next previous
Up: Position-velocity diagrams of ionized galaxies


   
2 Sample selection, spectroscopic observations and data reduction

All the observed galaxies are bright ( $B_{\rm T}\leq13.5$) and nearby ( $V_\odot < 5800$  $\rm km~s^{-1}$) with an intermediate-to-high inclination ( $45^\circ\leq i \leq 80^\circ$). The Hubble morphological types of the sample galaxies range from S0 to Sd and 5 objects are barred or weakly barred (RC3). The galaxies have been chosen to have strong emission lines. An overview of their basic properties is given in Table 1. In Fig. 1 we show the absolute magnitude distribution for the galaxies in our sample. The distribution brackets the $M^\ast $ value for spiral galaxies taken from Marzke et al. (1998) for H0 = 75  $\rm km~s^{-1}~Mpc^{-1}$.
 

 
Table 1: Parameters of the sample galaxies.
Object Morp. Type $B_{\rm T}$ PA i $V_{\odot}$ D Scale $M_{B_{\rm T}}^0$ $\sigma_\star$ $M_\bullet$ $\theta_\bullet$ Nuc. Type
[name] [RSA] [RC3] [mag] [$^\circ$] [$^\circ$] [ $\rm km~s^{-1}$] [Mpc] [pc/''] [mag] [ $\rm km~s^{-1}$] [$M_{\odot }$] ['']  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

NGC 470
Sbc(s)II.3 .SAT3.. 12.53 155 52 2370 33.8 163.9 -20.66 56 3.2 e+05 0.003 ...
NGC 772 Sb(rs)I .SAS3.. 11.09 130 54 2470 35.6 172.7 -22.21 124 1.4 e+07 0.02 ...
NGC 949 Sc(s)III .SAT3*$ 12.40 145 58 620 11.4 55.2 -18.50 32 2.3 e+04 0.002 ...
NGC 980 ... .L..... 13.16 110 58 5765 80.1 388.2 -22.95 226 2.3 e+08 0.06 ...
NGC 1160 ... .S..6*. 13.50 50 62 2510 36.6 177.4 -21.01 24 5.9 e+04 0.0003 ...
NGC 2179 Sa .SAS0.. 13.22 170 47 2885 36.5 177.0 -19.98 166 5.4 e+07 0.05 ...
NGC 2541 Sc(s)III .SAS6.. 12.26 165 61 565 8.7 42.2 -18.13 53 2.5 e+05 0.01 T2/H:
NGC 2683 Sb(on edge) .SAT3.. 10.64 44 78 400 5.3 25.6 -18.99 83 2.0 e+06 0.06 L2/S2
NGC 2768 S01/2(6) .E.6.*. 10.84 95 59 1331 19.4 94.1 -20.74 205 1.5 e+08 0.2 L2
NGC 2815 Sb(s)I-II .SBR3*. 12.81 10 72 2541 30.5 147.7 -21.00 168 5.7 e+07 0.07 L/S2
NGC 2841 Sb .SAR3*. 10.09 147 65 640 9.6 46.4 -20.33 197 1.2 e+08 0.3 L2
NGC 3031 Sb(r)I-II .SAS2.. 7.89 157 59 -50 1.5 7.2 -18.46 173 6.6 e+07 1.5 S1.5
NGC 3281 Sa .SAS2P* 12.70 140 61 3380 41.1 199.5 -21.25 172 6.4 e+07 0.05 S2
NGC 3368 Sab(s)II .SXT2.. 10.11 5 47 865 9.7 47.1 -20.14 129 1.6 e+07 0.1 L2
NGC 3521 Sb(s)II-III .SXT4.. 9.04 163 63 825 8.5 41.1 -20.35 145 2.8 e+07 0.2 H/L2:
NGC 3705 Sab(r)I-II .SXR2.. 11.86 122 66 1000 11.4 55.2 -19.03 109 7.4 e+06 0.05 T2
NGC 3898 SaI .SAS2.. 11.60 107 54 1184 17.1 82.9 -19.85 223 2.2 e+08 0.3 T2
NGC 4419 SBab: .SBS1./ 12.08 133 71 -210 17.0 82.4 -19.55 98 4.5 e+06 0.03 H
NGC 4698 Sa .SAS2.. 11.46 170 52 992 17.0 82.4 -19.91 174 6.7 e+07 0.1 S2
NGC 5064 Sa PSA.2*. 13.04 38 63 2980 36.0 174.4 -21.11 202 1.4 e+08 0.09 L
NGC 7320 ... .SAS7.. 13.23 132 60 862 15.4 74.7 -18.39 ... ... ... ...
NGC 7331 Sb(rs)I-II .SAS3.. 10.35 171 70 820 14.7 72.0 -21.48 141 2.5 e+07 0.09 T2
NGC 7782 Sb(s)I-II .SAS3.. 13.08 175 58 5430 75.3 364.9 -21.95 193 1.1 e+08 0.04 ...


