A&A 390, L1-L4 (2002)
DOI: 10.1051/0004-6361:20020850
R. S. Furuya 1 - R. Cesaroni 1 - C. Codella 2 - L. Testi 1 - R. Bachiller 3 - M. Tafalla 3
1 -
Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5,
50125 Firenze, Italy
2 -
Istituto di Radioastronomia, CNR, Sezione di Firenze, Largo E. Fermi 5,
50125 Firenze, Italy
3 -
Observatorio Astronómico Nacional (IGN), Apartado 1143,
28800 Alcalá de Henares (Madrid), Spain
Received 6 May 2002 / Accepted 6 June 2002
Abstract
We present the results of high angular resolution
observations at millimeter wavelengths of the high-mass star
forming region G24.78+0.08, where a cluster of
four young stellar objects is detected.
We discuss evidence for these to be high-mass
(proto)stars in different evolutionary phases.
One of the sources is detected only in the continuum at 2 and 2.6 mm and
we suggest it may represent a good candidate of a high-mass protostar.
Key words: stars: formation - radio lines: ISM - ISM: jets and outflows - ISM: individual objects: G24.78+0.08
High-mass stars are usually defined as stars with mass above 8
:
for zero-age main sequence (ZAMS) objects, this corresponds to a luminosity
and a spectral type earlier than B3. Such a
definition is based on a basic theoretical result
(Palla & Stahler 1993): unlike their
low-mass equivalents, protostars with masses above 8
are expected
to evolve on
timescales much shorter than those relevant to accretion. As a consequence,
they reach the ZAMS still deeply embedded in their parental clouds.
Consequently,
the dusty parental cocoon
makes difficult to observe the newly born stars which can be studied
only in the IR or at longer wavelengths. Moreover, massive stars form
in clusters,
which not only complicates the observations of each single young stellar object
(YSO), but also
profoundly affects the surrounding environment: copious production of
Lyman continuum photons eventually leads to the destruction of the parental
cloud thus making impossible to trace back the formation process.
![]() |
Figure 1:
Overlay of the 1.3 cm continuum image of CTC (grey
scale) with the maps (contours) of the 7 mm (top left panel),
2.6 mm (top right), and 2 mm continuum (bottom left), and CH3CN(8-7)
line (bottom right) emission. Circles, squares, and triangles
represent respectively CH3OH (Walsh et al. 1998), OH and H2O (Forster & Caswell 1999) maser spots.
Contour levels are as follows:
0.5, 0.9, 1.5, 6, and 15 to 90 in steps of 15 mJy/beam
for the 7 mm map;
15 and 30 to 150 in steps of 30 mJy/beam for 2.6 mm map;
7 and 17 to 122 in step of 15 mJy/beam for the 2 mm map;
70, 120, and 220 to 1420 in steps of 200 mJy/beam for the CH3CN map.
The 3![]() |
Open with DEXTER |
Notwithstanding these difficulties, in recent years much progress has been
done to identify earlier and earlier stages in the evolution of massive stars
(see e.g. Kurtz et al. 2000).
This eventually resulted in a scenario according to which high-mass
star formation would proceed in dense, massive cores 0.1 pc in size:
as time goes on, the temperature of such cores would increase and the
original spherical symmetry would change into a more axisymmetric structure;
the embedded stars would develop circumstellar disks and bipolar outflows
along the disk axes, which would allow expansion of the ultracompact (UC)
H II regions created by the Lyman continuum of the stars.
Given the relatively large number of hot cores and UC H II regions
revealed
to date, the latest phases of such a scenario are quite well assessed;
as opposite, we still have a limited understanding
of the very earliest stages, prior to the
arrival onto the ZAMS. Massive YSOs of this type may be considered the
equivalent of class 0 low-mass YSOs, namely protostars still in the main
accretion
phase. No iron clad evidence for the existence of high-mass protostars
has been presented so far, but a few candidates have been detected
(Hunter et al. 1998; Molinari et al. 1998).
