A&A 392, 729-733 (2002)
DOI: 10.1051/0004-6361:20021006
Research Note
D. Hestroffer1 - J. Berthier1 - P. Descamps1 - P. Tanga2,
- A. Cellino2
- M. Lattanzi2
- M. Di Martino2 - V. Zappalà2
1 - IMCCE, UMR CNRS 8028, Observatoire de Paris,
77 Av. Denfert Rochereau, 75014 Paris, France
2 -
Osservatorio Astronomico di Torino (OATo),
Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy
Received 10 April 2002 / Accepted 5 July 2002
Abstract
The shape model of Ostro et al. (2000) for (216) Kleopatra - obtained from
inversion of the radar data (Hudson & Ostro 1994) - is compared to the high resolution
interferometric observations of the HST/FGS astrometer, and additionally
to observed lightcurves and stellar occultations data.
It appears that the radar nominal-model, while being in global agreement with these
data, doesn't adequately reproduce all of them. In particular the flattening seems
to be underestimated by 20%. The HST/FGS observations
should provide valuable constraints for determining a more refined shape
model, since the model obtained from the radar data alone is subject to some
uncertainty. Such a refined model of Kleopatra should
provide valuable insights for explaining the formation of this interesting object,
and the formation and evolution of binary asteroids in general.
Key words: techniques: high angular resolution - occultations - minor planets, asteroids
Knowledge of the shapes of large asteroids in the main-belt is important because they are the result of a complex collisional history. Apart from "giant'' asteroids like Ceres and few others, most asteroids are the outcomes of catastrophic collisions, yielding to "rubble pile'' structures whose overall shapes may correspond to equilibrium figures (Farinella et al. 1981,1982). Collisions characterized by large angular momentum transfer may even produce binary systems that may eventually evolve into a single body having a bifurcated shape. An alternative could be the result of a gentle collision, in cases in which the shape of a "rubble pile'' could follow internal stress contours in a compressible material (Washabaugh & Scheeres 2001). It is therefore important to test the validity and limits of Kleopatra's shape models using data from independent observational techniques. This analysis can be done taking profit of a large set of available data, including photometric lightcurves, stellar occultation data, and high resolution interferometric observations recently obtained using the HST/FGS astrometer (Tanga et al. 2001).
Predicted lightcurves can then be computed from the physical ephemeris. However, radar
images do not carry information about the photometric properties in the optical domain of a
body's surface. These light-scattering properties can, on the other hand, be constrained
from observed lightcurves
(Lagerkvist et al. 1996).
We have introduced different scattering laws, i.e. normalized brightness distributions:
uniform brightness I=1, Lambert
,
Lommel-Seeliger
,
Minnaert
,
where
and
are cosines of the angles of
emission and incidence, respectively. Among these scattering laws the parameterized
Minnaert law (Minnaert 1941) with
better reproduces
the lightcurves of Kleopatra observed at moderate aspect and solar-phase angles.
This means that Kleopatra appears with a moderate center-to-limb darkening, in
agreement with Hestroffer & Mignard (1997), Hestroffer (1998) or Ragazzoni et al. (2000).
Once the physical ephemeris, albedo variation, and light-scattering are set,
it is possible to model the image and brightness distribution at visible
wavelengths at any epoch.
The topographic model was originally scaled in size to the occultations chords. From Fig. 1 we infer that Kleopatra's shape model is in general good agreement with the observed chords. The largest discrepancies are of the order of 30 km, well within the error bars of the model. Despite the inherent difficulty of obtaining robust occultation data, it must be noted that the overall size of the contour on its most elongated direction is well constrained in the 1991 event by a photoelectric chord or by two independent and consistent chords. Hence, based mainly on the 1991 data, it cannot be excluded that a more elongated topographic model could provide a better fit to the measured chords, without drastic change to the 1980 plot.
![]() |
Figure 1: Comparison between the observed occultation data and the radar model. Left panel: occultation of Oct. 10, 1980 at 7.00 h UTC. Right panel: occultation of Jan. 1, 1991 at 5.28 h UTC. The dashed lines correspond to negative observations. Error bars are given by crosses and are negligible for the photoelectric observations. |
Open with DEXTER |
![]() |
Figure 2:
Observed and computed lightcurves for (216) Kleopatra at nearly equatorial
views (![]() |
Open with DEXTER |
It appears in Fig. 2 that the computed lightcurves do not reproduce the large
amplitude of the observed ones. This could be due to the choice of the limb-darkening
parameter, since the higher the limb-darkening, the larger the amplitude of the curve.
However, we have verified that even using the largest possible Lambertian center-to-limb
darkening - which is typical of icy satellites and shall not be realistic for a M-type
asteroid - the amplitude would still be underestimated in some cases by about 20%.