Notes - Column 2: morphological classification from RSA. Column 3: morphological classification from RC3. Column 4: total observed blue magnitude from RC3 except for NGC 980 and NGC 5064 (LEDA). Column 4: major-axis position angle taken from RC3. Column 6: inclination derived from $\cos^{2}{i}~=~(q^2-q_0^2)/(1-q_0^2)$. The observed axial ratio q is taken from RC3 and the intrinsic flattening q0=0.11 has been assumed following Guthrie (1992). Column 7: heliocentric velocity of the galaxy derived from the center of symmetry of the rotation curve of the gas. They are taken from Vega Beltrán et al. (2001) except for NGC 2179, NGC 3281 and NGC 4698 (Corsini et al. 1999). Column 8: distance obtained as V0/H0 with H0=75 $\rm km~s^{-1}~Mpc^{-1}$ and V0 the systemic velocity derived from $V_{\odot}$ corrected for the motion of the Sun with respect of the Local Group according to the RSA. For NGC 4419 and NGC 4698, which belong to the Virgo cluster, we assume a distance of 17 Mpc (Freedman et al. 1994). Column 10: absolute total blue magnitude corrected for inclination and extinction from RC3. Column 11: central velocity dispersion of the stellar component. Data are from Vega Beltrán et al. (2001) except for NGC 2179, NGC 3281 (Corsini et al. 1999), NGC 2768 (Bertola et al. 1995), NGC 2815 (LEDA), NGC 3521 (Zeilinger et al. 2001), and NGC 4698 (Bertola et al. 1999). Column 12: expected mass of the central SMBH derived from $\sigma_\star$ following Merritt & Ferrarese (2001a). Column 13: angular size of the radius of influence of the central SMBH derived from $\theta_\bullet \approx
M_\bullet\;\sigma_{\star}^{-2}\;D^{-1}$ (de Zeeuw 2001), where $M_\bullet$ is the mass of the SMBH in units of 106 $M_{\odot }$, $\sigma_\star$ is the central velocity dispersion in units of 100  $\rm km~s^{-1}$, and D is the galaxy distance in Mpc. Column 14: classification of the nuclear spectrum from Ho et al. (1997) except NGC 2815 (Véron-Cetty & Véron 1986). H = H  II nucleus. L = LINER. S = Seyfert nucleus. T = transition object. ... = uncertain.



  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{PV_histogram.eps}\end{figure} Figure 1: Absolute magnitude distribution for the sample galaxies. A line marks $M_{B_{\rm T}}^0 = -20.05$, which corresponds to $M^\ast $ for spiral galaxies as derived by Marzke et al. (1998) and assuming H0 = 75  $\rm km~s^{-1}~Mpc^{-1}$. The dashed region identifies galaxies classified barred or weakly barred in RC3.

The long-slit spectroscopic observations of our sample galaxies were carried out at the 4.5-m Multiple Mirror Telescope (MMT) in Arizona (USA), at the 3.6-m ESO Telescope at La Silla (Chile), and at the 2.5-m Isaac Newton Telescope (INT) at La Palma (Spain). Details about the instrumental setup and the seeing of each observing run are summarized in Table 2.


 

