A&A 381, 1110-1130 (2002)
DOI: 10.1051/0004-6361:20011538
B. Schulz 1,2 - S. Huth 2,3 - R. J. Laureijs 1,2 - J. A. Acosta-Pulido 2,3,4 - M. Braun 2,3,7 - H. O. Castañeda 2,3,4 - M. Cohen 10,11 - L. Cornwall 2,5 - C. Gabriel 1,2 - P. Hammersley 4 - I. Heinrichsen 2,6,8 - U. Klaas 2,3 - D. Lemke 3 - T. Müller 1,2,3 - D. Osip 9,12 - P. Román-Fernández 1,2 - C. Telesco 9
1 -
ISO Data Centre, Astrophysics Division of ESA,
Villafranca, PO Box 50727, 28080 Madrid, Spain
2 -
ISO Science Operations Centre, Astrophysics Division of ESA,
Villafranca, PO Box 50727, 28080 Madrid, Spain
3 -
Max-Planck-Institut für Astronomie,
Königstuhl 17, 69117 Heidelberg, Germany
4 -
Instituto de Astrofisica de Canarias,
38200 La Laguna, S/C Tenerife, Spain
5 -
Rutherford Appleton Laboratory,
Chilton, Didcot, OX11 0QX, UK
6 -
Max-Planck-Institut für Kernphysik,
Saupfercheckweg 1, 69117 Heidelberg, Germany
7 -
Astrophysikalisches Institut Potsdam,
An der Sternwarte 16, 14482 Potsdam, Germany
8 -
Infrared Processing and Analysis Center,
California Institute of Technology,
MS 100/22, Pasadena, CA 91125, USA
9 -
211 Bryant Space Science Center,
PO Box 112055, Dpt. of Astronomy,
Univ. of Florida, Gainesville, FL 32611-2055, USA
10 -
Radio Astronomy Laboratory, 601 Campbell Hall,
University of California, Berkeley, CA 94720, USA
11 -
Vanguard Research, Inc. Suite 204,
5321 Scotts Valley Drive, Scotts Valley, CA 95066, USA
12 -
MIT, Dept. of Earth, Atmospheric and Planetary
Sciences, Bldg. 54-420, 77 Massachusetts Ave.,
Cambridge MA 02139, USA
Received 1 August 2001 / Accepted 29 October 2001
Abstract
All observations by the aperture photometer (PHT-P) and the
far-infrared (FIR) camera section (PHT-C) of ISOPHOT included
reference measurements against stable internal fine
calibration sources (FCS) to
correct for temporal drifts in detector responsivities. The FCSs
were absolutely calibrated in-orbit against stars, asteroids and
planets, covering wavelengths from 3.2 to 240 m. We present
the calibration concept for point sources within a flux-range from
60 mJy up to 4500 Jy for staring and raster observations in
standard configurations and discuss the requisite measurements and
the uncertainties involved. In this process we correct for
instrumental effects like nonlinearities, signal transients, time
variable dark current, misalignments and diffraction effects. A set of formulae is developed that describes the calibration from
signal level to flux densities. The scatter of 10 to 20% of the
individual data points around the derived calibration relations is
a measure of the consistency and typical accuracy of the
calibration. The reproducibility over longer periods of time
is better than 10%. The calibration tables and algorithms have
been implemented in the final versions of the software for
offline processing and interactive analysis.
Key words: instrumentation: photometers - methods: data analysis - techniques: photometric - infrared: stars - infrared: solar system
The task of calibration can be divided into three parts: First,
development of the instrument model and determination of the
instrument parameters that are assumed to be unchanging and
that can be measured in the laboratory, e.g.
filter transmissions, aperture diameters, etc. Second, the
determination of the open parameters of the ideal
instrument model that can be determined only in-situ, i.e. with
the instrument built into the satellite and in the real
space-environment. And third, the determination of deviations
from the ideal instrument model that cannot be removed by
adjusting parameters, and require a new functional
property. These modifications to the instrument model are found
empirically, and generally originate in simplifications.
