A&A 383, L9-L13 (2002)
DOI: 10.1051/0004-6361:20020001
E. Caux1 - C. Ceccarelli2,3 - L. Pagani4 - S. Maret1 - A. Castets2 - J. R. Pardo5
1 - CESR CNRS-UPS, BP 4346, 31028 Toulouse Cedex 04, France
2 -
Observatoire de Bordeaux, BP 89, 33270 Floirac, France
3 -
Laboratoire d'Astrophysique, Observatoire de Grenoble, BP 53, 38041
Grenoble Cedex 09, France
4 -
LRM-DEMIRM, 77 avenue Denfert Rochereau, 75014 Paris, France
5 -
Consejo Superior de Investigaciones Cientificas (CSIC), Madrid
Received 13 November 2001 / Accepted 21 December 2001
Abstract
We present ISO-LWS observations at high spectral resolution
(
)
towards a cold molecular cloud in the line of sight
of W49. The HD ground state transition at 112
m is detected, showing
the first observation of this line in absorption outside the solar system.
The 112
m absorption depth gives a straightforward measure of the
lower limit of the cloud's HD column density,
cm-2. We also mapped the same line of sight in the
12CO (2-1) and (3-2), and 13CO (2-1) transitions at the CSO,
and in the C18O and C17O (1-0) and (2-1) transitions at the
IRAM 30-m. From these observations we derive an upper limit to the CO
column density,
cm-2. Assuming a
standard CO abundance (
)
would imply a [D]/[H]
abundance two orders of magnitude larger than the average [D]/[H]
value observed in the solar neighborhood. The alternative explanation
that we defend here is that CO is highly depleted (by a factor 100) in
this cloud. This is the first measurement of such a depletion factor in a
relatively massive cold molecular cloud (
10
).
Key words: ISM: abundances - ISM: lines and bands - ISM: molecules - ISM: clouds - ISM: individual objects: W49 - infrared: ISM - radio lines: ISM
As widely known, deuterium is thought to be produced in the early
Universe and its abundance is thought to be a sensitive measure of the
baryonic mass of the Universe. An observational effort has been made,
aimed at measuring the [D]/[H] ratio in a variety of astrophysical conditions
(for a recent review see e.g. Vidal-Madjar et al. 1998).
Despite the many efforts, the D abundance remains poorly known except in
the immediate vicinity of the solar system (
),
where it is probably known within an uncertainty of 20% (Linsky et al.
1995; Linsky & Wood 1996; Sonneborn et al. 2000). The two recent
space missions, ISO (Kessler et al. 1996) and FUSE (Moos et al. 2000),
have been expected to provide measures of the [D]/[H] ratio farther out, by
measuring the HD/H2 ratio in distant molecular clouds by means of the
HD lines in the FIR and UV respectively (e.g. Ferlet et al. 2000). So far
ISO has detected HD in emission towards Orion, at
450pc from the
Sun (Wright et al. 1999; Bertoldi et al. 1999). The derived [D]/[H] ratio
is smaller than the value measured in the solar neighborhood (
), but some uncertainty in this estimate lies in the
method used which relies on some modeling of the observed line fluxes. In
principle a clean determination of the [D]/[H] ratio can be obtained when
the HD ground rotational transition at 112
m is seen in absorption
in molecular clouds, where both hydrogen and deuterium are in the molecular
form. The 112
m absorption depth would give a straightforward measure
of the amount of HD in the line of sight, whereas several methods could
give a reliable measure of the H2 column density, although not
straightforward if neither H2 nor CO are seen in absorption in the
same line of sight.
In this paper we report the first ever detection of the HD 112m
line in absorption in a molecular cloud. This observation was performed
along a line of sight aiming at the W49 star forming region center. The
HD observations are accompanied by CO millimeter observations, to measure
the H2 column density along the same line of sight. Surprising enough,
the comparison between the derived HD and CO column densities indicates
the presence of a cloud in the line of sight, which is dramatically
deprived of CO, as discussed in Sect. 4.
The W49 region is one of the largest star forming regions in our Galaxy (Scoville & Solomon 1973). It is very bright in the FIR and lies at 11.4kpc from the Sun behind the Galactic Center (Gwinn et al. 1992). The line of sight towards W49 crosses twice the Sagittarius arm, where several atomic and molecular clouds lie (Nyman 1983). All this makes the W49 direction a good target to study lines from these molecular clouds in absorption against its strong continuum.
We therefore used ISO-LWS to carry out observations of the HD ground
state rotational transition
(,
). The rest wavelength
of this transition is
m (Evenson et al.
