next previous
Up: Spectroscopic diagnostics of stellar


   
6 Conclusions

We have discussed diagnostic methods and atomic data for the determination of densities, the DEM and the chemical composition of the transition regions and coronae of the Sun and active stars. We have described the severe limitations which some of the commonly used methods have. We have illustrated several issues with examples, mainly focusing on the diagnostic methods for the transition region using FUV (900-1700 Å - HST/STIS, FUSE) observations of AU Mic. We have complemented them with FUV observations of the Sun and Capella. We have revised some previous analyses and obtained results that are significantly different from those of other authors.

The problems highlighted are quite general and apply to other stellar transition regions (including the Sun) and to other wavelength ranges. In terms of emission measure analysis, we have indicated what we think is the best approach, which avoids frequently used approximations. We have described the main problems related to the direct determination of the relative elemental abundances, giving warnings about the use of emission measures and line ratio methods.

  \begin{figure}
\par\includegraphics[angle=90,width=7.5cm,clip]{H3236_12.ps}\par\...
...6_13.ps}\par\includegraphics[angle=90,width=7.5cm,clip]{H3236_14.ps}\end{figure} Figure 8: The emission measures $EM_{\Delta {\rm log}\, T=0.3}$ values, together with the $I\mbox{$\rm _{ob}$ } / (A_{\rm b} \times C(T))$ curves, calculated at constant pressure $P_{\rm e}= 10^{16}$ cm-3 K. From top to bottom: the curves for the allowed lines; the curves for the anomalous allowed lines of the Li- and Na-like sequences; the curves for the forbidden lines.


  \begin{figure}
\par\includegraphics[angle=90,width=7.6cm,clip]{H3236_15.ps}\par\...
...6_16.ps}\par\includegraphics[angle=90,width=7.6cm,clip]{H3236_17.ps}\end{figure} Figure 9: The DEM of the AU Mic in quiescence (same as Fig. 7), but with the emissivities calculated, from top to bottom: at constant density $N_{\rm e}= 3.5 \times 10^{10}$ cm-3; $N_{\rm e}= 14 \times 10^{10}$ cm-3; at constant pressure $P_{\rm e}= 10^{16}$ cm-3 K. Note the large variations in the forbidden lines Si III], O III], N IV], O IV], O V], and the fact that a constant pressure $P_{\rm e}= 10^{16}$ cm-3 K produces the best agreement in the temperature range shown.

Regarding electron densities, we have discussed the limitations of using single line ratios, and recommended the use of the L-function method, which gives a better overall view of the results. We have presented the limitations in the use of lines that have a small density sensitivity, providing a discussion of the O IV lines at 1400 Å as an example. The use of these lines is further complicated by the presence of an unknown blend.

We have shown the importance of revising earlier results by using more up-to-date atomic calculations. As an example, we have shown that the latest S IV calculations of Tayal (2000) provide density estimates that are significantly different from those reported in the previous literature.

The anomalous behaviour of lines from the Li and Na isoelectronic sequences has been neglected too often in previous solar and stellar publications. We have shown that the use of these lines produces erroneous results in the determination of: a) the DEM; b) the elemental abundances; c) the densities using the emission measure loci method. Note that in most papers these lines have been the primary means of determining the physical characteristics of the solar and stellar transition regions.

In light of the above, we believe that a large body of work in terms of spectroscopic diagnostics of the solar and stellar outer atmospheres (and their application to physical modeling) should be revisited, now that more accurate atomic and observational data are available.


 

 
Table 3: Results of the DEM analysis. The columns consist of: (1) the ion; (2) the theoretical wavelength $\lambda _{\rm th}$; (3) the observed wavelength $\lambda _{\rm ob}$; (4) configuration and term description; (5) observed flux $I_{\rm ob}$ (10-14 ergs cm-2 s-1); (6) ratio between the theoretical $I_{\rm th}$ and the observed flux; (7) the estimated error on the ratio value; (8) the effective temperature (log values); (9) $T_{\rm max}$ (log values); (10) the contribution of each transition to the total calculated intensity of the line. (11) the instrument. The last column indicates: (*) a selection of the observed allowed lines; (a) the anomalous allowed lines of the Li- and Na-like sequences; (d) the forbidden lines. The lines marked in the last column are plotted in Fig. 8.

