-2 s-1 reported here from MCG-1-24-12, suggesting that it is this
source that was observed.
![]() |
Figure 2:
The HEAO-1/A2 error box for H0917-074 adapted from Piccinotti et al. (1982).
![]() ![]() |
Open with DEXTER |
Due to the low statistical quality of the data at lower energies,
only data above 1 keV have been considered.
The broad band (1-100 keV) spectrum of MCG-1-24-12 was firstly modeled
with a flat, absorbed power law plus a Gaussian line (model 1, Table 1).
The results are
= 1.59
+0.07-0.03 and
cm-2
while the line is centered at 6.4
+0.16-0.18 keV
with the equivalent width of
EW = 176+61-61 eV. The line is consistent
with being narrow at the 99% confidence level, therefore we have fixed the
value of its width (sigma) to zero.
The residuals clearly show evidence of two more features:
an absorption edge at
keV and a possible
reflection hump at around 30 keV.
We have therefore considered an absorption edge
to account for the deficit at around 8 keV. This
turns out to be located at
E=8.4+0.4-0.6 keV, with optical
depth
.
The addition of this absorbed feature to
the previous model is statistically significant at >98% confidence
using the F-test (
decreases by 12 for 2 more fitting
parameters). The presence of the feature has been confirmed
as it is still detected when using different background event files extracted
from blank areas in the field of view of MCG-1-24-12.
Even taking into account the
presence of the absorption edge, the data to model ratio still shows
residuals at around 8 keV which cannot be fitted by adding one more edge.
Therefore we have replaced the edge with a notch line model
which is equivalent to a very saturated absorption line (model 2). The quality
of the fit improves:
with the same degrees of
freedom. The energy of the absorption line is now 8.7
+0.4-0.15keV and the line width is 0.23
+0.11-0.11 keV (see 3.2.1).
For the excess at 30 keV, we take into account a possible reflection component
(model 3).
When introduced, the reflection turns out
to be strong (
R=1.62+3.38-1.12) with a cut-off at
keV.
The photon index is compatible with the expected canonical value
of Seyfert 2 galaxies. In Fig. 3 the confidence contours
of the reflection component versus the photon index are shown.
The energies of both the emission line and the absorption
line do not change significantly from the previous ones.
In Fig. 4, the confidence contours of the notch
are shown for this more complex model.
The addition of the reflection component further improves the quality of the fit
providing us with our best-fit model. In Fig. 5 the 1-100 keV broad band spectrum of
MCG-1-24-12 fitted with model 3 is shown.
![]() |
Figure 3: 68, 95 and 99 per cent confidence contours of reflection versus photon index for model 3. |
Open with DEXTER |
Model |
![]() |
![]() |
![]() |
EW (eV) |
![]() |
Width
![]() |
R | ![]() |
![]() ![]() |
(1) | 6.27 +0.53-0.57 | 1.59 +0.07-0.03 | 6.40 +0.16-0.18 | 176 +61-61 | - | - | - | 95/62 | |
(2) | 6.25 +0.45-0.45 | 1.57 +0.07-0.07 | 6.40 +0.15-0.20 | 157 +58-61 | 8.70 +0.40-0.15 | 0.23 +0.11-0.11 | - | - | 77/60 |
(3) | 6.54 +0.63-0.61 | 1.74 +0.36-0.27 | 6.38 +0.20-0.18 | 130 +61-55 | 8.72 +0.15-0.19 | 0.20 +0.07-0.12 | 1.62 +3.38-1.12 | >80 | 68/58 |
![]() |
Figure 4: 68, 95 and 99 per cent confidence contours of the notch: width versus energy of the notch. |
Open with DEXTER |
![]() |
Figure 5: The LECS MECS and PDS spectrum of MCG-1-24-12 fitted with model 3 (best-fit model) in Table 1. |
Open with DEXTER |
The broad band spectrum of MCG-1-24-12 is
consistent with that generally found in Seyfert 2 objects,
but the detection of the absorption line makes the spectrum of
MCG-1-24-12 rather peculiar. Generally, the detection of an absorption edge
indicates the presence of a warm photoionized absorber along the line of
sight; therefore we have tried to add a uniform warm absorber in this model as
described by the ABSORI model (Done et al. 1992).
