next previous
Up: XMM-Newton observation of the Hole


Subsections

4 Optical properties

4.1 Optical-to-near-IR colours

A deep broad-band $K^\prime $ (1.92-2.29 $\mu $m) survey of the Lockman Hole region was carried out with the Omega-Prime camera (Bizenberger et al. 1998) at the Calar Alto 3.5 m telescope in 1997 and 1998. This survey covers approximately half the Lockman Hole field.

Several X-ray surveys (Hasinger et al. 1999; Giacconi et al. 2001; Lehmann et al. 2001a; Alexander et al. 2001a) have shown that the $R-K^\prime $ colour of the optical counterparts of X-ray sources increases with the optical faintness, and this in a more pronounced way than for the field sources (Rosati et al. 2002). This trend is also evident in the colour-magnitude diagram $R-K^\prime $ versus R shown in Fig. 4a. We note that the still unidentified objects are significantly redder than the bulk of the identified sources. Using the X-ray information on $N_{\rm H}$, we also find that there is a strong correlation between the X-ray absorption and optical colour. For comparison, we also plot the evolutionary tracks of an early, late and irregular galaxy type using the template library of Coleman et al. (1980), whose spectral energy distributions (SEDs) were extended to the near-IR and far UV using Bruzual & Charlot (1993) models as updated in 2000 (private communication). Magnitudes are normalized to the measured local value $K^\ast=10.8$, and no dust extinction is assumed. The QSO evolutionary track is derived from the empirical template from the Sloan Digital Sky Survey (Vanden Berk et al. 2001), together with the models of Granato et al. (1997), normalized to $M_{\rm B}^\ast=-22.4$ (for brighter objects the curve should be shifted to the left), for the extension in the near IR.

In the $R-K^\prime $ versus $K^\prime $ diagram, shown in Fig. 4b, there is no evident trend between $R-K^\prime $ colour and near-IR flux. Moreover, the range of $K^\prime $ magnitudes covered by the Type-2 AGN and unidentified sources is almost the same as that of the Type-1 AGN population. This is likely due to a combination of a less pronounced absorption effect in the $K^\prime $ band, a different K-correction for AGN-type spectra (small) and star-like galaxy spectra (large), as well as an increased contribution of the host galaxy light in the $K^\prime $ band relative to that of the AGN. Consequently the difference in the observed magnitudes between absorbed and unabsorbed sources is smaller than in the R band.

  \begin{figure}
\par\includegraphics[width=7cm]{h3688f5.ps}\end{figure} Figure 5: Optical/near-infrared colours as a function of redshift for a sample of ROSAT and XMM-Newton sources in the Lockman Hole with optical spectroscopy. Symbols are as in Fig. 3. The evolutionary tracks shown are the same as in Fig. 4. Type-1 AGN have the typical blue colour of a QSO and are unabsorbed, Type-2 AGN follow much redder optical colour tracks expected for their host galaxy - because the optical nucleus is obscured - and are intrinsically absorbed. There are, however, two high-redshift Type-1 QSOs whith strong X-ray absorption (see Sect.  7.4).

The $R-K^\prime $ versus redshift diagram is shown in Fig. 5 for the subsample with optical identification (redshift and AGN type) and X-ray spectral fit (see also Fig. 7 in Lehmann et al. 2001a). The correlation between optical classification, optical/near IR colour and X-ray absorption is even clearer than in Fig. 4. Most of Type-2 AGN, whose optical colours are dominated by the host galaxy, are also significantly absorbed (log $N{\rm _H} >21.5$), whereas Type-1 AGN are unobscured and the emission from the central AGN is contributing significantly to their optical colours. There are two exceptions, high redshift Type-1 QSOs, which are optically unobscured but absorbed in the X-ray band (see Sect. 7.4): this could indicate a variation in the gas-to-dust ratio (Granato et al. 1997; Maiolino et al. 2001a; Maiolino et al. 2001b). The colours of the three sources with photometric redshifts appear to be dominated by the light from their host galaxies.

