next previous
Up: Beryllium abundances in stars planets


Subsections

   
3 Abundance analysis

3.1 Atmospheric parameters

García López et al. (1995) carried out a detailed analysis of the sources of uncertainties regarding the determination of Be abundances. They concluded that the precision of the derived Be abundances is mostly dependent on the choice of the stellar atmospheric parameters. In particular, they are very sensitive to the adopted value for the surface gravity ($\log{g}$).

In order to limit the possible systematic errors in our determinations it is important, whenever possible, to use an uniform set of atmospheric parameters for all the programme stars. We thus decided to use the values listed by Santos et al. (2001a, 2001b), computed from an uniform and accurate spectroscopic analysis available for most of the stars studied in this paper[*]. For three of the stars (HD 870, HD 1461, and HD 3823 for which no planetary companions were found to date), no parameters were available, and we computed them using CORALIE or FEROS spectra, in the very same way as in Santos et al. (2001a). The values are listed in Table 2. As discussed by the authors, the errors in $T_{\rm eff}$ are usually lower than 50 K, and errors in the microturbulence parameter are of the order of 0.1 km s-1. As for $\log{g}$, the uncertainties are in the range of 0.10 to 0.15 dex[*].


 

 
Table 1: Observing log for stars with and without planets.
HD Star V Observ. S/N Date
number     Run    
           
Stars with planets:    
HD 13445 Gl 86 6.1 UVES(A) 150 Nov. 2000
HD 16141 HD 16141 6.8 UVES(A) 120 Nov. 2000
HD 17051 $\iota$ Hor 5.4 UVES(A) 150 Nov. 2000
HD 52265 HD 52265 6.3 UVES(A) 120 Dec. 2000
HD 75289 HD 75289 6.4 UVES(A) 110 Dec. 2000
HD 82943 HD 82943 6.5 UVES(A) 140 Jan. 2001
HD 210277 HD 210277 6.5 UVES(A) 110 Nov. 2000
HD 217107 HD 217107 6.1 UVES(A) 120 Nov. 2000
- BD-10 3166 10.0 UVES(B) 20 Feb. 2001
HD 38529 HD 38529 5.9 UVES(B) 60 Feb. 2001
HD 75289 HD 75289 6.4 UVES(B) 30 Feb. 2001
HD 92788 HD 92788 7.3 UVES(B) 40 Feb. 2001
HD 82943 HD 82943 6.5 UVES(B) 35 Feb. 2001
HD 108147 HD 108147 7.0 UVES(B) 60 Feb. 2001
HD 121504 HD 121504 7.5 UVES(B) 45 Feb. 2001
HD 134987 HD 134987 6.5 UVES(B) 60 Feb. 2001
HD 95128 47 UMa 5.1 IACUB(A) 100 May 2000
HD 114762 HD 114762 7.3 IACUB(A) 65 May 2000
HD 117176 70 Vir 5.0 IACUB(A) 70 May 2000
HD 130322 HD 130322 8.0 IACUB(A) 35 May 2000
HD 145675 14 Her 6.7 IACUB(A) 65 May 2000
HD 168443 HD 168443 6.9 IACUB(A) 55 May 2000
HD 187123 HD 187123 7.9 IACUB(A) 55 May 2000
HD 195019 HD 195019 6.9 IACUB(A) 50 May 2000
HD 10697 109 Psc 6.3 IACUB(B) 40 Oct. 2001
HD 12661 HD 12661 7.4 IACUB(B) 40 Oct. 2001
HD 22049 $\epsilon$ Eri 3.7 IACUB(B) 100 Oct. 2001
HD 9826 $\upsilon$ And 4.1 UES 120 Aug. 1998
HD 120136 $\tau$ Boo 4.5 UES 90 Aug. 1998
HD 143761 $\rho$ CrB 5.4 UES 120 Aug. 1998
HD 217014 51 Peg 5.5 UES 100 Aug. 1998
           