1988). No observations were done with SWS on this line of sight,
preventing a direct determination of the H2 column density. In
order to derive the H2 column density and therefore the D/H
ratio, we mapped the emission from the transitions below 350GHz of CO
isotopes, covering the ISO-LWS beam. The two following sub-sections
describe the HD and CO observations separately.
High spectral resolution observations of the HD ground state transition
at 112m were performed using the Long Wavelength Spectrometer
instrument (hereafter LWS: Clegg et al. 1996) on the ISO satellite
(Kessler et al. 1996). These observations were obtained during revolution
316 in a Fabry-Pérot mode (LW04). They consisted of three independent
sets of fourteen LWS-FP scans centered on the rest frequency of the HD
line (
s for each sampled point). The ISO-LWS
beam was centred on the coordinates:
,
.
The data
were sampled at 1/4 of the FP resolution element and seven spectral
elements on either side of the line were acquired. The FWHM beam of the
detector used (LW2) is
78
.
The resolving power
at this wavelength measured on the ground was 9650, or
31kms-1. The wavelength calibration accuracy of the
LWS-FP is
11kms-1 (Gry et al. 2001). A full range
43-197
m grating spectrum was also obtained for the same line of
sight during revolution 316, allowing to calibrate the data (fringes and
continuum level). This observation is made of three scans sampled at 1/4
of the grating resolution element with an integration time on each
sampled point of 1.2s.
The initial data processing was carried out using the ISO-LWS Off-Line
Processing software (v10), up to the Auto Analysis Result stage.
Further data reduction was performed using the LWS Interactive Analysis
software (LIA v10). During this step, the continuum level of the FP data
was re-calibrated against the grating observations. This is needed because
a grating positioning problem in LW04 mode introduces a spurious slope on
the spectrum and because the dark current measurement does not take into
account the stray-light and the error due to FP order sorting that affect
LW04 measurements. A final analysis was made, using the ISAP package, to
remove bad data points and to perform sigma-clipping and co-adding. ISO
LW01 spectra are flux calibrated using Uranus, and the final absolute
accuracy obtained is estimated to be better than 30% (Swinyard et al.
1998). The line is directly visible in 2 of the 3 data sets, and
is clearly detected (Fig. 1) after co-adding of the
FP scans and smoothing to
m to
improve the signal to noise ratio.
![]() |
Figure 1:
ISO-LWS high resolution spectrum of the HD transition at
112![]() |
Open with DEXTER |
A clear absorption (4
)
of the strong continuum is observed
around
)kms-1, very far away from
the
of W49 itself (8kms-1), but close to that of a
molecular cloud on the line of sight (
kms-1,
see Sect. 2.2). The line-width of this absorption is
(
) kms-1, very similar to the measured spectral resolution
of LWS at this wavelength (Gry et al. 2001). The line is therefore not
resolved with the LWS spectrometer. The equivalent line width corresponding
to this absorption is
m.
This value leads to a very high HD column density in this molecular cloud
(relative to CO, see Sect. 3). We therefore checked very
carefully the different steps of the data processing with the LIA and did
not find any effect that would change the observed value of the absorption
by more than 30
.
We are confident that the observed feature is real and is not the result
of instrumental effects for the following reasons. First, even if the
grating spectral responsivity calibration file (RSRF) has a spurious
feature at 112m, this is due to the presence of HD absorption in the
spectrum of the calibration source (Uranus) which cannot affect our FP
spectrum, whose width is 0.15
m, i.e. four times smaller than that of
the grating spectral element at this wavelength. Second, spurious features
can be expected on strong sources from leakage into the FP of adjacent
spectral orders. The FP free spectral range at 112
m is 1.12
m
and the only strong lines expected in the observed LWS range are the high-J
transitions from 12CO and 13CO that could arise from W49 itself,
but they would only be seen in emission. Third, we processed similar
observations towards two other bright sources, Orion BN/KL and SgrB2
(Polehampton et al. 2002), both brighter than W49 at 112
m, with the
result that both sources do not present any absorption at this wavelength.
We first obtained 12CO and 13CO line maps at the CSO 10-m telescope (Caltech Submillimeter Observatory - Hawaii, USA) of the entire LWS beam. We then complemented these observations at higher spatial resolution observations around the brightest regions at the IRAM 30-m telescope (Pico Veleta, Spain). The two sets of observations are described separately in the following sections.
The CSO observations were performed in May 2001. We mapped the 78''
ISO-LWS beam in the 12CO(2-1) and 13CO(2-1) lines (13
points spaced by 30'') and in the 12CO(3-2) line (44 points
spaced by 20''). We used two SIS receivers at 230 and 345GHz,
connected to two Acousto-Optical Spectrometers (AOS) that provide a
spectral sampling of 48kHz and 0.47MHz respectively. Since we are
only interested in the molecular clouds with velocities larger than
40kms-1, we centered the narrow (50MHz) high resolution AOS
on
kms-1 covering the range
40-100kms-1 at 230GHz and 50-90kms-1 at 345GHz.