The energy of the edge (8 keV)
strongly suggests that the absorption is mainly due to FeXXIII-FeXXV.
Assuming Dalgarno & Layzer (1987) abundances, the photoelectric cross
section of neutral Fe per hydrogen atom is about
;
therefore, taking the optical depth to be
0.2, as observed, the
column density of the warm material (
/
)
is found to be
atoms cm-2.
Fixing to this value the
parameter in the ABSORI
model, the fit gives an ionization parameter
290
that is still compatible with the
the presence of a neutral Fe line (
keV) but
some residuals at
8 keV still remain and
the quality of the fit is worst (
/
= 130/57).
Another way to explain the production of the absorption edge in the
spectrum of MCG-1-24-12 is by reflection from a ionized disk (PEXRIV model)
which has recently been used successfully to fit the BeppoSAX data of a
sample of Seyfert 1 objects (De Rosa et al. 2001). As generally
observed for the Seyfert 1s, the spectrum turns out to be flat
(
1.64), the reflection component is
,
and the
ionization parameter is around 200; however, again the quality of the fit
does not improve (
/
= 81/55) with respect to the neutral
reflection model.
We conclude that
neither of these two models which allow for the presence of warm material
at the source, provide a better fit than simple reflection
from a standard cold disk.
This may be due to the fact that
both the ABSORI and PEXRIV models are more appropriate
to fit edge-like features and not an absorption line such as that found
in our data.
An absorption feature at around 8 keV has been detected in a few Seyfert
galaxies, e.g. in M81 (Pellegrini et al. 2000) and in NGC 3516
(Nandra et al. 1999; Constantini et al. 2000) which
has been explained recently in terms of the influence of resonant absorption on the iron
emission line by Ruszkowski & Fabian (2000). However, it is worth
noting that the BeppoSAX/MECS instrument has not sufficient resolution at
these energies to resolve the line. With our data we can conclude that
the absorption feature is produced by ions from FeXXIII
to FeXXV (8.5-8.9 keV) within the 90% confidence interval, while its
best fit energy (8.7 keV) corresponds to the FeXXIV K-edge (Makishima
1985).
These values are marginally compatible with the energy of the line
at 6.38
+0.20-0.18 keV. Also the EW of the emission line and the
width of the absorption line are consistent
within the uncertainties of the various parameters
with the measured column
density of
cm-2.
Higher quality data such as those possible with XMM-Newton will provide definite evidence for this feature and will help to better investigate its nature.
With this observation the number of Seyfert 2s belonging to the Piccinotti
sample grows to 8 out of 30 Seyfert galaxies:
all these objects have column densities
atoms cm-2.
In addition a few type 1 Seyferts in the Piccinotti sample have
exceeding this value (NGC 4151, Zdziarski et al. 2002; NGC 526A, Landi et al. 2001;
NGC 3783, De Rosa et al. 2002). This sample is complete down to a flux limit of
erg cm-2 s-1 and therefore can be used to
estimate with some confidence the percentage of absorbed sources at these
high fluxes: out of 31 objects identified with Seyfert/QSO (Malizia et al. 1999 and this
paper), 11 are absorbed above 1022 atoms cm-2, implying
that a consistent fraction (
%) of
all AGN in the 2-10 keV band are absorbed.
Acknowledgements
This research has made use of SAXDAS linearized and cleaned event files produced at the BeppoSAX Science Data Center. We would like to thank the BeppoSAX SDC for the important assistance and the Mission Planning team for their fundamental contribution in performing the observations discussed in this work. We would also thank J. Stephen for a careful reading of the manustript. This research has been partially supported by ASI contracts I/R/103/00 and I/R/107/00. CV also acknowledges the financial support by Chandra X-ray Center grant DD1-2012X and by NASA LTSA grant NAG5-8107.