Because open parameters and non-ideal
instrumental effects are usually intertwined,
an iterative process is required to separate and
quantify all the contributing effects.
![]() |
Figure 1: Instrument schematic from a calibrator's point of view. The detector compares IR radiation directly from the sky and from the internal reference source. Stability of the detector is required only for the time interval of the two measurements. |
Open with DEXTER |
This paper presents the photometric calibration of staring mode-
and simple raster mode observations
of point sources with
the P- and C-sections of ISOPHOT (Lemke et al. 1996),
which is one of four scientific instruments on board ESA's
Infrared (IR) Space Observatory ISO (Kessler et al. 1996).
Unlike CCD devices, the detectors for the
Mid-IR (MIR) and Far-IR (FIR) are far less stable
and exhibit a continuously changing relation between signal and incident
flux. Thus the two Fine Calibration Sources (FCS) built into ISOPHOT
played a crucial role as stable references for the photometry and most
of this paper will describe their empirical calibration.
The data collected for this task represent the largest part of all specific calibration observations during the mission. This resulted in a fairly homogeneous block of data. Its analysis and comparison to modeled spectral energy distributions (SEDs), of the observed celestial standard sources yielded most of the results presented here and drove several refinements to the ideal instrument model. An additional difficulty was the large number of possible instrument configurations, which was limited somewhat by considering only one standard aperture for each filter band of the aperture photometer (see Table 2). The set of instrument configurations and modes we treat herein defines a well-understood baseline within the large parameter space, where absolute calibration errors are expected to be minimal. The calibration of further configurations and modes, like chopped observations, extended source photometry, or non-standard apertures, is left to future publications.
We start with a brief review of the instrumental design with some emphasis on the internal reference sources (Sect. 2), followed by an outline of the calibration strategy (Sect. 3). Section 4 continues with a description of the corrections applicable to the detector signal. Section 5 presents the celestial calibrators and Sect. 6 describes those corrections imposed by photometric constraints. We derive the FCS calibration tables in Sect. 7 and present the final flux calibration, with its mathematical description and a discussion on accuracy and reproducibility, in Sect. 8. A summary constitutes Sect. 9.
The telescope is a Ritchey-Chrètien design, diffraction-limited
at 5 m, with an entrance aperture of 60 cm in
diameter and an f-ratio of 15 (Kessler et al.
1996). Radiation reaches the chopper mirror
within ISOPHOT via a pyramidal mirror, which is centred
between the 4 ISO-instruments.
The sky is projected onto the focal plane with a scale of
0.04363 mm/
.
The detectors, made from doped silicon or doped germanium, are extrinsic
photoconductors operated at temperatures of 1.7 to 3.6 K, depending
on material.
Their response to IR radiation is characterised by the detector
responsivity, R, which is the parameter most relevant
to calibration. It is given by the
relation between detector-signal and incident in-band power
,
where S is the detector signal expressed in
V/s for an integrating amplifier.
is the relaxed
signal under dark conditions,
is the integrating
capacity (140 fF for C200, 90 fF for others) and P represents
the in-band power in Watts.
The responsivity of these detectors is not constant. Depending on material, variations of a factor of 3 during one orbit were observed. Changes of R are induced by the ionizing radiation in space and by the previous sequence of IR fluxes to which the detector has been exposed. We consider R to be stable over typical time intervals of around 10 to 20 min. To bring R back to a nominal value, the detectors routinely underwent a curing-procedure after having crossed the Radiation Belts during perigee and before regular observations started ("science window") (see Laureijs et al. 1996, 2001). These procedures consisted of detector specific combinations of detector-heating, bias increase or illuminator flashes (Lemke at al. 1996) and brought the responsivity back to within 5% of its nominal value. The doped-Ge detectors, which showed the biggest responsivity changes, underwent a second curing procedure after 8 hours, close to apogee.
The radiation of both sources is combined in a diamond beam-splitter.
