next previous
Up: Spectroscopy of four early-type binaries


3 V337 Aql

V337 Aql (HD 177284) has been known as an eclipsing variable for a long time. A photoelectric light curve at an effective wavelength of $\lambda = 5150$ Å was obtained by Catalano et al. (1971). Later, Alduseva (1977) presented UBV light curves, which, however, suffer from a rather poor phase coverage. The period of the binary was studied, among others, by Mayer et al. (1998). The period is not constant, and reasons for its variability so far remain unclear. One conceivable explanation is the suggested light-time effect due to a third body. For the phasing of our radial velocities the following linear ephemeris was used:

\begin{displaymath}{\rm Prim.~min.} = {\rm HJD}~~2448779.5175 + 2\fd7338794 \cdot E .
\end{displaymath}

Radial velocities were already measured by Neubauer (1943) and Feast & Thackeray (1963). However, in the first paper only the mean of 6 measurements was given, and no variability of the radial velocity was recognized. Feast & Thackeray first classified the spectra as being of SB2 type and measured radial velocities on plates from 4 nights (but the lines appeared resolved into two components on one plate only).


  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{H3514F1.PS}\end{figure} Figure 1: Spectrum of V337 Aql at phase 0.766.

An example of a spectrum is given in Fig. 1. Only H$\beta $ and He  I (4922 and 5015) lines are present. When measuring radial velocities, we noticed that the H$\beta $ line profile strongly deviated from a simple Gaussian, while an approximation of the observed profile by two Gaussians of different widths and depths gave a reasonably good representation of the line features. Velocities of the primary component of the H$\beta $ line are systematically more negative by about 16 km s-1 compared to the same component of the He  I 4922 line. Most probably, this effect is due to the contribution of the Pickering He  II 4859.32 Å  line. The secondary component is not well separated, and hence its velocities less certain. The same behaviour was observed by us in the case of the O 8-type binary AB Cru (Lorenz et al. 1994), where this systematic deviation reached 27.7 km s-1. Unfortunately, we do not know the strength of other He  II lines to study the effect of blending of hydrogen Balmer lines with He  II components on the radial velocities more quantitatively.


 

 
Table 1: Journal of new spectra and measured radial velocities.

JD (mid-exp.)
exp. time phasea spectral            
-2 400 000 (min)   region            

V337 Aql:
      Prim.: 4922 Sec.: 4922 Prim: H$\beta $ Sec.: H$\beta $    

49909.374
90 0.2816 4826-5035 -79.6 342.6 -96.0 325.3    
49909.439 90 0.3054 4826-5035 -75.3 328.3 -97.4 325.7    
49909.500 60 0.3277 4826-5035 -72.2 304.5 -88.3 305.8    
49913.366 90 0.7418 4826-5035 161.9 -282.6 158.1 -277.1    
49913.431 90 0.7656 4826-5035 170.0 -273.8 154.3 -263.4    
49913.490 60 0.7871 4826-5035 159.1 -266.2 156.0 -276.9    
49914.491 60 0.1533 4826-5035 -59.4 276.4 -77.4 285.2    
49914.524 30 0.1654 4826-5035 -63.5 291.5 -94.4 303.4    

V649 Cas:
      Prim.: 4922 Sec.: 4922        

49907.434
30 0.3078 6510-6720 -117.1 244.2        
49907.559 20 0.3601 4668-4880 -110.1          
49907.633 30 0.4036 4826-5035 -77.9 159.7        
49908.397 20 0.7105 4826-5035 103.7 -285.0        
49908.424 40 0.7218 4826-5035 104.9 -287.9        
49908.451 30 0.7331 4826-5035 106.2 -287.9        
49908.481 40 0.7456 4826-5035 104.9 -284.9        
49908.560 40 0.7787 4826-5035 108.0 -291.0        
49908.590 40 0.7912 4826-5035 104.9 -285.0        
49909.631 15 0.2266 4826-5035 -125.4 263.2        
49909.642 15 0.2312 4826-5035 -126.6 260.2        
49914.435 30 0.2355 4826-5035 -126.2 257.5        
49914.456 25 0.2443 4826-5035 -126.2 251.4        
49915.675 20 0.7541 4826-5035 109.3 -290.9        

V382 Cyg:
      Prim.: 4542 Sec: 4542 Prim.: 4686 Sec.: 4686 Prim.: H$\beta $ Sec.: H$\beta $

49526.378
60 0.7020 4524-4736 257.4 -349.7 277.0 -362.6    
49526.433 60 0.7312 4524-4736 271.1 -339.6 275.6 -362.0    
49526.475 60 0.7535 4524-4736 268.1 -344.5 283.0 -356.6    
49526.525 60 0.7800 4524-4736 273.0 -338.0 277.1 -336.9    
49526.643 60 0.8426 4666-4879     233.5 -282.9 203.3 -296.6
49527.365 60 0.2255 4524-4736 -241.6 374.7 -257.2 370.6    
49527.412 60 0.2504 4524-4736 -241.7 383.2 -259.1 376.3    
49527.458 60 0.2748 4524-4736 -231.5 378.0 -260.1 383.3    
49527.496 45 0.2950 4524-4736 -221.3 373.9 -247.1 376.5    
49528.363 60 0.7548 4674-4888     261.0 -349.5 233.8 -362.6
49528.409 60 0.7792 4674-4888     254.1 -333.6 223.8 -358.7
49529.362b 60 0.2846 6515-6725         -254.0 308.8
49530.644 30 0.9645 6515-6725            
49908.365 60 0.2907 4826-5035         -263.4 316.3
49915.644 60 0.1512 4826-5035         -241.1 270.9

V431 Pup:
      Prim.: 4713 Prim.: 4922 Sec.: 4922 Prim.: H$\beta $ Prim.: H$\alpha $  

