![]() |
Figure 1: Spectrum of V337 Aql at phase 0.766. |
An example of a spectrum is given in Fig. 1. Only H
and
He I (4922 and 5015) lines are present. When measuring radial
velocities, we noticed that the H
line profile strongly deviated
from a simple Gaussian, while an approximation of the observed profile
by two Gaussians of different widths and depths gave a reasonably good
representation of the line features. Velocities of the primary
component of the H
line
are systematically more negative by about 16 km s-1 compared to the same
component of the He I 4922 line. Most probably, this effect is
due to the contribution of the Pickering He II 4859.32 Å
line. The secondary component is not well separated, and hence its
velocities less certain. The same behaviour was observed by us in the
case of the O 8-type binary AB Cru (Lorenz et al. 1994),
where this systematic deviation reached 27.7 km s-1.
Unfortunately, we do not know the strength of other He II lines
to study the effect of blending of hydrogen Balmer lines with He II
components on the radial velocities more quantitatively.
JD (mid-exp.) | exp. time | phasea | spectral | ||||||
-2 400 000 | (min) | region | |||||||
V337 Aql: | Prim.: 4922 | Sec.: 4922 | Prim: H![]() |
Sec.: H![]() |
|||||
49909.374 | 90 | 0.2816 | 4826-5035 | -79.6 | 342.6 | -96.0 | 325.3 | ||
49909.439 | 90 | 0.3054 | 4826-5035 | -75.3 | 328.3 | -97.4 | 325.7 | ||
49909.500 | 60 | 0.3277 | 4826-5035 | -72.2 | 304.5 | -88.3 | 305.8 | ||
49913.366 | 90 | 0.7418 | 4826-5035 | 161.9 | -282.6 | 158.1 | -277.1 | ||
49913.431 | 90 | 0.7656 | 4826-5035 | 170.0 | -273.8 | 154.3 | -263.4 | ||
49913.490 | 60 | 0.7871 | 4826-5035 | 159.1 | -266.2 | 156.0 | -276.9 | ||
49914.491 | 60 | 0.1533 | 4826-5035 | -59.4 | 276.4 | -77.4 | 285.2 | ||
49914.524 | 30 | 0.1654 | 4826-5035 | -63.5 | 291.5 | -94.4 | 303.4 | ||
V649 Cas: | Prim.: 4922 | Sec.: 4922 | |||||||
49907.434 | 30 | 0.3078 | 6510-6720 | -117.1 | 244.2 | ||||
49907.559 | 20 | 0.3601 | 4668-4880 | -110.1 | |||||
49907.633 | 30 | 0.4036 | 4826-5035 | -77.9 | 159.7 | ||||
49908.397 | 20 | 0.7105 | 4826-5035 | 103.7 | -285.0 | ||||
49908.424 | 40 | 0.7218 | 4826-5035 | 104.9 | -287.9 | ||||
49908.451 | 30 | 0.7331 | 4826-5035 | 106.2 | -287.9 | ||||
49908.481 | 40 | 0.7456 | 4826-5035 | 104.9 | -284.9 | ||||
49908.560 | 40 | 0.7787 | 4826-5035 | 108.0 | -291.0 | ||||
49908.590 | 40 | 0.7912 | 4826-5035 | 104.9 | -285.0 | ||||
49909.631 | 15 | 0.2266 | 4826-5035 | -125.4 | 263.2 | ||||
49909.642 | 15 | 0.2312 | 4826-5035 | -126.6 | 260.2 | ||||
49914.435 | 30 | 0.2355 | 4826-5035 | -126.2 | 257.5 | ||||
49914.456 | 25 | 0.2443 | 4826-5035 | -126.2 | 251.4 | ||||
49915.675 | 20 | 0.7541 | 4826-5035 | 109.3 | -290.9 | ||||
V382 Cyg: | Prim.: 4542 | Sec: 4542 | Prim.: 4686 | Sec.: 4686 | Prim.: H![]() |
Sec.: H![]() |
|||
49526.378 | 60 | 0.7020 | 4524-4736 | 257.4 | -349.7 | 277.0 | -362.6 | ||
49526.433 | 60 | 0.7312 | 4524-4736 | 271.1 | -339.6 | 275.6 | -362.0 | ||
49526.475 | 60 | 0.7535 | 4524-4736 | 268.1 | -344.5 | 283.0 | -356.6 | ||
49526.525 | 60 | 0.7800 | 4524-4736 | 273.0 | -338.0 | 277.1 | -336.9 | ||
49526.643 | 60 | 0.8426 | 4666-4879 | 233.5 | -282.9 | 203.3 | -296.6 | ||
49527.365 | 60 | 0.2255 | 4524-4736 | -241.6 | 374.7 | -257.2 | 370.6 | ||
49527.412 | 60 | 0.2504 | 4524-4736 | -241.7 | 383.2 | -259.1 | 376.3 | ||
49527.458 | 60 | 0.2748 | 4524-4736 | -231.5 | 378.0 | -260.1 | 383.3 | ||
49527.496 | 45 | 0.2950 | 4524-4736 | -221.3 | 373.9 | -247.1 | 376.5 | ||
49528.363 | 60 | 0.7548 | 4674-4888 | 261.0 | -349.5 | 233.8 | -362.6 | ||
49528.409 | 60 | 0.7792 | 4674-4888 | 254.1 | -333.6 | 223.8 | -358.7 | ||