Here, we present the results of a study of the massive star forming region
G24.78+0.08. This region has been selected from a sample of OH/H2O maser
sources identified by Forster & Caswell (1989) and it was observed by
Codella et al. (1997, hereafter CTC)
in the NH3(2, 2) and (3, 3) inversion transitions. One interesting feature
of G24.78+0.08 is the presence of two groups of maser spots: one, close to
an UC H II region, consists of both OH and H2O masers, whereas the other,
offset by 8
to the NE, contains only H2O masers. Both groups
are embedded in a
0.5 pc clump traced by the ammonia emission.
This situation resembles very closely that of the W3(H2O)/W3(OH) system,
where a high-mass YSO has been found in association with W3(H2O)
(Turner & Welch 1984), whereas
W3(OH) coincides with an UC H II region created by an early-type star.
We have hence decided to search for a possible source associated with the
isolated H2O group in G24.78+0.08. To this purpose, we have studied the
continuum and line emission from this region at various wavelengths.
The basic results are illustrated in the following, while a more detailed
description is postponed to a subsequent paper.
In 1998-2002, we carried out continuum emission imaging
using the Nobeyama Millimeter Array (NMA) at 2 mm,
the Plateau de Bure interferometer (PdBI) at 2.6 mm, and
Very Large Array (VLA) in the D-array configuration at 7 mm.
The NMA observations were performed together with the enhanced
Rainbow mode using the 45-m telescope as one of the array elements.
At 2 and 2.6 mm, we observed lines of CH3CN(8-7)
and 12CO(1-0), respectively.
The resulting synthesised beam sizes were
at 2 mm,
at 2.6 mm, and
at 7 mm.
For all datasets the inner hole in the (u,v) plane has a radius in
the range 4.5 to 6.5
.
Attained sensitivities in individual maps are described in the
caption of Fig. 1.
Our main findings are illustrated in Figs. 1 and 2. The former shows the maps of the continuum emission from 2 to 7 mm and the integrated intensity map of the CH3CN(8-7) K=0 and 1 line emission overlaied to the 1.3 cm continuum map of CTC. Also shown are the positions of the OH and H2O maser spots from Forster & Caswell (1999) and those of the CH3OH masers from Walsh et al. (1998). The most important result is the detection of four separate sources, which are best seen in the 2 mm continuum map: these have been identified with letters A to D. Of these, A and B were already detected by CTC and are associated with two compact H II regions (see also Forster & Caswell 2000). Source C is seen in the mm continuum and CH3CN line maps: this confirms our expectation that the H2O masers to the NE were associated with a compact molecular core. A surprising result is the detection at 2 and 2.6 mm of a continuum peak, D, to the NW of the UC H II region in A. This must trace a compact dusty core, which is not detected in any of the molecular lines observed: such a lack of line emission may be indicative of molecular depletion and hence high density and low temperature.
Figure 2 presents maps of the blue- and red-shifted emission in
the wings of the 12CO(1-0) line: these reveal two bipolar outflows centred on
A and C. It is thus likely that one of the flows originates from the
early-type star ionising the UC H II region in A, while the other may be
powered by a deeply embedded YSO in C. The parameters of the outflow can be
derived as usual by integrating the emission under the line wings and
assuming an age equal to the kinematical time scale (
yr) given by the
ratio between the size of the
lobes (0.45 pc) and the maximum velocity reached in the flow (20 km s-1):
we find very similar
values for both outflows, corresponding to masses of
10
,
mechanical luminosities of
10
,
and mass loss rates of
yr-1. Such values are to be taken as lower
limits, as the 12CO(1-0) line may be optically thick and the lobes might
extend over a larger region than that imaged by the interferometer. Also,
correcting for the (unknown) inclination of the outflow axis would increase
the real velocity and hence the mass loss rate and mechanical luminosity. We
conclude that the values quoted above are typical of high-mass stars, as one
can see e.g. from Table 1 of Churchwell (1997).