The beam of TRS1 is reflected with practically no losses, while the
beam of TRS2 is transmitted through the material and attenuated
by a factor of 1000. Only one TRS is heated at a time. The
attenuated TRS2 is operated with the doped-Ge detectors P3, C100 and
C200, which show higher responsivities, whereas the doped-Si
detectors P1 and P2 are used with TRS1 in the stronger
reflected beam. Mirrors focus the emerging radiation in such a
way that a beam with the same aspect ratio as the telescope is
emitted, while the TRSs are imaged onto the chopper mirror,
making the FCS appear to the detectors as a homogeneously
illuminated source.
The in-band power provided by the FCS could be adjusted by changing
its heating power.
The fundamental calibration curves, in-band power versus FCS heating
power, were initially determined by a grey body model
(Schulz 1993), fitted to a few already known data points.
The grey body is defined as
,
which is the
Planck function multiplied by a wavelength-independent emissivity
.
The temperature, T, is linked to the FCS heating power,
h, by an empirical function,
,
where
is the temperature of the optical support structure (2.76 K),
and
,
and
are dimensionless constants.
Typical values for these constants of FCS1/TRS2 are
,
and
respectively.
An attenuation factor which modifies the
effective solid angle individually for each detector subsystem
was introduced, describing flux losses that were not predicted
by the grey body model.
The advantage of the grey body model was to allow predictions for other filter bands, when only a few data points per detector were available. To increase accuracy, once enough data points were available, the covered ranges were interpolated by smooth low-order polynomials and the model was used for extrapolations only.
The absolute calibration of these secondary standards was established in-orbit by comparing their output to known celestial standards, an activity that started during the performance verification phase (PV), but continued throughout the mission due to the visibility constraints of some of the sources. To minimize errors due to potential detector nonlinearities, the FCS heating power was adjusted so that the emitted FCS flux roughly matched the flux emitted by celestial source and background. The limited linearity of the system demanded celestial calibration sources at all flux levels in all 25 filter bands.
Integrating cold (3 K) readout electronics (CRE)
(Dierickx et al. 1989) are used to amplify the
currents of typically 10-16...
A that flow
through the ISOPHOT photoconductors (Lemke et al.
1996). The photocurrent is measured from the rate at which the
voltage at the charge capacitor within the CRE increases with
time. The voltage is sampled at regular time intervals for a
given duration before it is reset (non-destructive readouts, NDR,
and destructive readouts, DR). The readouts of all channels of
a CRE unit are time-multiplexed and sent via a single line to
the external electronics unit (EEU) outside the cryostat.
There they are further amplified and digitized by a 12-bit
analog-to-digital-converter (ADC). The sequence of samples
between two resets is called an integration ramp and ideally fits a
straight line. In the following we will refer to the slope of
the fitted line as "signal'', measured in V/s. Multiplication
by the integration capacity, for which the design value of 90 fF
(for C200 140 fF) is adopted, leads to the photocurrent in Amps.
The actual integration ramps are, however, not perfectly straight
(see Fig. 2) (Schulz 1993).
Two effects can be separated:
i) The AC-coupled CRE circuit is not a perfect integrator. The
output voltage can rise only to the level of the detector bias
times the small amplification of the circuit (10). This
saturation level is reached asymptotically via a typical
RC-loading curve. High bias voltages above 10 V have
sufficiently high saturation levels (
100 V and more)
that they show practically linear integration ramps within
the CRE output range of
2 V. However, for the smaller
biases of P3, C100 and C200, the saturation voltage drops such
that the curvature of the loading curve appears within the
dynamic range of the integration ramp (debiasing).
ii) Secondly, all integration ramps show deviations from a
straight line that always appear at the same CRE output voltage,
regardless of the level from which the ramp started to integrate. Due to
the direct link to the CRE output voltage we attribute this
component to an intrinsic nonlinearity of the amplifier
within the circuit.