 
Table 2: Instrumental setup for spectroscopic observations.
Parameter MMT INT 3.6-m ESO
Date 21-23 Oct. 1990 17-18 Dec. 1990 19-20 Mar. 1996 03-04 Feb. 1997
Spectrograph Red Channel$\rm ^a$ IDS$\rm ^a$ CASPEC$\rm ^b$
Grating ( $\rm grooves\;mm^{-1}$) 1200 1800 31.6
Detector Loral $12\times8$mmt TK1024A TK1024AB
Pixel size ( $\rm\mu m^{2}$) $15\times15$ $24\times24$ $24\times24$
Pixel binning $1\times1$ $1\times1$ $1\times1$
Scale ( $\rm ''\;pixel^{-1}$) 0.30 0.33 0.33
Reciprocal dispersion ( $\rm\AA\;pixel^{-1}$) 0.82 0.24 0.076
Slit width ('') 1.25 1.9 1.3
Slit length (') 3.0 4.0 2.4
Spectral range (Å) 4850-5500 6650-6890 6630-6651
Comparison lamp He-Ne-Ar-Fe Cu-Ar Th-Ar
Instrumental FWHM (Å) $2.24\pm0.26$ $2.57\pm0.11$ $0.869\pm0.040$ $0.233\pm0.017$
Instrumental $\sigma$$\rm ^c$ ( $\rm km~s^{-1}$) 57 65 5 17
Seeing FWHM ('') 1.2-1.5 1.0-1.4 0.8-1.2
$\rm ^a$ Grating used at the first order.
$\rm ^b$ CASPEC mounting of the Long Camera in long-slit configuration without crossdisperser. The spectral order #86 ( $\lambda_{\rm c} = 6617$ Å)
corresponding to the redshifted H$\alpha $ region was isolated by means of the narrow-band 6630/51 Å filter.
$\rm ^c$ The instrumental dispersion has been measured at [O  III] $~\lambda5007$, [N  II] $~\lambda6583$ and H$\alpha $ for the MMT, INT and 3.6-m ESO spectra, respectively.


At the beginning of each exposure, the slit was centered on the galaxy nucleus and aligned along the galaxy major axis using the guide TV camera. The slit orientation and the exposure times are given in Table 3. A comparison-lamp spectrum was obtained before and after each object integration to allow an accurate wavelength calibration. Quartz-lamp and twilight-sky flatfields were taken to map pixel-to-pixel sensitivity variations and large-scale illumination patterns.

Using standard MIDAS[*] routines, the spectra were bias subtracted, flatfield corrected, cleaned for cosmic rays, and wavelength calibrated. Cosmic rays were identified by comparing the counts in each pixel with the local mean and standard deviation (based on the Poisson statistics of the photons are using the gain and readout noise of the detector). We corrected the data by interpolating a suitable value.

The instrumental resolution was derived as the mean of the Gaussian FWHMs measured for a number of unblended arc-lamp lines (12 in the MMT and INT spectra and 30 in the ESO spectra), which were distributed over the whole spectral range of a wavelength-calibrated comparison spectrum. The mean FWHM of the arc-lamp lines, as well as the corresponding instrumental velocity dispersion, are given in Table 2. Finally, the spectra were aligned and coadded using the centers of their stellar continua as reference. In the resulting spectra, the contribution from the sky was determined by interpolating along the outermost 10''-20'' at the edges of the slit, where galaxy light was negligible. The sky level was then subtracted.


 

 
Table 3: Log of spectroscopic observations.
Object Date Telescope $t_{\rm exp}$ PA

[name]
    [s] [$^\circ$]

NGC 470
22 Oct. 90 MMT 3600 155
NGC 772 22 Oct. 90 MMT 3600 130
NGC 949 21 Oct. 90 MMT 3600 145
NGC 980 22 Oct. 90 MMT 3600 110
NGC 1160 21 Oct. 90 MMT 3600 50
NGC 2179 03 Feb. 97 3.6-m ESO $4\times3600$ 170
  04 Feb. 97 3.6-m ESO $2\times3600$ 170
NGC 2541 21 Oct. 90 MMT 3600 165
NGC 2683 18 Dec. 90 MMT 3600 44
NGC 2768 19 Mar. 96 INT $2\times3600$ 95
NGC 2815 04 Feb. 97 3.6-m ESO $3\times3600$ 10
NGC 2841 22 Oct. 90 MMT 3600 147
NGC 3031 17 Dec. 90 MMT 3600 157
NGC 3281 04 Feb. 97 3.6-m ESO 3600 140
NGC 3368 17 Dec. 90 MMT 3600 5
NGC 3521 17 Dec. 90 MMT 3600 342
NGC 3705 17 Dec. 90 MMT 3600 122
NGC 3898 19 Mar. 96 INT $3\times3600$ 107
NGC 4419 20 Mar. 96 INT $2\times3300$ 133
  20 Mar. 96 INT 3600 133
NGC 4698 20 Mar. 96 INT 3600 170
NGC 5064 03 Feb. 97 3.6-m ESO $3\times3600$ 38
  04 Feb. 97 3.6-m ESO 3600 38
NGC 7320 22 Oct. 90 MMT 3600 132
NGC 7331 22 Oct. 90 MMT 3600 171
NGC 7782 22 Oct. 90 MMT 3600 30



next previous
Up: Position-velocity diagrams of ionized galaxies

Copyright ESO 2002