next previous
Up: A 25 micron search ISO


Subsections

  
2 Observations and data processing

2.1 Presentation of the sample

For a full description and discussion of the sample we refer to Paper I; here we briefly describe the properties of the 25 $\mu $m sample. The stars were selected on the following selection criteria: (1) all stars are within 25 pc of the Sun; (2) a spectral type later than B9 but earlier than M, and only dwarfs of type IV-V or V; (3) a predicted photospheric flux at 60 $\mu $m of at least 30 mJy; (4) no (optical) binaries within the aperture; (5) no known variables.

The third selection criterion implies that the minimum photospheric flux at 25 $\mu $m is of the order of 90 mJy. During the mission, some stars were added but these have not biased the statistics (cf. Paper I, Sect. 5.4).

In Table 1 we have listed the properties of the stars of the sample observed at 25 $\mu $m. Columns 1 to 3 describe the catalogue names of the stars, including the ISO observation identifier. Columns 4 to 6 list the optical stellar parameters from the Hipparcos Catalogue (Perryman et al. 1997), the spectral types in Col. 6 come from the machine-readable version of the Hipparcos Catalogue. Column 7 gives the age of the star from Lachaume et al. (1999). Columns 8 and 9 give the predicted flux density from Eq. (1) (below) and IRAS flux density, respectively. Columns 10 and 11 list flux density plus uncertainty obtained from the ISO data. Columns 12 and 13 give the adopted flux density plus uncertainty as described in Sect. 3.1. Finally, Col. 14 lists possible flags - "E'' indicating a significant excess, and "N'' indicating that the star was not included in the 60 $\mu $m list of Paper I due to instrumental reasons and visibility constraints during the ISO mission.