This suggests that, assuming a moderate limb-darkening parameter, either important
albedo variations are present on both ends of Kleopatra's surface, or its actual
shape is likely to be more elongated with dimensions ratio of the order of
,
hence consistent with the error-bars of the model (
).
Kleopatra was observed with the HST/FGS astrometer on January 13, 2000,
providing data with a moderate to good signal-to-noise ratio (Tanga et al. 2001). Due to
the limitation in time allocation, the observing run covers only 15% of Kleopatra's
5.385 hour rotation period (see Table 1).
Deriving shape models from the inversion of these data is limited by such short
time-span, but on the other hand, the high resolution HST/FGS data can provide
valuable information and constraints on existing 3-dimensional topographic models.
The HST observing run is divided into 17 visits of about 2.5 min duration
each, producing a number of S-curves given by Eq. (1) along the two
perpendicular FGS-X and -Y axes. The orientation of Kleopatra
with respect to the FGS axes is given in Fig. 3 for the last
visit. The sub-Earth point longitude was increasing from
at the first
visit, to
at the last visit.
Figure 4 shows the comparison of the radar model to the HST/FGS
observations for five arbitrarily selected visits. The modeled S-curve in
Eq. (1) needs to be translated both along the abscissa and ordinate
directions to check the agreement with the observations. This is done by
minimizing the residuals over the interval
.
This procedure is of
little consequence, but useful to mention in order to understand the meaning of the
superposition of the observed and computed curves in case of lower goodness of fit.
It appears that the discrepancies between the observed and calculated data are, on
the average, within the uncertainties of the nominal shape model of Kleopatra.
However the residuals between the observed and calculated interferograms are larger
- and statistically significant - in the second half of the observing run. These
systematic features on the residuals, approximately two to three times larger than
the typical rms of the FGS observational data noise, shows that the
HST/FGS data available for Kleopatra can valuably constrain the shape
determination of this object.
Visit # | UTC mid [hr] | Visit # | UTC mid [hr] |
1 | 13.57 | a | 13.93 |
2 | 13.62 | b | 13.97 |
3 | 13.66 | c | 14.01 |
4 | 13.70 | d | 14.05 |
5 | 13.74 | e | 14.09 |
6 | 13.78 | f | 14.13 |
7 | 13.82 | g | 14.17 |
8 | 13.86 | h | 14.21 |
9 | 13.89 |
![]() |
Figure 3: Physical ephemeris of the shape model for Kelopatra on the last visit. |
Open with DEXTER |
The FGS data are limited to a single epoch and cover approximately 45 min, thus they do not test the whole structure of the radar-derived model. In addition to the nominal 3-dimensional topographic model, some parameters such as those describing the scattering of light at the surface, possible albedo variations, and the rotational phase angle have to be introduced in this analysis. However, we have verified that changing the light-scattering law or variations in its associated parameter, as well as variations in the zero rotational phase-angle of a few degrees have little effect on the interferogram shape, while albedo features must be large and important to significantly change the overall shape of the computed S-curves. Hence, reasonable errors in the above approximations should produce only second order effects on the modeled lightcurves and S-curve shapes, and cannot exclusively explain the discrepancy between the radar-derived model and these independent observations. Nevertheless, a larger and more elongated body-model could be more consistent with the occultations, the photometric and the interferometric HST/FGS results. This suggests that Kleopatra's modeled overall size and shape flattening are likely underestimated to be fully compatible with the whole set of observations available for this object. Also the accuracy in size and shape of the present model could be improved by combining all these observations and in particular the radar and FGS data.
![]() |
Figure 4: Comparison between the observed HST/FGS data and the radar model. The computed interferogram (see text) is plotted (line) against the observed one for five selected visits and for both FGS axes (X on the left side, and Y on the right). The UTC (hours and decimals) of the observations are given in the small box. |
Open with DEXTER |
Interestingly, the radar data (Ostro et al. 2000) and the adaptive optics data (Marchis et al. 1999) might be consistent with the presence of an empty gap in the middle of the asteroid, hence closer to a separated binary model. On an other hand, a simple model of a non-convex single-object consisting of two "overlapping ellipsoids'' (i.e. the shape is modeled by the union two ellipsoids whose center-to-center separation is less than the sum of the semi-major axes) provides a better fit to the HST/FGS data (Tanga et al. 2001). The latter model also better reproduces the large amplitude of the lightcurves given in Fig. 2. However, it does not completely match neither the observed stellar occultation chords, nor the detailed features of the observed lightcurves of this body. In particular the size of the medium and shortest axes of the Tanga et al. (2001) model are underestimated, while the longest axis fits inside the limits of the 1991 occultation. Other observations with the HST/FGS astrometer at different aspect angle would be needed to better constrain the shape in those directions.