The spectroscopic identification is still in progress and, to date, we have 24 new XMM-Newton sources with measured redshift using LRIS at the Keck II telescope in March 2001 (PI: Maarten Schmidt). There is an increasing fraction of Type-2 AGN among these fainter X-ray sources, and almost all the identified Type-2 AGN are at z<1. The derived but still preliminary redshift distribution seems to be in clear disagreement with predictions from X-ray background models (e.g. Gilli et al. 2001) based on the integrated emission of Type-1 and Type-2 AGN and constrained by deep ROSAT surveys (see also Hasinger 2002; Rosati et al. 2002). This calls for a revision of the evolutionary parameters of these models for both the space density of Type-1 and Type-2 AGN and the obscuration fraction (Type-1/Type-2 ratio) as a function of the redshift. The latter is directly related to assumptions in the unified AGN scheme.

4.2 X-ray detected Extremely Red Objects

In recent years, much efforts have been devoted to understand the nature of Extremely Red Objects (EROs hereafter). We define EROs as objects with $R-K^\prime \geq 5$[*].

In a recent wide-area survey, Cimatti et al. (2002) have spectroscopically identified a sizable sample of field EROs with K<19.2 and found them to be almost equally divided between old passively evolving ellipticals and dusty star-forming galaxies at 0.7< z < 1.5. With XMM-Newton and Chandra observations (Alexander et al. 2001b; Brusa et al. 2002), the fraction of optical counterparts with extremely red colours has significantly increased when compared to the first examples of EROs found in ROSAT surveys (Lehmann et al. 2001a).


  \begin{figure}
\par\includegraphics[width=16cm,clip]{h3688f6.ps} %
\end{figure} Figure 6: X-ray flux in the [0.5-2.0] a) and [2.0-10.] b) keV bands versus optical R magnitudes for those sources in the Lockman Hole with available R band photometry. Symbols are as in Fig. 3. The dashed lines are X-ray-to-optical flux ratio $\log (\frac{f_X}{f_R})$ of -1, 0and 1.


  \begin{figure}
\par\includegraphics[width=16cm,clip]{h3688f7.ps} %
\end{figure} Figure 7: X-ray flux in the [0.5-2.0] a) and [2.0-10.] b) keV bands versus optical $K^\prime $ magnitudes for those sources in the Lockman Hole with available $K^\prime $ band photometry. Symbols are as in Fig. 3.


  \begin{figure}
\par\includegraphics[width=15.5cm]{h3688f8.ps} %
\end{figure} Figure 8: X-ray luminosity in the [0.5-2] a) and [0.5-10] b) keV rest-frame band versus the logarithm of the column density $N_{\rm H}$. Symbols are as in Fig. 3. Arrows show luminosities corrected for intrinsic absorption. The dashed lines in panel b) define the "Type-2 QSO region''.


 

 
Table 1: X-ray detected EROs.
  Ty-1a Ty-2b Unid.c Absd

${R-K}^\prime \geq 3$
12 ($24\%$) 14 ($28\%$) 21 ($43\%$) 20 ($41\%$)
${R-K}^\prime \geq 4$ 2 ($6\%$) 10 ($30\%$) 19 ($57\%$) 16 ($48\%$)
$R-K^\prime \geq 5$ 0 ($0\%$) 2 ($11\%$) 14 ($78\%$) 12 ($67\%$)
${R-K}^\prime \geq 6$ 0 ($0\%$) 0 ($0\%$) 6 ($100\%$) 4 ($67\%$)
a Type-1 AGN.
b Type-2 AGN.
c Unidentified sources.
d Sources with $\log~(N_{\rm H})>21.5$.


In the subsample of 66 X-ray sources with measured $R-K^\prime $colour, we find 18 (or 27$\%$) EROs. Two of them are Type-2 AGN, one is classified as a normal galaxy, one is an extended source and 14 are unidentified sources; no Type-1 AGN are found. From Table 1, we infer that the fraction of Type-1 AGN decreases with increasing values of $R-K^\prime $, whereas the fraction of unidentified sources and intrinsically absorbed ( $\log(N{\rm
_H})>21.5$) sources increases. Moreover, all the X-ray detected EROs have an X-ray-to-optical flux ratio $\log (\frac{{f_X}[2-10~{\rm keV}]}{{f_R}})>1$ (see Fig. 6b) and they sample the hardest part of X-ray colour-colour diagrams (see Fig. 3). The X-ray luminosities in the [0.5-10] keV rest-frame energy band of the seven EROs with known spectroscopic and/or photometric redshift are in the range $2.6
\times 10^{42}{-}8 \times 10^{44}$ erg s-1. We thus conclude that our X-ray selected sample of EROs is heavily dominated by sources with strong AGN activity and absorbed X-ray spectra (twelve, or 67$\%$, have $\log(N_{\rm H}) > 21.5$).