   
Table 1: The stars of the sample at 25 $\mu $m.
HD HIP ISO_id V B-V Spect. age $F_{\nu}^{\rm pred}$ $F_{\nu}^{\rm IRAS}$ $F_{\nu}^{\rm ISO}$ $\Delta F_{\nu}^{\rm ISO}$ $F_{\nu}^{\rm ad}$ $\Delta F_{\nu}^{\rm ad}$ Excess
      mag mag   Gyr Jy Jy Jy Jy Jy Jy Flag
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
693 910 37500901 4.89 0.487 F5V 5.13 0.231 0.174 0.254 0.013 0.214 0.040  
1581 1599 85900104 4.23 0.576 F9V 6.46 0.511 0.496 0.491 0.011 0.494 0.008  
4628 3765 39502507 5.74 0.890 K2V 7.94 0.241   0.209 0.016 0.209 0.016  
4813 3909 38701510 5.17 0.514 F7IV-V 1.38 0.189 0.221 0.220 0.030 0.220 0.021  
7570 5862 38603613 4.97 0.571 F8V 3.16 0.256 0.246 0.232 0.029 0.239 0.020  
9826 7513 42301519 4.10 0.536 F8V 2.88 0.530 0.519 0.532 0.021 0.526 0.015  
10700 8102 39301216 3.49 0.727 G8V 7.24 1.373 1.542 1.096 0.023 1.319 0.223  
10780 8362 45701319 5.63 0.804 K0V 2.82 0.223 0.149 0.176 0.003 0.163 0.013  
12311 9236 17902322 2.86 0.290 F0V 0.81 0.972 0.999 1.108 0.048 1.053 0.055  
13445 10138 81301125 6.12 0.812 K0V 5.37 0.145 0.131 0.161 0.032 0.146 0.022  
13709 10320 40101128 5.27 -0.01 A0V 0.34 0.049 0.112 0.076 0.026 0.094 0.018 N
14412 10798 40101731 6.33 0.724 G8V 7.24 0.100 0.107 0.151 0.016 0.129 0.022  
14802 11072 40301534 5.19 0.608 G2V 5.37 0.225 0.244 0.266 0.039 0.255 0.028  
15008 11001 15700537 4.08 0.034 A3V 0.45 0.168 0.174 0.138 0.001 0.156 0.018  
17051 12653 41102840 5.40 0.561 G3IV 3.09 0.169 0.163 0.223 0.048 0.193 0.034  
17925 13402 28302143 6.05 0.862 K1V 0.08 0.171 0.189 0.202 0.023 0.196 0.016  
19373 14632 81001846 4.05 0.595 G0V 3.39 0.627 0.600 0.674 0.018 0.637 0.037  
20630 15457 79201552 4.84 0.681 G5Vvar 0.30 0.361 0.334 0.433 0.031 0.383 0.050  
20766 15330 27506149 5.53 0.641 G2V 4.79 0.176 0.202 0.077 0.018 0.139 0.063  
20807 15371 57801755 5.24 0.600 G1V 7.24 0.212 0.209 0.242 0.017 0.225 0.016  
22001 16245 69100658 4.71 0.410 F5IV-V 2.04 0.231 0.242 0.251 0.012 0.247 0.008  
22484 16852 79501561 4.29 0.575 F9V 5.25 0.482 0.486 0.536 0.036 0.511 0.025  
26965 19849 84801864 4.43 0.820 K1V 7.24 0.697 0.816 0.711 0.022 0.763 0.053  
30495 22263 83901667 5.49 0.632 G3V 0.21 0.179 0.160 0.161 0.010 0.160 0.007  
33262 23693 58900870 4.71 0.526 F7V 2.95 0.296 0.314 0.236 0.020 0.275 0.039  
34411 24813 83801473 4.69 0.630 G0V 6.76 0.373 0.343 0.269 0.016 0.306 0.037  
37394 26779 83801976 6.21 0.840 K1V 0.34 0.141 0.146 0.156 0.006 0.151 0.005  
38392   70201401 6.15 0.940 K2V 0.87 0.183 0.153 0.207 0.027 0.180 0.027  
38393 27072 70201304 3.59 0.481 F7V 1.66 0.755 0.701 0.849 0.031 0.775 0.074  
38678 27288 69202307 3.55 0.104 A2Vann 0.37 0.328 0.826 0.748 0.040 0.787 0.039 E
39060 27321 70201079 3.85 0.171 A3V 0.28 0.294 6.294 5.810 0.205 6.052 0.242 E
43834 29271 19000682 5.08 0.714 G5V 7.24 0.309 0.286 0.334 0.039 0.310 0.027  
48915 32349 72301710 -1.4 0.009 A0m...   25.28 24.264 20.222 0.625 22.243 2.021  
50281 32984 71802113 6.58 1.071 K3V 2.63 0.162   0.185 0.029 0.185 0.029  
74576 42808 15600188 6.58 0.917 K2V 0.81 0.117 0.284 0.140 0.018 0.212 0.072 N
84737 48113 14300497 5.08 0.619 G2V 5.37 0.255 0.234 0.261 0.004 0.247 0.014 N
88230 49908 14500801 6.60 1.326 K8V 7.59 0.285 0.418 0.407 0.007 0.412 0.005 E, N
90839 51459 13100204 4.82 0.541 F8V 1.18 0.276 0.279 0.392 0.094 0.335 0.067 N
95128 53721 18000207 5.03 0.624 G0V 6.31 0.270 0.222 0.236 0.023 0.229 0.016 N
97603 54872 16900610 2.56 0.128 A4V 0.68 0.868   0.894 0.021 0.894 0.021 N