Stars without known planets:    
HD 870 HD 870 7.2 UVES(A) 130 Nov. 2000
HD 1461 HD 1461 6.5 UVES(A) 120 Nov. 2000
HD 1581 HD 1581 4.2 UVES(A) 140 Dec. 2000
HD 3823 HD 3823 5.9 UVES(A) 130 Oct. 2000
HD 26965A o2 Eri 4.4 IACUB(B) 55 Oct. 2001
HD 222335 HD 222335 7.2 UVES(A) 110 Dec. 2000



 

 
Table 2: Stellar atmospheric parameters and resulting beryllium abundances for each spectrum.
Star $T_{\rm eff}$ $\log{g}$ [Fe/H] $\log{N\rm (Be)}$ Run $\log{N\rm (Li)}\dag $
             
Stars with planets$\dag\dag $:
BD -10 3166 6320 4.38 0.33 <0.55 UVES(B) -
HD 9826 6140 4.12 0.12 $0.99\pm0.18$ UES 2.26
HD 10697 5605 3.96 0.16 $1.38\pm0.18$ IACUB(B) 1.94
HD 12661 5715 4.45 0.35 $1.07\pm0.14$ IACUB(B) <0.99
HD 13445 5205 4.70 -0.20 <0.52 UVES(A) <0.5
HD 16141 5805 4.28 0.15 $1.27\pm0.14$ UVES(A) <0.73
HD 17051 6225 4.65 0.25 $1.02\pm0.17$ UVES(A) 2.63
HD 22049 5135 4.70 -0.07 $0.70\pm0.20$ IACUB(B) <0.3
HD 38529 5675 4.01 0.39 <0.30 UVES(B) <0.61
HD 52265 6100 4.29 0.24 $1.21\pm0.14$ UVES(A) 2.73
HD 75289 6135 4.43 0.27 $1.39\pm0.14$ UVES(A) 2.84
HD 75289 6135 4.43 0.27 $1.41\pm0.16$ UVES(B) 2.84
HD 75289 (avg)       1.40    
HD 82943 6025 4.54 0.33 $1.32\pm0.14$ UVES(A) 2.52
HD 82943 6025 4.54 0.33 $1.22\pm0.14$ UVES(B) 2.52
HD 82943 (avg)       1.27    
HD 92788 5775 4.45 0.31 $1.13\pm0.16$ UVES(B) -
HD 95128 5800 4.25 0.01 $1.13\pm0.14$ IACUB(A) 1.71
HD 108147 6265 4.59 0.20 $1.02\pm0.14$ UVES(B) 2.34
HD 114762 5950 4.45 -0.60 $0.97\pm0.14$ IACUB(A) 2.26
HD 117176 5500 3.90 -0.03 $0.82\pm0.14$ IACUB(A) 1.76
HD 120136 $\dag\dag\dag $ 6420 4.18 0.32 $0.14\pm0.30$ UES <1.07
HD 121504 6090 4.73 0.17 $1.40\pm0.16$ UVES(B) 2.66
HD 130322 5410 4.47 0.05 $1.07\pm0.20$ IACUB(A) <0.57
HD 134987 5715 4.33 0.32 $1.12\pm0.17$ UVES(B) <0.69
HD 143761 5750 4.10 -0.29 $0.95\pm0.19$ UES 1.30
HD 145675 5300 4.27 0.50 <0.5 IACUB(A) <0.7
HD 168443 5555 4.10 0.10 $0.97\pm0.15$ IACUB(A) <0.71
HD 187123 5830 4.40 0.16 $0.98\pm0.14$ IACUB(A) 1.20
HD 195019 5830 4.34 0.09 $1.27\pm0.15$ IACUB(A) <1.05
HD 210277 5575 4.44 0.23 $1.05\pm0.17$ UVES(A) <0.73
HD 217014 5795 4.41 0.21 $0.98\pm0.14$ UES 1.30
HD 217107 5660 4.42 0.39 $1.01\pm0.17$ UVES(A) <0.86
             