System temperatures during the observations were in the ranges 300-390
and 710-1190K in the two bands respectively. The beam size is 34''
at 230GHz and 20'' at 345GHz. Pointing and focus were regularly
monitored on Mars, and pointing corrections were always found smaller
than 3''. We corrected for the forward scattering and spill-over
efficiency (
for both frequencies) to set the
results in the
scale. The obtained
CO(2-1) map (Fig. 2), shows the presence
of a cloud
![]() |
Figure 2:
13CO (2-1) line map. LSR velocity range is
[55, 75kms-1], and temperature (
![]() |
Open with DEXTER |
![]() |
Figure 3: 12CO (2-1) and (3-2) and 13CO (2-1) line spectra smoothed to the LWS beam. Velocity sampling is 0.25kms-1 for the 1.3mm lines and 0.16kms-1 for the 0.8mm line. |
Open with DEXTER |
We hence mapped this cloud with the higher angular resolution of the IRAM telescope in August 2001 (Director Discretionary Time). The observations consisted of maps in the C18O and C17O, (1-0) and (2-1) transitions. The scope was first to measure as best as possible the column density of the cloud, which is best probed by the (1-0) transition; second to check the clumpiness of the CO emission; third to have a reliable measure of the line opacity, looking for C17O emission; finally, to have an estimate of the temperature of the cloud, we also observed the (2-1) transition for both isotopomers.
We used four SIS receivers simultaneously, at 109.8, 112.4, 219.6 and
224.7GHz. The autocorrelator was split in 4 parts, with 40kHz
sampling at 2.7mm and 80kHz sampling at 1.3mm. System temperatures
were typically 150K at 2.7mm and 200-230K at 1.3mm. Pointing and
focus were checked regularly on K3-50A. The beam size is 22'' at
110GHz and 11'' at 220GHz. The main beam efficiency is 0.8 at
110GHz and 0.52 at 220GHz. Though
is not known,
one can estimate it to be 0.87 at 110GHz and 0.71 at 220GHz. The
resulting C18O maps in the
scale are shown in Fig. 4. Comparison between the CSO and IRAM data shows that
the IRAM spectrum is 90% brighter and 60% narrower. This is consistent
with the AOS dilution of the signal together with the fact that the IRAM
map does not extend far enough to cover entirely the CSO beam down to
the 10%.
![]() |
Figure 4:
C18O (1-0) (histogram) and (2-1) (normal) line spectra
maps. Velocity range is [60, 65kms-1] and
![]() |
Open with DEXTER |
Finally, the C18O1-0 line is found 10 times stronger than the
left-side component (F:
,
0.333 relative intensity)
of the C17O(1-0) line triplet, and the total area ratio is 3.9.
The first relevant result of this mapping is hence that the
C18O(1-0) line is optically thin and we can use it to derive the
CO column density in the cloud. Second, the cloud appears to be rather
smooth on most of the IRAM beams (Fig. 4), ruling out
the presence of a single very dense clump in the ISO beam.
The absorption depth of the 112m HD ground state transition gives
a very clean measure of the HD column density along the line of sight.
Assuming (very likely) that all the molecules are in the ground state
and that the absorption is not thick, it yields (e.g. Spitzer 1978):
![]() |
(1) |
The most common H2 tracers are the dust continuum and the CO emission.
In our case, we cannot use the dust continuum observations, as they lack
the kinematic information and therefore cannot be attributed to the cloud
at 63.5kms-1 that absorbs the 112m photons. We therefore
have to rely entirely on the CO observations to measure the H2 column
density of this cloud.
In order to compute the CO column density we need an estimate of the
gas temperature. Actually, as the column density is derived from the
C18O(1-0) observations, it is particularly sensitive to temperature
values below 7K. Changing the temperature from 7K to 15K
would decrease the estimate of the CO column density by 25%. Using a LVG
model, we found that solutions with temperatures below 7K imply optically
thick C18O lines and therefore are ruled out by the observations.
Assuming a gas temperature of 7K (in order to have the upper limit of
the CO column density) gives an average C18O column density in
the LWS beam of
cm-2 for the cloud mapped
with IRAM. Because continuum emission is rather strong towards W49, the
flux of the CO lines may be (slightly) underestimated by our method of
baseline removal. In order to account for this, we eye-estimated the
continuum flux at 3 and 1.3mm from the maps by Sievers et al. (1991).