   
Table 1: continued.
HD HIP ISO_id V B-V Spect. age $F_{\nu}^{\rm pred}$ $F_{\nu}^{\rm IRAS}$ $F_{\nu}^{\rm ISO}$ $\Delta F_{\nu}^{\rm ISO}$ $F_{\nu}^{\rm ad}$ $\Delta F_{\nu}^{\rm ad}$ Excess
      mag mag   Gyr Jy Jy Jy Jy Jy Jy Flag
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
101501 56997 17200316 5.31 0.723 G8Vvar 1.55 0.255   0.308 0.027 0.308 0.027 N
102365 57443 25400519 4.89 0.664 G3/G5V 7.24 0.333 0.351 0.374 0.016 0.362 0.011 N
102647 57632 18401422 2.14 0.090 A3Vvar 0.24 1.160 1.659 1.467 0.055 1.563 0.096 E
106591 59774 14301528 3.32 0.077 A3Vvar 0.48 0.378 0.386 0.422 0.016 0.404 0.018  
110833 62145 60000525 7.01 0.936 K3V 12.60 0.082   0.090 0.022 0.090 0.022  
112758 63366 40100128 7.54 0.769 K0V 5.89 0.036   0.075 0.036 0.075 0.036 N
114710 64394 21501031 4.23 0.572 G0V 3.63 0.507 0.461 0.436 0.041 0.449 0.029  
114762 64426 39000531 7.30 0.525 F9V 11.22 0.027   0.030 0.021 0.030 0.021 N
115383 64792 24101534 5.19 0.585 G0Vs 3.80 0.215 0.191 0.208 0.021 0.199 0.015 N
117176 65721 39600734 4.97 0.714 G5V 7.59 0.342 0.384 0.315 0.006 0.349 0.034 N
120136 67275 39400137 4.50 0.508 F7V 1.38 0.346 0.346 0.322 0.007 0.334 0.012 N
126660 70497 19501343 4.04 0.497 F7V 2.95 0.516 0.517 0.558 0.039 0.537 0.027  
128167 71284 26900346 4.47 0.364 F3Vwvar 1.70 0.261 0.295 0.314 0.043 0.305 0.030  
134083 73996 08901049 4.93 0.429 F5V 1.82 0.197 0.176 0.217 0.009 0.197 0.020  
139664 76829 09000155 4.64 0.413 F5IV-V 1.12 0.248 0.493 0.253 0.032 0.373 0.120  
142373 77760 28100658 4.60 0.563 F9V 8.51 0.354 0.408 0.388 0.035 0.398 0.025  
142860 78072 08901261 3.85 0.478 F6V 3.24 0.591 0.630 0.763 0.031 0.697 0.067  
149661 81300 80700364 5.77 0.827 K2V 2.09 0.206 0.224 0.173 0.014 0.198 0.026  
154088 83541 45801567 6.59 0.814 K1V 7.24 0.094   0.089 0.009 0.089 0.009  
156026 84478 09401670 6.33 1.144 K5V 0.63 0.239   0.266 0.017 0.266 0.017  
157214 84862 09101273 5.38 0.619 G0V 7.24 0.193 0.196 0.182 0.023 0.189 0.016  
157881 85295 09202576 7.54 1.359 K7V 5.25 0.130 0.112 0.185 0.022 0.148 0.036  
160691 86796 45800282 5.12 0.694 G5V 6.17 0.286 0.321 0.244 0.036 0.282 0.038  
166620 88972 36901485 6.38 0.876 K2V 7.24 0.130 0.133 0.136 0.011 0.135 0.007  
172167 91262 08900788 0.03 -0.00 A0Vvar 0.35 6.351 8.079 8.234 0.305 8.156 0.215 E
173667 92043 10600291 4.19 0.483 F6V 2.40 0.436 0.430 0.445 0.011 0.437 0.008  
185144 96100 28801094 4.67 0.786 K0V 5.50 0.522 0.553 0.554 0.017 0.553 0.012  
185395 96441 54801897 4.49 0.395 F4V 1.29 0.274 0.221 0.236 0.029 0.229 0.021  
187642 97649 13001001 0.76 0.221 A7IV-V 1.23 5.723 5.757 5.166 0.179 5.462 0.296  
191408 99461 34301404 5.32 0.868 K2V 7.24 0.339 0.450 0.474 0.027 0.462 0.019 E
192310 99825 18300407 5.73 0.878 K3V   0.237 0.289 0.311 0.025 0.300 0.018  
197692 102485 13501110 4.13 0.426 F5V 2.00 0.408 0.367 0.387 0.034 0.377 0.024  
203280 105199 08900313 2.45 0.257 A7IV-V 0.89 1.314 1.220 1.262 0.029 1.241 0.021  
203608 105858 10902816 4.21 0.494 F6V 10.47 0.439 0.459 0.459 0.017 0.459 0.012  
207129 107649 13500819 5.57 0.601 G2V 6.03 0.156 0.143 0.269 0.030 0.206 0.063  
209100 108870 18300322 4.69 1.056 K5V 1.29 0.894 0.980 1.155 0.048 1.067 0.087  
215789 112623 14401525 3.49 0.083 A3V 0.54 0.328 0.354 0.384 0.032 0.369 0.023  
216956 113368 35300828 1.17 0.145 A3V 0.22 3.259 3.419 3.414 0.057 3.417 0.041 E
217014 113357 37401640 5.45 0.666 G5V 5.13 0.200 0.175 0.179 0.031 0.177 0.022  
219134 114622 09102431 5.57 1.000 K3Vvar   0.353 0.387 0.349 0.028 0.368 0.020  
222368 116771 37800834 4.13 0.507 F7V 3.80 0.485 0.526 0.524 0.039 0.525 0.028  

  Notes:  HD106591 was observed twice, the ISO flux density is the weighted average; the second ISO_id is 33700128.

      HD110833 is not in the list of Lachaume et al. (1999), the age is estimated by us according to Lachaume et al. (1999)

2.2 IRAS data

The IRAS data were obtained from the IRAS faint source catalog (IFSC, Moshir et al. 1989). When no IFSC data are available we have taken data from the IRAS point source catalog.