 
Table 2: X-ray catalogue.
XID Rosat Typea RA Dec Off-axis counts Fluxb Fluxb Fluxb R $K^\prime $ $R-K^\prime $ z $\log(N_{\rm H})^c$ $\Gamma^d$ $L_{\rm X}$e $L_{\rm X}$e
          anglef [0.5-7] [0.5-2] [2-10] [5-10]             [0.5-2] [2-10]
1 28 2 10 54 21.3 +57 25 43 13.58 6071 11.06 20.31 9.30 ... ... ... 0.205 21.29 21.2621.32 1.89 1.851.93 43.356 43.715

2 32 1 10 52 39.6 +57 24 32 4.28 4440 5.87 6.02 2.97 17.9 16.1 1.8 1.113 0.00 2.49 2.452.53 44.911 44.745

3 6 1 10 53 16.8 +57 35 52 8.40 3590 5.90 8.60 3.86 18.8 16.6 2.2 1.204 0.00 1.91 1.871.94 44.783 44.964

4 29 1 10 53 35.1 +57 25 43 7.65 3164 4.73 6.45 2.62 19.5 17.2 2.3 0.784 0.00 2.02 1.982.06 44.276 44.366

5 8 5 10 51 30.9 +57 34 39 11.30 1958 4.66 0.65 0.00 ... ... ... ... ... ... ... ...

6 16 1 10 53 39.7 +57 31 05 7.95 1537 3.16 3.15 1.33 19.4 16.3 3.1 0.586 0.00 2.50 2.452.56 43.880 43.663

7 0 5 10 53 00.5 +57 42 10 13.58 1271 3.58 0.00 0.00 ... ... ... ... ... ... ... ...

8 31 1 10 53 31.9 +57 24 56 7.64 1208 1.84 2.21 1.16 20.5 17.7 2.8 1.956 0.00 1.93 1.861.99 44.882 45.088

9 232 5 10 53 36.3 +57 38 01 11.67 962 2.42 0.00 0.00 ... ... ... ... ... ... ... ...

10 25 1 10 53 44.9 +57 28 41 8.33 746 1.17 1.69 0.50 20.8 18.0 2.8 1.816 0.00 1.89 1.801.91 44.484 44.708

11 9 1 10 51 54.3 +57 34 36 8.74 744 1.24 1.60 0.74 21.2 18.3 2.9 0.877 20.20 19.7620.30 2.18 2.062.35 43.833 43.837

12 513 1 10 52 54.4 +57 23 42 5.32 681 0.86 1.33 0.62 22.3 18.3 4.0 0.761 0.00 1.75 1.651.88 43.365 43.631

13 37 1 10 52 48.1 +57 21 17 7.54 612 1.11 0.77 0.34 20.1 17.3 2.8 0.467 0.00 2.81 2.722.91 43.310 42.905

14 2 1 10 52 30.1 +57 39 13 10.57 599 1.14 1.55 0.48 ... ... ... 1.437 21.03 20.3021.36 2.03 1.892.12 44.127 44.352

15 12 2 10 51 48.6 +57 32 47 8.32 570 0.41 3.29 2.17 22.9 18.0 4.9 0.990 23.50 23.2923.74 2.02 1.612.80 42.922 44.239

16 77 1 10 52 59.1 +57 30 29 2.75 516 0.62 1.15 0.70 22.1 18.8 3.3 1.676 0.00 1.56 1.451.71 44.100 44.528

17 0 9 10 54 07.1 +57 35 27 13.09 511 1.35 1.44 0.63 ... ... ... ... 0.00 2.29 2.202.38 ... ...