Stars from García López & Perez de Taoro (1998):
HD 75732 A 5150 4.15 0.29 <0.55 - <0.04
HD 186408 5750 4.20 0.11 $1.10\pm0.17$ - 1.24
HD 186427 5700 4.35 0.06 $1.30\pm0.17$ - <0.46
             
Stars without known planets:
HD 870 5425 4.59 -0.03 $0.84\pm0.16$ UVES(A) <0.35
HD 1461 5785 4.47 0.18 $1.20\pm0.17$ UVES(A) <0.71
HD 1581 5940 4.44 -0.15 $1.19\pm0.14$ UVES(A) 2.35
HD 3823 5950 4.12 -0.27 $0.98\pm0.14$ UVES(A) 2.44
HD 26965A 5185 4.73 -0.26 $0.56\pm0.20$ IACUB(B) <0.22
HD 222335 5310 4.64 -0.10 $0.87\pm0.18$ UVES(A) <0.35

$\dag $ The values for the Li abundances were taken from Israelian et al. (2001b); we refer to this work for references. These authors used the very same set of stellar parameters as in this paper, and thus the listed Li and Be abundances are based on the same parameter scale.
$\dag\dag $ We refer to obswww.unige.ch/~naef/who_discovered_that_planet.html for the planet discovery references.
$\dag\dag\dag $ For this star ($\tau$ Boo) the uncertainty in $\log{N({\rm Be})}$ is higher due to the "large'' $v~\sin{i}\sim15$ m s-1.

3.2 Spectral synthesis

The abundance analysis was done in standard Local Thermodynamic Equilibrium (LTE) using a revised version of the code MOOG (Sneden 1973), and a grid of Kurucz et al. (1993) ATLAS9 atmospheres. Be abundances were derived by fitting synthetic spectra to the data, using the same line-list as in García López & Perez de Taoro (1998). While both Be II lines at 3130.420 and 3131.065 Å are present in our data, we only used the latter, given the severe line blending in the region around 3130.420 Å (used only for checking the consistency of the fit).

In the analysis, the overall metallicity was scaled to the iron abundance. We then iterated by changing the Be abundance, the continuum placement and the Gaussian smoothing profile until the best fit for the whole spectral region was obtained (we fitted all the spectrum between 3129.5 and 3132.0 Å). When considered important (e.g. for $\tau$ Boo), the smoothing function used was a combination of a Gaussian and a rotational profile; for these cases we used the $v~\sin{i}$ value determined from the width of the CORAVEL cross-correlation dip (Benz & Mayor 1984). Three examples are shown in Figs. 1 and 2. The resulting abundances for all the objects observed are listed in Table 2. Here we use the notation $\log{N\rm (Be)}=[\rm Be]=\log{{\rm (Be/H})}+12$.

3.3 Errors

It is not simple to derive accurate uncertainties for measurements of Be abundances (García López et al. 1995). In this paper the errors were estimated as follows. We considered that from the errors of $\pm $50 K in temperature and $\pm $0.15 dex in $\log{g}$ we can expect typical uncertainties around 0.03 and 0.06 dex, respectively. There are several OH lines blended with the Be II 3130.420 Å line; changes in the oxygen abundance would also change the location of the pseudo-continuum in that region, affecting the overall fit. To take this into account, an error of 0.05 dex, associated with the uncertainties in the oxygen abundances expected for these stars, has been added. Other atmospheric parameters, like the metallicity [Fe/H] and the microturbulence, do not influence significantly the results, and we will conservatively consider that together they introduce an error of 0.05. Adding quadratically, these figures produce an uncertainty of 0.09 dex, that was added to the error due to continuum placement and fit quality for each case, that we conservatively considered to be at least of 0.10 dex. The final errors, listed in Table 2 together with the derived Be abundances, are of the order of 0.16 dex, and quite independent of the S/N of the spectrum.

Note that we are interested in carrying out a differential analysis, and thus the knowledge of the absolute temperatures and surface gravities is not very important. Rather, it is crucial that these values are all in the same "scale''.


next previous
Up: Beryllium abundances in stars planets

Copyright ESO 2002