Finally, it is worth noting that the two outflow axes are parallel to the
direction outlined by the maser spots: this result leads support
to the belief that H2O masers could be strongly associated with outflows
(see Felli et al. 1992), as already pointed out by CTC.
![]() |
Figure 2:
Overlay of the 2 mm continuum image (grey scale) with the outflow
maps (contours) obtained by integrating the 12CO(1-0) line emission
under the wings, from 90 to 105 km s-1 (full contours) and from
116 to 131 km s-1 (dashed contours). The cloud LSR velocity is
![]() |
Open with DEXTER |
Three cores (A, C, D) and two compact H II regions (A and B) are seen
towards G24.78. Now, we try to shed light on the nature of these objects. In
Fig. 3, we plot their continuum spectra obtained by
adding the 6 cm and 3.6 cm measurements of Becker et al. (1994) and
Forster & Caswell (2000) to our data. The four spectra have been
fitted with a simple model consisting of an H II region surrounded by a
dusty core: spherical symmetry and constant density and temperature
have been assumed. We adopted
a dust absorption coefficient
cm2 g-1
(following Preibisch et al. 1993; Molinari et al. 2000).
The flux depends on the radius (
)
and emission
measure (EM) of the H II region, and only on the mass (
)
and
temperature (
)
of the surrounding core because
at
mm the thermal emission from dust is optically thin.
In order to minimise
the number of free parameters, we have used the results of the present work
and of CTC to fix the diameters of the H II regions in A and B and the
temperatures of the cores in A and C. Under these assumptions, we
estimated the emission measure of the H II regions and the mass of the cores
in A and C: in the other cases only limits can be set. The fit parameters are
given in Table 1. For core D we have assumed a maximum temperature
equal to that of core C. Although such an assumption is arbitrary, it seems
unlikely that the gas is hotter, otherwise one would expect to detect line
emission from molecules evaporated from grain mantles: as discussed above,
such emission is not seen at the same level as in A and C.
Source |
![]() |
EM |
![]() |
![]() |
(pc) | (pc cm-6) | (K) | (![]() |
|
A | 0.005(a) | 2 109 | 90(a) | 550 |
B | 0.05(a) | 6.5 106 | 90(b) | ![]() |
C | <0.005(c) | >9 106 | 30(a) | 250 |
D | <0.005(c) | >7.5 106 | ![]() |
![]() |
(a) Derived by CTC. (b) No ![]() (c) Upper limit assumed equal to diameter of H II region in A. (d) Assumed equal or less than the temperature of core C. |
In the light of the previous results, we can now discuss the nature of the
four sources, whose properties are schematically summarised in
Table 2.
![]() |
Figure 3: Spectrum of the continuum emission of the four objects detected towards G24.78+0.08. The letters identify each spectrum according to the notation in Fig. 1. The lines are fits to the data obtained with the model described in the text and for the parameters listed in Table 1. |
Open with DEXTER |
YSO | D | C | A | B |
Dusty Core (mm cont.) | Y | Y | Y | N |
Molecular Core (NH3, CH3CN) | N | Y | Y | N |
Bipolar Outflow (12CO) | N | Y | Y | N |
H2O masers | N | Y | Y | N |
CH3OH masers | N | N | Y | N |
OH masers | N | N | Y | N |
UC H II region (cm free-free) | N | N | Y | Y |
In conclusion, we have detected a cluster containing at least 4 high-mass YSOs,
in different evolutionary phases. More precisely, the ages of these YSOs are
likely to be in the order
.
We suggest that core D represents an excellent candidate for a
high-mass protostar.
Acknowledgements
It is a pleasure to thank the staff of IRAM, NRAO, and NRO for their help during the observations. Special thanks are due to Prof. Sachiko Okumura for taking care of our observations with the Nobeyama Millimeter Array.