2.3 Predicted photospheric fluxes

In order to decide whether a star has any excess emission at 25 $\mu $m we have used the relation derived by Plets (1997):

 
V-[25] = -0.03 + 2.99 (B-V) - 1.06  (B-V)2 + 0.47  (B-V)3,     (1)

which is based on the analysis of photometric data obtained in the optical and with IRAS of a very large sample of stars. The relation is valid for B-V as high as 1.6 mag. However, investigation of the V-[25] versus B-Vdiagrams by Mathioudakis & Doyle (1993) showed that K dwarfs may have higher infrared fluxes than predicted by Eq. (1) in case B-V > 1.2 mag. We will take these findings into consideration when assessing stars with significant infrared excess.

Equation (1) is tied to the IRAS calibration. We adopted a flux density of 6.73 Jy for [25]=0 mag, this value is consistent with the IRAS photometric calibration (IRAS Explanatory Supplement).

For the analysis of likely excess stars we needed to estimate the photospheric flux at 12 $\mu $m. We used the relationship similar to Eq. (1) derived by Waters et al. (1987). The photospheric flux densities in the far-infrared ( $\lambda~\geq~60$ $\mu $m) were estimated by assuming that for a given star the magnitude longward of 60 $\mu $m is identical to the 60 $\mu $m magnitude as given in Paper I.

The values of V and B-V were taken from the Hipparcos Catalogue (Perryman et al. 1997). At the low flux end with $F_{\nu}(25~{\rm {\mu}m})<$ 300 mJy, an uncertainty of mV= 0.01 corresponds to about 2 mJy and B-V= 0.01 corresponds to about 5 mJy. Consequently, the statistical uncertainty in the "predicted'' flux density according to Eq. (1) is estimated to be of the order of 2-3%.

2.4 ISO data processing

The ISOPHOT data at 25 $\mu $m (Lemke et al. 1996) were collected throughout the ISO mission (Leech & Pollock 2000) with observation template AOT PHT03 in triangular chopped mode (Klaas et al. 1994). The chopper throw was 60'' and the aperture used was 52''. The on-target exposure time was 128 s and an equal amount of time was spent on the two background positions.

The data were processed using ISOPHOT interactive analysis PIA Version 8.1 (Gabriel et al. 1997). All standard signal corrections were applied. A generic chopper pattern of two plateaux of 4 "source plus background'' and 4 "background'' signals were derived. For the signal difference we have taken the average of the last two signals of each plateau. The signals were converted to flux densities under the assumption that the responsivity of the detector has the same value at the beginning of each ISO revolution, and changes with orbital phase due to ionising radiation according to an empirical function tabulated in the "Cal G'' table PPRESP (Laureijs et al. 2001).

To check the ISO results we have correlated the ISO fluxes with the predicted fluxes and found a tight correlation. However, the correlation is not along the line of unit slope but along a power law where the high fluxes ( $F_{\nu}>~1$ Jy) are systematically underestimated and the lower fluxes ( $F_{\nu}<~300$ mJy) are systematically overestimated with respect to the model predictions, see Fig. 1.


  \begin{figure}
\par\resizebox{\hsize}{!}{\includegraphics{RJL1808f1.eps}} \end{figure} Figure 1: Comparison between the photometric data of ISO and IRAS. Left panel: the correlation between ISO and IRAS. For the ISOPHOT data at 25 $\mu $m we assumed a default detector responsivity and standard calibrations. Right panel: the same correlation after correction of the ISO fluxes to obtain an overall match with the predicted fluxes. The solid lines represent the lines of unit slope.

Assuming that the majority of the stars in our sample have no significant excess emission at 25 $\mu $m we recalibrated the ISO fluxes to the predicted fluxes so that the correlation between subsamples of the two data sets scatters around the line of unit slope. The method is illustrated in Fig. 1 where the correlations are given between the ISO and IRAS fluxes before and after the correction. A detailed description of the recalibration is given elsewhere (Laureijs & Jourdain de Muizon 2000). It should be stressed that the recalibration systematically changes the fluxes in the ISO sample as a whole and does not affect the relative scatter amoung the individual observations. Also, the Plets (1997) predictions are based on the IRAS calibration, whereas the ISOPHOT calibration is based on a different photometric system. The recalibration ensures that the fluxes of the ISO observations are consistent with the IRAS calibration.


next previous
Up: A 25 micron search ISO

Copyright ESO 2002