![]() |
Figure 2: Ramp nonlinearity for pixel 8 of C100. Deviations of many integration ramps from a straight line are plotted against CRE output voltage. This relation is used for ramp-linearisation. |
Open with DEXTER |
The correction algorithm is based on the observation that all integration ramps of one detector pixel can be matched by conserving the CRE output voltage of the individual readouts, while linearly stretching and shifting the time-axis of each ramp (Schulz 1993). In this way an average integration ramp was determined for each detector pixel from a number of measurements with ramps of large dynamic range. The difference between a straight-line fit to this ramp and the ramp itself (Fig. 2) is used to linearise individual ramps. The maximum absolute values range between 40 and 100 mV over the maximum CRE dynamic range of 2 V. The correction depends only on CRE output voltage, and has no further dependences on readout frequency, in-band power or time.
The reliability of the correction is deduced from the standard
deviation of the individual ramps from the average
integration ramp. Over most of the dynamic range it is below
mV, with a tendency towards larger scatter for longer
wavelength detectors. The highest standard deviation appears in
the central pixel of C100, showing
mV. The higher
scatter towards long wavelength detectors with smaller biases
is interpreted as resulting from a simplification in the
correction algorithm. Relating the corrections only to the
CRE output voltage neglects the fact that the curvature due to
debiasing also depends on the reset level of the integration
ramp, which shifts slightly w.r.t. the CRE output voltage. Hence
an additional scatter appears, increasing with smaller bias.
Considering the maximum standard deviation of
mV and an
average dynamic range of 1 V (half the maximum dynamic range),
we estimate the typical residual systematic error to be about
2% after correction.
The output signal is disturbed by energetic particle hits (glitches), mostly protons and electrons. A typical distribution of fitted slopes after ramp linearisation is shown in Fig. 3. The asymmetry of the distribution is caused by glitches that instantaneously increase the charge on the capacitor during the integration, so that the average slope of the affected integration ramp is increased. Typically, the readouts following the glitch continue integrating as before; however, stronger hits can affect the detector, leading to long-lasting responsivity changes. A number of algorithms have been developed to remove signals affected by glitches (Gabriel et al. 1997).
![]() |
Figure 3: Histogram showing the signal distribution in a long measurement of the central pixel of C100. The tail towards higher signals is caused by high energy particle hits and can be removed by appropriate algorithms. |
Open with DEXTER |
All deglitching algorithms still
leave an asymmetry in the signal distribution.
For stronger asymmetries the simple average is
often quite far from the peak of the distribution.
The median comes closer to the peak; however, it is a bad choice
for very weak signals and short integration ramps, where
the bins of the A/D-conversion become significant. The
AC-converter covers the range from -10 to +9.995 V. Dividing
by the gain factor of the analog electronics and 212 for
12 bits, the least significant bit is equivalent to 6.1 mV. For integration
ramps of 1 second this would yield a detector current of
A. As an example, the 100-
m channel
would produce discrete slope levels in about 20 mJy intervals.
Since the result of the median is always an existing value of the
sample, the accuracy is limited to the separation of the intervals.
In this case, better results can be obtained by fitting a Gaussian
to the signal distribution.
![]() |
Figure 4: Observations in "nodding mode'' with a linear 3-step raster used for faint sources. Several changes of the pointing between a strong background and a faint source on top of it make the source signal appear as a modulation on top of a strong transient. This is corrected by dividing by a baseline fitted to all background levels. The sequence starts and ends with FCS measurements. |
Open with DEXTER |
(i) We calculate the average of the last 30% of the measurement
and call it S30. The valid fit result must deviate by no
more than 50% from S30.
(ii) A straight line is fitted to the last 40% of the measurement and extrapolated to a point at 2 times the measurement time. 80% of the difference between this point and S30 is the maximum difference allowed between the signal level predicted by the transient fit and S30.
(iii) For each fitted transient, the term (1-S1/S2)/(t1-t2) is evaluated twice, where S and t are the slopes and times of either the first two, or the last two, data points in the measurement. Absolute differences between these two results that are smaller than 0.001 s-1 are rejected. This and criterion (ii) buffer the curvature of the fit against small values since small curvatures result in very uncertain asymptotes.
In case these criteria fail, we take S30 as the best guess
for
but the result is flagged as being less reliable.
This applied to about half the cases where transient fits
were attempted.
We caution that the criteria were tuned empirically to this
large, but special, sample of FCS calibration measurements.