Ion
$\lambda _{\rm th}$ $\lambda _{\rm ob}$ Transition $I_{\rm ob}$ $I_{\rm th}$/ +/- log log frac    
  (Å) (Å)   (10-14) $I_{\rm ob}$    $T_{\rm eff}$ $T_{\rm max}$      

Si II
1533.430 1533.406 3s2 (1S) 3p 2P3/2-3s2 (1S) 4s 2S1/2 0.69 1.09 0.24 4.28 4.43   STIS  
Si II 1526.706 1526.687 3s2 (1S) 3p 2P1/2-3s2 (1S) 4s 2S1/2 0.58 0.66 0.15 4.28 4.43   STIS  
Si II 1304.369 1304.355 3s2 (1S) 3p 2P1/2-3s 3p2 2S1/2 0.12 1.05 0.23 4.33 4.48   STIS *
Si II 1309.274 1309.287 3s2 (1S) 3p 2P3/2-3s 3p2 2S1/2 0.32 0.78 0.17 4.33 4.48   STIS  
Si II 1264.737 1264.725 3s2 (1S) 3p 2P3/2-3s2 (1S) 3d 2D5/2 0.48 2.01 0.45 4.35 4.49   STIS  
Si II 1265.001 1264.986 3s2 (1S) 3p 2P3/2-3s2 (1S) 3d 2D3/2 0.21 0.55 0.12 4.35 4.49   STIS  
S II 1253.811 1253.808 3s2 3p3 4S3/2-3s 3p4 4P3/2 0.12 1.65 0.37 4.34 4.45   STIS  
S II 1259.519 1259.495 3s2 3p3 4S3/2 -3s 3p4 4P5/2 0.14 0.80 0.18 4.35 4.45   STIS *
C II 1334.524 1334.535 2s2 (1S) 2p 2P1/2-2s 2p2 2D3/2 6.89 1.00 0.22 4.44 4.58   STIS  
C II 1335.709 1335.692 2s2 (1S) 2p 2P3/2-2s 2p2 2D5/2 14.39 0.96 0.21 4.44 4.58   STIS *
C II 1036.332 1036.302 2s2 (1S) 2p 2P1/2-2s 2p2 2S1/2 0.73 1.06 0.17 4.53 4.63   FUSE  
C II 1037.020 1036.982 2s2 (1S) 2p 2P3/2-2s 2p2 2S1/2 1.1 1.39 0.18 4.53 4.63   FUSE  
C II 1323.952 1323.929 2s 2p2 2D5/2-2p3 2D5/2 0.14 0.95 0.21 4.63 4.69 0.56 STIS  
C II 1323.907   2s 2p2 2D3/2-2p3 2D3/2         4.69 0.36    
Si III 1206.499 1206.496 3s2 1S0-3s 3p 1P1 7.9 1.09 0.24 4.64 4.78   STIS *
Si III 1301.147 1301.139 3s 3p 3P1-3p2 3P0 0.17 0.65 0.14 4.66 4.77   STIS  
Si III 1303.323 1303.325 3s 3p 3P2-3p2 3P1 0.15 1.05 0.23 4.66 4.77   STIS  
Si III 1298.944 1298.938 3s 3p 3P2-3p2 3P2 0.51 1.11 0.25 4.67 4.77 0.83 STIS d
Si III 1298.892   3s 3p 3P1-3p2 3P1         4.77 0.17    
Si III 1294.543 1294.537 3s 3p 3P1-3p2 3P2 0.21 0.76 0.17 4.67 4.77   STIS  
Si III 1296.726 1296.713 3s 3p 3P0-3p2 3P1 0.08 1.60 0.36 4.67 4.77   STIS  
Si III 1109.969 1110.006 3s 3p 3P1-3s 3d 3D2 0.25 1.27 0.28 4.69 4.78 0.74 FUSE  
Si III 1109.939   3s 3p 3P1-3s 3d 3D1         4.78 0.26    
Si III 1108.357 1108.370 3s 3p 3P0-3s 3d 3D1 0.083 1.32 0.68 4.69 4.78   FUSE  
Si III 1113.229 1113.270 3s 3p 3P2-3s 3d 3D3 0.31 2.00 0.39 4.69 4.78 0.87 FUSE  
Si III 1113.203   3s 3p 3P2-3s 3d 3D2         4.78 0.13    
S III 1021.321 1021.357 3s2 3p2 3P2-3s 3p3 3P2 0.083 1.38 0.48 4.71 4.79   FUSE *