18 426 1 10 53 03.8 +57 29 24 2.87 443 0.76 0.81 0.00 22.0 17.5 4.5 0.788 20.79 19.7620.90 2.14 1.912.38 43.202 43.288

19 14 9 10 52 42.2 +57 31 58 3.18 427 0.46 1.28 0.64 25.0 19.6 5.4 1.94 phot.g 22.59 22.3922.77 1.67 1.411.97 43.825 44.644

20 120 1 10 53 09.3 +57 28 21 3.57 426 0.54 0.75 0.45 20.4 17.7 2.7 1.568 0.00 2.12 1.982.28 44.192 44.307

21 27 1 10 53 51.5 +57 27 04 9.37 412 0.65 0.89 0.56 20.8 18.6 2.2 1.720 0.00 1.66 1.561.76 44.258 44.634

22 5 1 10 53 02.5 +57 37 57 9.53 387 0.63 1.06 0.48 21.0 18.3 2.7 1.881 0.00 1.94 1.792.11 44.169 44.383

23 30 1 10 52 57.3 +57 25 06 4.16 368 0.61 0.72 0.00 21.1 18.0 3.1 1.527 0.00 2.35 2.212.50 44.239 44.185

24 0 2 10 52 37.8 +57 33 22 4.62 352 0.17 2.03 1.61 22.6 17.5 5.1 0.707 23.01 22.7023.18 1.63 1.401.87 42.362 43.711

25 84 9 10 52 17.0 +57 20 17 9.21 332 0.32 1.51 0.75 25.5 19.3 6.2 2.71 phot.g 23.51 23.3723.63 2.27 1.922.64 ... 44.903

26 117 2 10 53 48.6 +57 30 35 8.99 321 0.34 1.27 1.02 22.9 19.5 3.4 0.780 22.27 22.0622.53 1.50 1.201.90 42.327 43.572

27 45 2 10 53 19.2 +57 18 52 11.06 287 0.47 0.52 0.00 21.2 ... ... 0.711 20.32 19.7620.48 1.77 1.592.01 43.018 43.284

28 23 1 10 52 24.6 +57 30 10 2.83 286 0.35 0.64 0.00 22.4 18.0 4.4 1.009 20.94 19.7621.32 1.95 1.652.33 43.248 43.485

29 13 1 10 52 13.1 +57 32 22 5.36 277 0.39 0.50 0.00 22.0 19.5 2.5 1.872 20.73 19.7621.11 1.81 1.632.07 ... 44.230

30 52 1 10 52 43.4 +57 15 45 13.04 250 0.57 0.46 0.00 ... ... ... 2.144 0.00 2.29 2.152.48 44.555 44.552

31 104 2 10 52 41.3 +57 36 50 8.05 224 0.28 0.81 0.49 18.8 ... ... 0.137 22.26 21.6022.29 1.95 1.312.25 41.209 41.862

32 491 9 10 52 25.3 +57 25 50 3.79 216 0.16 0.72 0.49 24.6 18.3 6.3 ... 22.04 21.7322.30 2.17 1.522.89 ... ...

33 123 9 10 51 28.3 +57 27 37 10.11 209 0.16 1.24 0.60 23.6 20.0 3.6 ... 22.15 21.8322.40 1.90 1.302.34 ... ...

34 80 1 10 51 44.6 +57 28 07 7.87 207 0.30 0.45 0.00 21.2 19.2 2.0 3.409 21.08 19.7622.11 1.75 1.532.06 ... 44.958

35 116 2 10 52 37.5 +57 31 05 2.40 206 0.26 0.47 0.32 20.9 16.1 4.8 0.708 20.99 19.7621.41 1.50 1.271.75 42.789 43.304

36 814 1 10 52 45.2 +57 21 21 7.45 199 0.30 0.29 0.00 20.5 19.0 1.5 2.832 0.00 2.12 1.882.32 44.335 44.524

37 486 9 10 52 43.2 +57 28 00 0.79 191 0.19 0.44 0.34 24.4 19.1 5.3 1.21 phot.g 22.02 21.7222.29 1.49 1.161.59 42.855 43.879

38 0 2 10 52 06.6 +57 29 24 4.92 187 0.15 0.84 0.34 21.8 17.5 4.3 0.708 21.93 21.2322.31 1.47 0.971.83 ... 43.072

39 0 9 10 54 04.5 +57 20 36 13.72 179 0.44 0.00 0.00 ... ... ... ... 0.00 2.74 2.573.00 ... ...

40 20 5 10 54 10.5 +57 30 40 11.90 178 0.43 0.00 0.00 ... ... ... ... ... ... ... ...