We assume, therefore, that they work best for measurement
times
64 s.
![]() |
Figure 5: The diagram shows the relations of signals of the same in-band power measured with different readout timing settings. The signals on the y-axis are measured using a 1/4 s reset interval and a data reduction factor of 1. The reset interval and data reduction factor, respectively, for the signals of the x-axis are given by the two numbers in each diagram. The data points follow a linear relation, with slope different from unity and non-zero x-intercept. This example was measured for detector C100. |
Open with DEXTER |
The readout timing (ROT) of the CRE was selected
individually for each measurement according to
the observer's flux estimate, to give a maximum dynamic range
without saturation and thus a minimum of readout and
sampling-noise. It is controlled by 3 parameters: the time
interval between two destructive readouts,
;
the
number of non-destructive readouts,
;
and the data
reduction factor. For the range of 128 s to
1/64 s for
,
depending on the detector, a total
of 14 to 15 combinations was actually used during operations.
![]() |
Figure 6: The evolution of the dark signal with relative orbital position. The data points were taken randomly during the mission and plotted versus orbital position, where the range 0 to 1 corresponds to the full 24 hour orbit, starting at perigee. |
Open with DEXTER |
![]() |
Figure 7: As for Fig. 6 but for the detectors C100 and C200. |
Open with DEXTER |
To achieve consistency, we correct all signals so
they appear as if measured with a common
reset interval of
s and a data reduction factor
of 1. The signal, S, is corrected according to
,
where the parameters A0 and A1 depend on the
ROT set-up. They were determined from a least-squares fit to the
calibration data. An example is shown in Fig. 5. It
should be noted that A0 is generally different from zero and
the slope A1 is significantly different from unity.
All pixels of equal detector-subsystems were found to follow the
same relation, suggesting that a pure CRE-effect is observed.
Again the residual errors of the correction are systematic in
nature. The scatter of the calibration data around the fits
suggests typical systematic errors of no more than 5%
and probably better than 2%.
![]() |
Figure 8: The coverage of the flux domain accessible to ISOPHOT by the three kinds of celestial standard. |
Open with DEXTER |
In Fig. 8 we illustrate the
coverage of the flux domain accessible to ISOPHOT by celestial
standard sources.
The largest background components are zodiacal thermal re-emission, peaking
around 20 m, and Galactic cirrus, contributing
most at the longest wavelengths. Only at the shortest
wavelengths does the dark current dictate the lowest signals.
The dotted line shows typical surface brightnesses for
celestial backgrounds, converted to an equivalent flux density
of a point source, observed in the standard aperture without
background. The upper absolute flux limits are
plotted as dashed lines. Note that the
limiting sky background for the overlapping wavelengths of
PHT-P and PHT-C is different due to their different aperture
areas. Examples of each of the three types of
calibration source (planets, asteroids, stars) are plotted as
solid lines.