S III 1077.171 1077.017 3s2 3p2 1D2-3s2 3p 3d 1D2 0.13 1.10 0.56 4.72 4.80   FUSE *
C III 977.022 977.015 2s2 1S0-2s 2p 1P1 12 1.49 0.16 4.81 4.92   FUSE  
C III 1174.935 1174.939 2s 2p 3P1-2p2 3P2 2 0.70 0.10 4.82 4.92   FUSE  
C III 1175.265 1175.281 2s 2p 3P0-2p2 3P1 1.6 0.70 0.10 4.82 4.92   FUSE  
C III 1175.592 1175.570 2s 2p 3P1-2p2 3P1 1.1 0.76 0.11 4.82 4.92   FUSE  
C III 1175.713 1175.709 2s 2p 3P2-2p2 3P2 3.8 1.10 0.16 4.82 4.92   FUSE *
C III 1175.989 1175.986 2s 2p 3P1-2p2 3P0 1.8 0.62 0.09 4.82 4.92   FUSE  
C III 1176.372 1176.366 2s 2p 3P2-2p2 3P1 1.6 0.87 0.12 4.82 4.92   FUSE  
C III 1175.713 1175.694 2s 2p 3P2-2p2 3P2 3.98 1.05 0.24 4.82 4.92   STIS  
Si IV 1402.770 1402.747 3s 2S1/2-3p 2P1/2 2.92 0.18 0.04 4.88 4.87   STIS a
Si IV 1393.755 1393.744 3s 2S1/2-3p 2P3/2 4.93 0.21 0.05 4.88 4.88   STIS a
Si IV 1128.325 1128.350 3p 2P3/2-3d 2D5/2 0.2 0.12 0.04 4.95 4.90 0.90 FUSE a
Si IV 1128.340   3p 2P3/2-3d 2D3/2         4.90 0.10    
Si IV 1122.500 1122.578 3p 2P1/2-3d 2D3/2 0.11 0.12 0.05 5.20 4.90   FUSE a
N III 989.787 989.752 2s2 2p 2P1/2-2s 2p2 2D3/2 0.46 1.16 0.40 4.88 4.94   FUSE *
N III 991.564 991.538 2s2 2p 2P3/2-2s 2p2 2D5/2 1.2 0.87 0.16 4.88 4.94 0.90 FUSE *
N III 991.495   2s2 2p 2P3/2-2s 2p2 2D3/2         4.94 0.10    
O III 1666.142 1666.109 2s2 2p2 3P2-2s 2p3 5S2 0.13 1.02 0.23 4.94 4.98   STIS d
S IV 1406.016 1406.031 3s2 3p 2P3/2-3s 3p2 4P5/2 0.04 2.76 0.62 4.95 5.00   STIS d
S IV 1072.974 1072.930 3s2 3p 2P3/2-3s 3p2 2D5/2 0.23 1.18 0.32 4.98 5.03   FUSE *
S IV 1062.664 1062.572 3s2 3p 2P1/2-3s 3p2 2D3/2 0.19 0.93 0.23 4.99 5.03   FUSE *
N IV 1486.496 1486.510 2s2 1S0-2s 2p 3P1 0.09 0.72 0.16 5.15 5.16   STIS d
C IV 1550.772 1550.746 1s2 2s 2S1/2-1s2 2p 2P1/2 11.34 0.20 0.04 5.19 5.03   STIS a
C IV 1548.201 1548.181 1s2 2s 2S1/2-1s2 2p 2P3/2 21.36 0.21 0.05 5.19 5.03   STIS a
O IV 1404.793 1404.811 2s2 2p 2P3/2-2s 2p2 4P3/2 0.11 1.15 0.26 5.22 5.21 0.79 STIS  
S IV 1404.808   3s2 3p 2P1/2-3s 3p2 4P1/2         4.99 0.21    
O IV 1399.779 1399.765 2s2 2p 2P1/2-2s 2p2 4P1/2 0.07 1.72 0.39 5.24 5.18   STIS  
O IV 1407.383 1407.361 2s2 2p 2P3/2-2s 2p2 4P1/2 0.12 0.93 0.21 5.24 5.18   STIS d
O IV 1401.171 1401.140 2s2 2p 2P3/2-2s 2p2 4P5/2 0.4 1.14 0.25 5.26 5.20   STIS d
O V 1218.390 1218.322 2s2 1S0-2s 2p 3P1 1.83 1.01 0.23 5.42 5.37   STIS d
O V 1371.292 1371.285 2s 2p 1P1-2p2 1D2 0.35 0.90 0.20 5.44 5.38   STIS *



 
Table 3: continued.