 
Table 2: continued.
XID Rosat Typea RA Dec Off-axis counts Fluxb Fluxb Fluxb R $K^\prime $ $R-K^\prime $ z $\log(N_{\rm H})^c$ $\Gamma^d$ $L_{\rm X}$e $L_{\rm X}$e
          anglef [0.5-7] [0.5-2] [2-10] [5-10]             [0.5-2] [2-10]
41 0 2 10 53 05.4 +57 28 10 3.08 176 0.00 0.88 1.15 23.1 17.8 5.3 0.792 23.55 23.3123.80 2.00 1.332.85 42.413 43.613

42 821 1 10 53 22.1 +57 28 52 5.26 170 0.25 0.26 0.00 22.7 18.7 4.0 2.340 21.43 19.7621.75 1.89 1.592.24 44.004 44.478

43 75 1 10 51 25.3 +57 30 48 10.62 161 0.27 0.33 0.57 19.3 17.6 1.7 3.410 21.84 19.7622.32 1.84 1.552.15 ... 45.000

44 477 1 10 53 05.6 +57 34 25 6.39 159 0.22 0.26 0.00 20.3 18.4 1.9 2.949 0.00 2.21 1.912.55 44.439 44.651

45 430 9 10 53 15.3 +57 26 30 4.91 158 0.14 0.64 0.00 24.3 19.0 5.3 ... 21.95 21.9522.83 1.75 0.969.76 ... ...

46 0 1 10 52 36.7 +57 34 02 5.31 149 0.14 0.52 0.42 24.2 ... ... 0.164 21.85 21.2822.55 1.51 1.002.74 41.020 41.831

47 0 9 10 53 48.1 +57 28 16 8.77 148 0.18 0.42 0.00 25.5 18.5 7.0 ... 21.88 21.5622.16 1.83 1.172.82 ... ...

48 607 9 10 52 20.2 +57 23 06 6.46 147 0.19 0.28 0.00 24.1 19.8 4.3 ... 20.52 19.7621.00 1.91 1.632.34 ... ...

49 0 9 10 51 11.8 +57 26 35 12.47 142 0.25 0.36 0.00 ... ... ... ... 19.90 19.7620.85 1.52 1.261.90 ... ...

50 901 2 10 52 53.0 +57 28 59 1.36 138 0.05 0.33 1.25 15.3 11.9 3.4 0.204 23.64 23.3723.82 2.97 1.934.02 41.031 42.219

51 18 1 10 52 28.2 +57 31 05 3.03 136 0.17 0.26 0.00 22.6 19.5 3.1 0.993 0.00 1.78 1.412.21 42.952 43.198

52 428 1 10 53 24.6 +57 28 19 5.62 132 0.24 0.41 0.00 22.4 18.8 3.6 1.598 21.20 19.7621.73 1.77 1.492.08 43.626 44.061

53 38 1 10 53 29.6 +57 21 04 9.96 130 0.27 0.33 0.00 21.3 ... ... 1.145 20.34 19.7620.60 2.18 1.932.58 43.514 43.539

54 804 1 10 53 12.4 +57 34 25 6.88 128 0.19 0.28 0.00 22.7 19.1 3.6 1.213 0.00 2.24 1.922.45 43.108 43.256

55 0 9 10 54 10.9 +57 30 57 12.00 127 0.31 0.37 0.00 ... ... ... ... 19.92 19.7620.00 2.34 2.142.58 ... ...

56 0 2 10 52 51.6 +57 32 00 3.41 125 0.16 0.28 0.00 21.3 16.8 4.5 0.664 21.41 20.0021.84 1.81 1.352.21 42.538 42.996

57 36 1 10 52 25.7 +57 23 02 6.22 125 0.22 0.27 0.00 22.5 18.6 3.9 1.524 21.34 19.7621.65 2.56 2.062.82 43.604 43.640

58 802 5 10 52 21.9 +57 37 34 9.22 123 0.28 0.00 0.00 15.9 ... ... ... ... ... ... ...

59 54 1 10 53 07.7 +57 15 05 14.11 122 0.21 0.28 0.00 ... ... ... 2.416 0.00 1.66 1.491.74 44.139 44.546

60 0 3 10 52 47.6 +57 36 22 7.60 121 0.00 0.72 1.12 17.9 ... ... 0.118 23.35 22.8223.71 2.69 2.183.18 40.228 41.566

61 0 9 10 52 48.5 +57 41 28 12.69 118 0.25 0.26 0.00 ... ... ... ... 20.51 19.7621.15 2.08 1.662.73 ... ...