Stellar Celestial Standards | Solar System Standards | |||||||||
Name | Common | Src. | Spec. |
![]() |
(P_11.5) |
![]() |
(C_60) | Name |
![]() |
(C_60) |
Name | Type | Jy | mag | Jy | mag | Jy | mag | |||
HD172323 | - | PH | F9V | 0.065 | 6.55 | Uranus | 913 ...972 | -7.28...-7.21 | ||
HD184400 | - | PH | F5 | 0.027 | 7.53 | Neptune | 301 ...317 | -6.07...-6.01 | ||
HR337* | ![]() |
MC | M0IIIv | 192 | -2.05 | 7.97 | -2.17 | 1 Ceres | 248 ...433 | -6.46...-5.85 |
HR617* | ![]() |
MC | K2III | 55.7 | -0.76 | 2.33 | -0.83 | 2 Pallas | 55.3 ...208 | -5.67...-4.23 |
HR1457* | ![]() |
MC | K5III | 19.1 | -3.12 | 3 Juno | 37.6 ...62.2 | -4.36...-3.81 | ||
HR1654 | ![]() |
MC | K5IIIv | 1.61 | -0.43 | 4 Vesta | 153 ...291 | -6.03...-5.34 | ||
HR3748 | ![]() |
MC | K3II-III | 93.4 | -1.31 | 3.92 | -1.39 | 10 Hygiea | 29.0 ...43.9 | -3.97...-3.52 |
HR5340* | ![]() |
MC | K1III | 506 | -3.15 | 21.0 | -3.22 | 54 Alexandra | 20.0 ...26.1 | -3.42...-3.13 |
HR5886 | - | PH | A2IV | 0.251 | 5.09 | 65 Cybele | 13.4 ...22.3 | -3.24...-2.69 | ||
HR5986 | - | PH | F8IV-V | 2.24 | 2.71 | 106 Dione | 3.80 ...3.93 | -1.35...-1.32 | ||
HR6514 | - | PH | A4V | 0.095 | 6.14 | 313 Chaldaea | 7.74 ...8.14 | -2.15...-2.10 | ||
HR6688 | - | PH | K2III | 0.463 | 0.92 | 532 Herculina | 16.3 ...44.5 | -3.99...-2.91 | ||
HR6705* | ![]() |
MC | K5III | 108 | -1.46 | 4.55 | -1.56 | |||
HR6847 | - | MC | G2V | 0.337 | 4.76 | |||||
HR7001* | ![]() |
MC | A0V | 27.0 | 0.00 | |||||
HR7310 | - | MC | G9III | 14.5 | 0.67 | 0.586 | 0.67 | |||
HR7341 | - | PH | K1III | 0.951 | 3.64 | |||||
HR7451 | - | PH | F7V | 0.427 | 4.51 | |||||
HR7469 | - | PH | F4V | 1.07 | 3.51 | |||||
HR7633 | - | PH | K5II-III | 9.66 | 1.14 | 0.391 | 1.11 | |||
HR7742 | - | PH | K5III | 3.66 | 2.18 | |||||
HR7980 | ![]() |
MC | M0III | 1.17 | -0.08 | |||||
HR8684 | - | PH | G8III | 8.45 | 1.27 | |||||
HR8775* | ![]() |
MC | M2.5II-I | 265 | -2.44 | 11.2 | -2.54 |
The ISO Ground Based Preparatory Programme (GBPP)
(Jourdain de Muizon & Habing 1992; van der Bliek et al. 1992;
Hammersley et al. 1998) provided SEDs
between 1 and 160 m by interpolating in the Kurucz stellar model
grids (Kurucz 1993), using temperature, surface gravity and
metallicity. The temperatures were derived either from the IR
Flux Method (Blackwell et al. 1991, 1998)
or the V-K versus
relationship (Di Benedetto 1993, 1998).
Surface gravities and metallicities were from
Cayrel de Strobel et al. (1992). The spectral
shapes derived from the grids were then normalized using
near-IR (NIR) photometry (Kn or K-band).
The attributed errors range between 3% and 5% which is
dominated by the error in conversion to an absolute flux density scale. The random
scatter between the measured and predicted fluxes at 10
m is shown
to be better than 1.5% (Hammersley et al. 1998).
Another calibration programme by Cohen et al. (1996)
provided empirical SEDs in the range from 1.2 to 35 m by splicing
together measured spectral fragments of cool K- and M-giants and
calibrating them by absolutely calibrated Kurucz models of
Sirius and Vega. The measured
"composite" SEDs are used to derive so-called "template" SEDs for
fainter stars (Cohen et al. 1999), assuming that the intrinsic
spectral shape depends only on spectral type and
luminosity class. The absolute flux level is set by
well-characterised NIR and MIR photometry, including IRAS data.
To extend those composite-SEDs not observed as far as 35
m
by the Kuiper Airborne Observatory, Engelke functions
(Engelke 1992; Cohen et al. 1995, 1996),
with effective temperatures from Blackwell et al.
(1991), were used.
To create FIR extensions to support the longest wavelengths of
ISOPHOT (240
m), continuum model atmospheric spectra were
attached to the empirical composites and extended to
300
m (Cohen at al. 1996).