Ion
$\lambda _{\rm th}$ $\lambda _{\rm ob}$ Transition $I_{\rm ob}$ $I_{\rm th}$/ +/- log log frac    
  (Å) (Å)   (10-14) $I_{\rm ob}$    $T_{\rm eff}$ $T_{\rm max}$      

Ne V
1145.596 1145.624 2s2 2p2 3P2-2s 2p3 5S2 0.15 1.05 0.36 5.52 5.46   FUSE *
S VI 933.378 933.397 3s 2S1/2-3p 2P3/2 0.48 1.38 0.48 5.55 5.30   FUSE a
N V 1242.804 1242.794 1s2 2s 2S1/2-1s2 2p 2P1/2 2.11 0.31 0.07 5.57 5.27   STIS a
N V 1238.821 1238.799 1s2 2s 2S1/2-1s2 2p 2P3/2 4.52 0.29 0.07 5.57 5.27   STIS a
Ne VI 999.182 999.181 2s2 2p 2P3/2-2s 2p2 4P5/2 0.45 0.75 0.38 5.64 5.60   FUSE *
O VI 1037.615 1037.583 1s2 2s 2S1/2-1s2 2p 2P1/2 9.6 1.07 0.11 5.72 5.47   FUSE *
O VI 1031.914 1031.920 1s2 2s 2S1/2-1s2 2p 2P3/2 19 1.09 0.11 5.72 5.47   FUSE *
Fe IX 171.073 171.000 3p6 1S0-3p5.3d 1P1 22.9 1.08 0.48 5.92 5.85   EUVE *
Fe XV 284.160 284.200 3s2 1S0-3s3p 1P1 40.8 0.76 0.33 6.42 6.32   EUVE *
Fe XVI 335.410 335.300 3s 2S1/2-3p 2P3/2 27.9 1.02 0.70 6.61 6.41   EUVE *
Fe XVIII 93.923 94.100 2s2 2p5 2P3/2-2s 2p6 2S1/2 8.7 1.03 0.58 6.85 6.83   EUVE *
Fe XVIII 974.860 974.810 2s2 2p5 2P3/2-2s2 2p5 2P1/2 0.48 0.94 0.48 6.85 6.83   EUVE *
Fe XIX 1118.057 1118.013 2s2 2p4 3P2-2s2 2p4 3P1 0.22 1.28 0.29 6.90 6.90   FUSE *
Fe XIX 108.355 108.500 2s2 2p4 3P2-2s 2p5 3P2 7.96 0.69 0.25 6.92 6.90   EUVE *
Fe XX 121.845 121.700 2s2 2p3 4S3/2-2s 2p4 4P3/2 6.2 0.98 0.41 6.97 6.97   EUVE *
Fe XXI 1354.080 1354.045 2p2 3P0-2p2 3P1 0.77 0.93 0.21 7.02 7.02   STIS *
Fe XXI 128.752 128.600 2p2 3P0-2s 2p3 3D1 8.7 1.05 0.57 7.02 7.02   EUVE *
Fe XXII 135.755 135.800 2s2 2p 2P1/2-1s2 2s 2p2 2D3/2 7.8 0.70 0.28 7.09 7.08   EUVE *
Fe XXI 117.499 117.600 2p2 3P1-2s 2p3 3P1 3.2 0.89 0.56 7.11 7.02 0.50 EUVE  
Ni XXV 117.911   2s2 1S0-2s 2p 1P1         7.24 0.28    
Ni XXII 117.918   2s2 2p3 4S3/2-2s 2p4 4S5/2         7.05 0.11    
Fe XXIII 132.906 132.800 2s2 1S0-2s 2p 1P1 22.6 1.09 0.29 7.13 7.14 0.67 EUVE *
Fe XX 132.840   2s2 2p3 4S3/2-2s 2p4 4P5/2         6.97 0.31    
Fe XXIV 192.029 191.700 1s2 2s 2S1/2-1s2 2p 2P3/2 10.4 0.90 0.61 7.24 7.23 0.84 EUVE *
S XI 191.266   2s22p2 3P2-2s2p3 3S1         6.28 0.14    


Acknowledgements
G. Del Zanna and H. E. Mason acknowledge support from PPARC (UK). M. Landini and G. Del Zanna acknowledge support from ASI and MIUR (Italy). We thank R. Mewe for his helpful suggestions.


next previous
Up: Spectroscopic diagnostics of stellar

Copyright ESO 2002