62 0 9 10 53 01.8 +57 15 00 14.03 113 0.18 0.28 0.00 ... ... ... ... 20.75 19.7621.34 1.65 1.212.25 ... ...

63 0 2 10 52 52.1 +57 31 33 3.03 106 0.07 0.45 0.00 19.1 16.0 3.1 ... 21.97 21.4022.39 1.74 0.952.60 ... ...

64 0 9 10 53 30.5 +57 25 16 7.31 104 0.15 0.00 0.00 25.9 19.7 6.2 ... 0.00 1.84 1.771.91 ... ...

65 0 9 10 52 11.1 +57 32 04 5.38 102 0.06 0.53 0.00 25.3 19.5 5.8 ... 22.04 21.6522.42 1.74 1.402.60 ... ...

66 870 1 10 52 25.4 +57 22 51 6.40 101 0.18 0.00 0.00 21.3 17.8 3.5 0.807 0.00 2.25 1.892.69 42.701 42.663

67 34 4 10 52 58.2 +57 23 56 5.27 100 0.17 0.25 0.00 26.6 ... ... 0.340 ... ... 42.173 42.546

68 128 4 10 53 50.8 +57 25 13 9.81 98 0.21 0.27 0.00 19.9 ... ... 0.033 ... ... 39.754 39.902

69 634 1 10 53 11.6 +57 23 08 6.86 97 0.13 0.23 0.00 23.2 ... ... 1.544 0.00 1.43 1.161.73 ... 43.715

70 0 9 10 53 15.5 +57 24 51 5.90 95 0.04 0.53 0.00 24.5 19.4 5.1 ... 22.12 21.6322.54 1.77 1.023.09 ... ...

71 82 1 10 53 12.3 +57 25 06 5.41 94 0.14 0.00 0.00 22.8 19.0 3.8 0.960 0.00 1.64 1.381.93 43.022 43.471

72 0 9 10 52 31.8 +57 24 30 4.55 94 0.00 0.49 0.34 24.1 19.6 4.5 ... ... ... ... ...

73 19 1 10 51 37.3 +57 30 42 9.02 92 0.13 0.34 0.00 22.2 19.0 3.2 0.894 20.20 19.7621.64 1.68 1.332.30 42.521 42.843

74 0 9 10 52 43.4 +57 35 46 6.97 91 0.14 0.00 0.00 ... ... ... ... 0.00 1.66 1.282.64 ... ...

75 0 9 10 51 46.6 +57 30 35 7.78 91 0.18 0.00 0.00 25.6 19.2 6.4 ... 0.00 1.96 1.382.38 ... ...

76 0 9 10 51 55.3 +57 29 34 6.45 90 0.12 0.00 0.00 24.7 20.4 4.3 ... 0.00 1.63 1.222.30 ... ...

77 0 9 10 53 47.1 +57 33 51 9.98 90 0.21 0.00 0.00 ... ... ... ... 0.00 1.91 1.642.27 ... ...

78 861 1 10 53 58.3 +57 29 23 10.14 89 0.15 0.00 0.00 22.5 ... ... 1.843 0.00 1.84 1.592.05 43.725 44.007

79 228 4 10 53 39.8 +57 35 18 10.01 88 0.20 0.42 0.00 22.8 17.2 5.6 1.250 ... ... 43.843 44.022

80 0 9 10 52 07.2 +57 34 12 7.23 87 0.12 0.27 0.00 23.1 ... ... ... ... ... ... ...



 
Table 2: continued.
XID Rosat Typea RA Dec Off-axis counts Fluxb Fluxb Fluxb R $K^\prime $ $R-K^\prime $ z $\log(N_{\rm H})^c$ $\Gamma^d$ $L_{\rm X}^e$ $L_{\rm X}^e$
          anglef [0.5-7] [0.5-2] [2-10] [5-10]             [0.5-2] [2-10]
81 0 9 10 52 54.8 +57 31 51 3.44 87 0.08 0.28 0.33 22.9 ... ... ... 21.71 20.0022.24 1.22 0.391.98 ... ...