At 3mm the flux ranges from 0.9 to 2.1Jy/beam, which corresponds to
a correction on the CO column density not larger than 20%.
In conclusion, when applying this factor, we obtain
cm-2
and
cm-2, using the
standard value for the abundance ratio, CO/C
.
Finally,
note that the highest column density in the mapped region is observed
in a position, (0'', 40''), at the border of the ISO-LWS beam, where
a value
cm-2 is derived.
Figures 2 and 4 show that the position observed
with ISO-LWS is not centered on the peak of the 13CO and C18O
emission at 63.5kms-1. We used the highest spatial resolution map
available in the FIR at 53m (Harvey et al. 1977) obtained with the
KAO (
). We checked that the high resolution IRAS map
(Ward-Thompson et al. 1992) at 60
m is similar to the
53
m one. Unfortunately, the W49 100
m IRAS data are saturated,
preventing the construction of a high resolution map at this wavelength.
Nevertheless, high resolution mapping of W49 in the submillimeter range
(450
m), performed at JCMT by Buckley & Ward-Thompson (1996),
supports the idea that the continuum emission around 112
m has a
similar spatial distribution to that observed at 53
m. By superposing
the 53
m contours and the C18O(1-0) contours in the LWS beam,
we estimate that about 50% of the FIR continuum flux comes through the
molecular cloud and hence can be absorbed by it. This shows that the
estimate of the HD column density derived in Sect. 3.1 is a
lower limit while the estimate of the CO column density derived in
Sect. 3.2 is an upper limit. We can therefore definitely argue
that the values discussed in the next section are very conservative.
First, one can note that this result cannot be explained by a collection
of translucent clouds along the line of sight, since HD and CO have
similar variations with depth into the cloud (i.e., because of the lack
of HD self-shielding, the D
HD transition occurs at about
the same depth as the C
CO conversion). Therefore, we
assume that HD absorption and CO emission originate from the same cloud.
There are at least
cm-2 HD molecules in the
cloud which absorb the 112
m photons at 63.5kms-1 and not
more than
cm-2 of CO molecules in the same
cloud. The minimum [HD]/[CO] ratio is therefore equal to 12.
Assuming a standard CO abundance of
with respect to
H2 (van Dishoeck & Blake 1998) would give [HD]/[H
and therefore
,
i.e. about two
orders of magnitude larger than the average [D]/[H] in the solar
neighborhood! (
,
Linsky et al. 1995; Linsky & Wood
1996; Sonneborn et al. 2000). The alternative to this extremely large
[D]/[H] ratio is to have an extremely small [CO]/[H2] (
)
ratio. Either way, it is clear that the cloud absorbing the
112
m photons is extreme and deserves further attention.
Since the primordial deuterium can only be destroyed (in the interiors
of the stars), it is extremely unlikely that
,
the largest ever [D]/[H] observed
value (O'Meara et al. 2001). Although extreme, it is much more likely
that the solution to this puzzle is a very low CO abundance in this cloud,
among the lowest CO abundance ever measured in our Galaxy. It is possible
that this cloud is very dense and cold and that depletion is particularly
efficient there, maybe for the lack of an efficient mechanism to release
back the molecules frozen onto the grain mantles. Previous cases of
relatively low CO abundances in molecular clouds have been reported, which
show that in some clouds the CO abundance (with respect to H2) can be
as low as
(Lis & Goldsmith 1989; Caux et al. 1999;
Kramer et al. 1999; Vastel et al. 2000). In pre-stellar cores, "local''
depletion of CO up to a factor 100 has been measured as well (e.g. Caselli
et al. 1998), and also in some protostars large (
10) CO depletions
have been observed (e.g. van Dishoeck et al. 1995; Lefloch et al. 1998).
Recent modeling of the L1544 pre-stellar core shows that indeed the
CO abundance in the inner 2000AU region can be lower than
(Caselli et al. 2002), a value similar to what we find. Of
course, the cloud absorbing the 112
m photons is much more massive
than L1544. Assuming a kinematic distance of 6kpc for the absorbing
cloud, its mass (in one IRAM beam) is larger than 10
.
Further studies are needed to better understand the nature of this extreme cloud and to understand how unique it is in our Galaxy.
Acknowledgements
We thank E. F. van Dishoeck and C. M. Wright for planning these observations and for discussions on the data reduction and analysis. We also warmly thank the Director of IRAM, M. Grewing, for awarding Discretionary time, as well as C. Thum for an efficient organization of the observations and T. Gallego for doing the observations themselves at the 30-m telescope. The CSO is funded by NSF contract AST 96-15025. The research of J. R. Pardo is founded by Spanish MCyT grant AYA 2000-1784.