The typical absolute accuracy
(i.e., in
or
at any wavelength)
of the templates is about 3%, while the FIR extensions
ranging from 25 to 300
m have computed uncertainties of
about 6%.
Note that both programmes deliberately use the same Vega model SED for their zero point definitions. Furthermore, the measured zero points of the various photometric systems were determined to ensure that there would be no systematic differences depending upon which data were used (Cohen et al. 1999). Specifically for ISO, both programmes supplied electronic versions of their SEDs with spectral resolutions of typically 50 to 300. The objects are listed in Table 1.
The irradiances of a number of primary (Sirius, Vega),
secondary (bright K- and M-giants) and tertiary (template-SEDs)
calibration stars have been absolutely validated by a
dedicated radiometric calibration experiment carried out on the
US Midcourse Space Experiment (MSX: Mill et al. 1994)
by Cohen et al. (2001). The 1.2-35 m
spectra of seven of the stars in Table 1 have been validated
by this means.
We note that because of its observed deviation from
the model SED longward of about 17
m, we do not use observations of Vega
to calibrate any long wavelength filter.
Brighter flux levels in the FIR (i.e. filters with reference
wavelengths 50
m) had to be calibrated by other objects,
since even the brightest standard star measured by ISOPHOT
(
Boo) drops to less than 2 Jy at 200
m (see
Fig. 8).
In an effort to homogenize the calibration of ISOPHOT and the
Long Wavelength Spectrometer (LWS) in the long wavelength range, for the final version of
the offline processing software (OLP 10) we changed the planet
models used in earlier versions (Schulz et al. 1999).
The ones supplied by Abbas (1997, priv. comm.) were replaced
by models produced by Griffin & Orton for LWS.
The models are calibrated with 0.35 to 3.333 mm JCMT data
(Griffin & Orton 1993), which in turn were
calibrated against Mars
(Wright 1976; Wright & Odenwald 1980).
At the short wavelength end, the model was constrained
by Voyager IRIS data from 25 to 50 m by
Hanel et al. (1986) for Uranus, and
Conrath et al. (1989) for Neptune.
The temperature structure and composition of H2,
He and CH4 was taken from Voyager radio occultation
experiments by Lindal et al. (1987) for Uranus, and
by Lindal (1992) for Neptune.
We compared the models of Griffin & Orton (GO) with
the ones of Abbas (AB).
Above 45 m the GO model of Neptune is
10%
brighter than AB.
In contrast, for Uranus the GO model fluxes are about
3 to 10% lower than AB above 50
m
and deviate no more than 15% above 20
m.
At shorter wavelengths the discrepancies between AB and GO
rise dramatically for both planets. However, these are no longer
relevant to the PHT calibration, since the C_50
filter passband starts only around 40
m.
We take these differences as indicative of how well the fluxes
from Uranus and Neptune are known at FIR wavelengths and
conclude that, for our purposes, they are still within a
10% margin.
Some specific observational complications arose, however, since they are moving objects with respect to the sky background and show periodic variations of intensity due to rotation and varying distance from both the Earth and Sun. Selection criteria were: well understood rotational behaviour, small lightcurve amplitude, some form of independent size determination (either direct imaging or via occultation measurements), good visibility during the ISO mission, and availability of sufficient observational data from visible to submillimetre wavelengths. The selection resulted from a combination of extensive ground-based observing campaigns at thermal wavelengths from the IRTF, UKIRT, and JCMT, additional visible wavelength lightcurve measurements, and a series of FIR observations from the now retired KAO. These observations were used to confirm the validity of the subsequent thermophysical modeling effort.
Initially, modified versions of the Standard Thermal Model
(Lebofsky 1989) were used. For the final ISOPHOT
photometric calibration, a thermophysical model (TPM) assuming a
rotating ellipsoid and parameterising heat conduction, surface
roughness, and scattering in the regolith was adopted for 10
asteroids (Müller & Lagerros 1998).
The TPM is capable of producing thermal lightcurves and spectral
energy distributions for any time, taking into account
the real observing and illumination geometry.