82 0 9 10 52 37.0 +57 16 03 12.77 86 0.15 0.00 0.00 ... ... ... ... 0.00 1.98 1.712.24 ... ...

83 0 9 10 53 30.9 +57 39 23 12.39 81 0.00 0.64 0.61 ... ... ... ... 22.04 21.9522.70 1.10 0.401.80 ... ...

84 0 2 10 51 50.1 +57 25 21 7.90 80 0.07 0.34 0.00 21.8 17.4 4.4 0.676 21.97 21.1822.37 1.42 0.832.23 41.890 42.901

85 0 9 10 53 21.4 +57 31 48 5.98 78 0.10 0.27 0.00 25.5 19.3 6.2 ... 21.53 20.9021.53 2.42 1.474.39 ... ...

86 0 9 10 53 46.9 +57 26 06 9.01 75 0.10 0.00 0.39 23.2 19.6 3.6 ... 0.00 2.00 1.523.03 ... ...

87 0 9 10 52 23.8 +57 25 32 4.16 75 0.09 0.00 0.00 24.7 19.6 5.1 ... 0.00 1.63 1.262.37 ... ...

88 41 4 10 53 19.0 +57 20 48 9.36 73 0.15 0.00 0.00 17.5 ... ... 0.340 ... ... 42.336 42.279

89 0 9 10 52 42.3 +57 29 11 0.41 73 0.08 0.20 0.00 24.0 19.8 4.2 ... 19.60 19.7621.57 1.06 0.681.65 ... ...

90 33 1 10 52 00.3 +57 24 20 7.27 73 0.07 0.20 0.32 22.2 19.4 2.8 0.974 0.00 0.67 0.201.37 42.309 43.115

91 0 9 10 51 20.6 +57 26 59 11.22 73 0.12 0.00 0.00 ... ... ... ... ... ... ... ...

92 0 3 10 52 58.6 +57 33 35 5.24 72 0.10 0.00 0.00 24.3 19.0 5.3 0.417 20.97 20.9022.52 1.61 1.102.53 41.853 42.282

93 21 9 10 51 55.1 +57 30 43 6.70 72 0.09 0.00 0.00 24.2 20.1 4.1 ... 0.00 1.89 1.302.90 ... ...

94 434 2 10 52 58.4 +57 22 51 6.30 71 0.13 0.00 0.00 22.2 18.0 4.2 0.762 21.36 20.7821.66 2.12 1.692.56 42.862 43.123

95 0 9 10 52 31.5 +57 25 03 4.05 71 0.00 0.23 0.38 24.8 19.8 5.0 ... 22.28 19.7622.85 1.13 -0.062.31 ... ...

96 39 1 10 52 09.7 +57 21 04 8.94 71 0.14 0.00 0.00 21.7 20.6 1.1 3.281 22.69 22.3023.00 2.55 2.003.20 ... 44.472

97 108 2 10 52 27.8 +57 33 30 5.14 71 0.09 0.00 0.00 22.1 18.4 3.7 0.696 21.08 19.7622.01 1.36 0.782.33 42.097 42.719

98 0 9 10 52 41.5 +57 30 39 1.88 70 0.07 0.00 0.00 25.5 20.3 5.2 ... 0.00 1.46 1.211.51 ... ...

a Optical classification: 1 = Type1 AGN, 2 = Type2 AGN, 3 = galaxy, 4 = group/cluster, 5 = star, 9 = unidentified source.
b In units of 10-14 erg s-1 cm-2.
c Intrinsic absorption in excess to the Galactic ones ($\sim $ $5.7\times 10^{19}$ cm-2) and 90$\%$ confidence range.
d Spectral Index and $90\%$ confidence range.
e Log of observed luminosity in the rest-frame band, in units of erg s-1.
f In arcmin.
g Photometric redshifts (see Lehmann et al. 2001a).


In the 1 Msec observation of the Chandra Deep Field South (Tozzi et al. 2001; Rosati et al. 2002) about 5$\%$ of the optically selected EROs are detected at X-ray energies, and their stacked spectrum is consistent with absorbed objects. In that field 19$\%$ of the X-ray sources are EROs, down only to the flux limits of our complete sample in the Lockman Hole.


next previous
Up: XMM-Newton observation of the Hole

Copyright ESO 2002