49529.362b | 60 | 0.2846 | 6515-6725 | -254.0 | 308.8 | ||||
49530.644 | 30 | 0.9645 | 6515-6725 | ||||||
49908.365 | 60 | 0.2907 | 4826-5035 | -263.4 | 316.3 | ||||
49915.644 | 60 | 0.1512 | 4826-5035 | -241.1 | 270.9 | ||||
V431 Pup: | Prim.: 4713 | Prim.: 4922 | Sec.: 4922 | Prim.: H![]() |
Prim.: H![]() |
||||
48674.696 | 65 | 0.7436 | 4590-4905 | -73.7 | |||||
48678.613 | 65 | 0.1618 | 4590-4905 | 140.6 | |||||
48679.615 | 65 | 0.2688 | 4590-4905 | 127.6 | |||||
49024.538 | 60 | 0.0969 | 4628-4953 | 138.2 | 149.9 | -206 | |||
49026.595 | 50 | 0.3165 | 4628-4953 | 87.4 | 96.3 | ||||
49029.610 | 60 | 0.6385 | 4628-4953 | -49.5 | -52.1 | 199 | |||
49146.470 | 60: | 0.1154 | 4826-5143 | 153.0 | -162 | 140.0 | |||
49148.494 | 60: | 0.3315 | 4826-5143 | 69.3 | |||||
49151.461 | 60: | 0.6483 | 4826-5143 | -70.8 | -77.8 | ||||
49449.534 | 30 | 0.4746 | 4903-4942 | 21.9 | |||||
49450.565 | 30 | 0.5846 | 4903-4942 | -32.5 | |||||
49451.518 | 30 | 0.6863 | 4903-4942 | -68.9 | 144 | ||||
49452.559 | 45 | 0.7974 | 6534-6592 | -67.3 |
a Heliocentric correction applied.
b Instead of H ![]() ![]() |
The He I line components are well separated, and for the 4922 line easily measurable. The mean difference of both methods mentioned above (SPEFO versus GAUSS) is +0.9 km s-1 for the primary and +1.7 km s-1 for the secondary. Averages from both methods are given in Table 1. However, the primary component in the 5015 line always exhibits some asymmetry.
Parameter | unit | V337 Aql | V649 Cas | V382 Cyg | |||
individual ![]() |
common ![]() |
individual ![]() |
common ![]() |
individual ![]() |
common ![]() |
||
K1 | km s-1 | 123.4 | 122.8 | 116.8 | 117.4 | 267 | 268 |
K2 | km s-1 | 309.8 | 308.9 | 275.8 | 276.5 | 367 | 367 |
![]() |
km s-1 | +40.2 | 37.5 | -9.0 | -11.7 | +7.8 | +9.9 |
![]() |
km s-1 | +32.2 | 37.5 | -15.8 | -11.7 | +14.3 | +9.9 |
![]() |
![]() |
23.4 | 18.6 | 23.6 | |||
![]() |
![]() |
16.52 | 10.6 | 29.0 | |||
![]() |
![]() |
6.58 | 4.5 | 21.0 |
![]() |
Figure 2:
Radial velocity curve for V337 Aql; filled circles -
He I; crosses - H![]() |
![]() |
Figure 3: Light curve of V337 Aql obtained by Catalano et al. (1971) at an effective wavelength of 5150 Å (open circles: normal points) together with the best fit MORO solution (solid line). |
Due to these reasons, we consider only the velocities measured for the
4922 line as reliable. The corresponding radial velocity curve is shown
in Fig. 2 and the resulting parameters of the orbit are given
in Table 2. The value of inclination
found by
Catalano et al. (1971) appeared us rather uncertain, so we
solved the light curve published by Catalano et al. again using the MORO
code (Drechsel et al. 1995). The results are given in
Table 3. The normal points
as given by Catalano et al. at an effective wavelength of 5150 Å
together with the best fit solution (solid line) are shown in
Fig. 3. The corresponding system configuration in terms of a
meridional intersection of Roche equipotentials is displayed in
Fig. 4. The system is semi-detached, with the secondary
filling its critical Roche volume.
Fixed parameters: | |
q (= M2/M1) | 0.398 |
![]() |
28 000 K |
![]() |
1.0 |
![]() |
1.0 |
![]() |
1.0 |
![]() |
1.0 |
![]() |
0.26 |
![]() |
0.29 |
Adjusted parameters: | |
i |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0.000 |
![]() |
![]() |
![]() |
![]() |
Roche radii: g | |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Figure 4: Semi-detached system configuration of V337 Aql corresponding to the light curve solution shown in Fig. 3; solution parameters are given in Table 3. |
Copyright ESO 2002