48674.696
65 0.7436 4590-4905 -73.7          
48678.613 65 0.1618 4590-4905 140.6          
48679.615 65 0.2688 4590-4905 127.6          
49024.538 60 0.0969 4628-4953 138.2 149.9 -206      
49026.595 50 0.3165 4628-4953 87.4 96.3        
49029.610 60 0.6385 4628-4953 -49.5 -52.1 199      
49146.470 60: 0.1154 4826-5143   153.0 -162 140.0    
49148.494 60: 0.3315 4826-5143       69.3    
49151.461 60: 0.6483 4826-5143   -70.8   -77.8    
49449.534 30 0.4746 4903-4942   21.9        
49450.565 30 0.5846 4903-4942   -32.5        
49451.518 30 0.6863 4903-4942   -68.9 144      
49452.559 45 0.7974 6534-6592         -67.3  
a Heliocentric correction applied.
b Instead of H$\beta $, radial velocities measured for H$\alpha $ are given.


The He  I line components are well separated, and for the 4922 line easily measurable. The mean difference of both methods mentioned above (SPEFO versus GAUSS) is +0.9 km s-1  for the primary and +1.7 km s-1  for the secondary. Averages from both methods are given in Table 1. However, the primary component in the 5015 line always exhibits some asymmetry.


 

 
Table 2: Parameters of V337 Aql, V649 Cas and V382 Cyg.

Parameter
unit V337 Aql V649 Cas V382 Cyg
    individual $V\gamma$ common $V\gamma$ individual $V\gamma$ common $V\gamma$ individual $V\gamma$ common $V\gamma$

K1
 km s-1 123.4 122.8 116.8 117.4 267 268
K2  km s-1 309.8 308.9 275.8 276.5 367 367
$V_1\gamma$  km s-1 +40.2 37.5 -9.0 -11.7 +7.8 +9.9
$V_2\gamma$  km s-1 +32.2 37.5 -15.8 -11.7 +14.3 +9.9
$a\sin i$  $R_{\odot}$   23.4   18.6   23.6
$m_1\sin^3 i$  $M_{\odot}$   16.52   10.6   29.0
$m_2\sin^3 i$  $M_{\odot}$   6.58   4.5   21.0



  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{H3514F2.PS}\end{figure} Figure 2: Radial velocity curve for V337 Aql; filled circles - He  I; crosses - H$\beta $.


  \begin{figure}
\par\includegraphics[width=14.3cm,clip]{H3514f3.eps} \end{figure} Figure 3: Light curve of V337 Aql obtained by Catalano et al. (1971) at an effective wavelength of 5150 Å  (open circles: normal points) together with the best fit MORO solution (solid line).

Due to these reasons, we consider only the velocities measured for the 4922 line as reliable. The corresponding radial velocity curve is shown in Fig. 2 and the resulting parameters of the orbit are given in Table 2. The value of inclination $i=86\degr$ found by Catalano et al. (1971) appeared us rather uncertain, so we solved the light curve published by Catalano et al. again using the MORO code (Drechsel et al. 1995). The results are given in Table 3. The normal points as given by Catalano et al. at an effective wavelength of 5150 Å  together with the best fit solution (solid line) are shown in Fig. 3. The corresponding system configuration in terms of a meridional intersection of Roche equipotentials is displayed in Fig. 4. The system is semi-detached, with the secondary filling its critical Roche volume.


 

 
Table 3: Light curve solution of V337 Aql.

Fixed parameters:

q (= M2/M1)
0.398
$T_{\rm eff}(1)$ 28 000 K
$A_1\ ^{a}$ 1.0
$A_2\ ^{a}$ 1.0
$g_1\ ^{b}$ 1.0
$g_2\ ^{b}$ 1.0
$x_1(\lambda 5150)\ ^{c}$ 0.26
$x_2(\lambda 5150)\ ^{c}$ 0.29

Adjusted parameters:

i
$80\fdg7 \pm 0\fdg5 $
$T_{\rm eff}(2)$ $23~900~{\rm K} \pm 700$ K
$\Omega_1$ $2.939 \pm 0.057 $
$\Omega_2$ $2.624 \pm 0.024 $
$L_1(\lambda 5150)\ ^{d}$ $0.696 \pm 0.013 $
$l_3(\lambda 5150)\ ^{e}$ 0.000
$\delta_1\ ^{f}$ $0.023 \pm 0.013 $
$\delta_2\ ^{f}$ $0.013 \pm 0.005 $

Roche radii: g

$r_1({\rm pole})$
$0.381 \pm 0.008 $
$r_1({\rm point})$ $0.425 \pm 0.014 $
$r_1({\rm side})$ $0.397 \pm 0.023 $
$r_1({\rm back})$ $0.411 \pm 0.011 $
$r_2({\rm pole})$ $0.288 \pm 0.005 $
$r_2({\rm point})$ $0.391 \pm 0.005 $
$r_2({\rm side})$ $0.302 \pm 0.006 $
$r_2({\rm back})$ $0.394 \pm 0.009 $
a
Bolometric albedo.
b
Gravitational darkening exponent.
c
Linear limb darkening coefficient; theoretical value taken from Wade & Rucinski (1985).
d
Relative luminosity L1/(L1 + L2).
e
Fraction of third light at maximum.
f
Radiation pressure parameter, see Drechsel et al. (1995).
g
Fractional Roche radius (relative to separation of mass centers).



  \begin{figure}
\par\includegraphics[width=11cm,clip]{H3514f4.eps} \end{figure} Figure 4: Semi-detached system configuration of V337 Aql corresponding to the light curve solution shown in Fig. 3; solution parameters are given in Table 3.


next previous
Up: Spectroscopy of four early-type binaries

Copyright ESO 2002