The overall comparison between model predictions and our large
sample of MIR, FIR, and submillimetre observations
(about 700 individual measurements between 2 and 2000 m)
demonstrated an accuracy of approximately
10% across a wide wavelength range from 10-500
m.
In a few cases, existing direct measurements of shape
significantly improved the model accuracies.
In a recent study of the accuracy of the TPM, ISOPHOT observations of asteroids were independently calibrated in the FIR (Müller & Lagerros 2001, 2001a). In this work, parts of the FCS power curves were established using measurements only of planets or stars. These were used then to calibrate the asteroid observations and compare the results to the TPM predictions. It was shown that observations and predictions for 1 Ceres, 2 Pallas and 4 Vesta agree within 5%. For 3 Juno, 10 Hygiea, 54 Alexandra, 65 Cybele, and 532 Herculina the agreement is still within 10 to 15%. For the 2 objects without independent ISO data the comparison to ground based thermal observations gave rms values of 14% for 313 Chaldaea and 29% for 106 Dione. Note that the rms values include also observational errors, which are dominated by the structured FIR sky background and calibration uncertainties. Modeling limitations are mainly due to uncertainties about the exact asteroidal shapes. The final modeling results were also confirmed to an accuracy of better than 10% via comparison with rotationally resolved target observations from the IRAS database. Table 1 lists the solar system objects that were used for ISOPHOT calibration.
The filter transmissions (including the out-of-band rejections
over a wide wavelength range)
and the relative response functions of
the detectors were measured in the laboratory under "cold"
conditions (at their anticipated operating temperatures in-orbit)
with a Fourier-transform spectrometer (Schubert 1993).
To calculate ,
we assumed the
reflectance of each mirror surface to be
98% and wavelength-independent. Thus we obtain
,
with n being the number of mirrors in the
optical paths, which is 6, 7, 7, 6 and 5 for the detectors P1,
P2, P3, C100 and C200, respectively. For P1 an additional multiplicative factor
of 0.95 was included to account for losses due to the
Fabry lens.
We note that the in-band power is only a fraction of the total
incident IR power, since the formula includes the
wavelength-dependent relative response function of the detector
material.
Normalizing this response function to 1.0 at its peak
allows us to define the detector responsivity as
characteristic of the detector pixel, independent of the
filter used. Thus
represents only the fraction of
the in-band power that actually initiates a photocurrent in the detector
material.
Since the wavelength dependence of the PSF within a filter band
is small, we simplified Eq. (1) to
For the initial calculations we used an
analytical telescope model, taking into account the primary
and secondary mirrors. Subsequently we replaced
this by a more accurate model (Okumura 2000) based on
numerical Fourier transformation, that also includes effects of
the support structure of the secondary mirror.
The PSF factors were calculated as the ratio of the in-band
power resulting from Eq. (1), integrated over the
detector aperture and the total in-band power in the PSF, i.e.
Eq. (1) integrated over an infinite aperture.
A
spectrum was adopted as source SED.
Thus far, our intent has been to determine the
in-band fluxes of known standards to characterise the detectors
and to calibrate the FCS.
Once the FCS is calibrated, however, we can use
the instrument to determine the in-band powers of other celestial
sources. To convert these back to flux densities, we must invert
Eq. (2). For regular target observations
the source SED is generally unknown so we need a common reference
spectrum with a defined colour. We adopt a spectrum of the form
as Beichman et al. (1988) did
for IRAS. This enables us to replace
Eq. (2) by the much simpler form
Filter |
![]() |
C1 | Apert. | lo lim | hi lim |
[![]() |
![]() |
[
![]() |
[Jy] | [Jy] | |
P_3P29 | 3.3 | 1.473 | 23 | 0.410 | 214.7 |
P_3P6 | 3.6 | 7.535 | " | 0.156 | 788.7 |
P_4P85 | 4.8 | 7.612 | " | 0.092 | 1196.9 |
P_7P3 | 7.3 | 12.619 | " | 0.058 | 1922.8 |
P_7P7 | 7.7 | 2.476 | " | 0.128 | 4331.8 |
P_10 | 10.0 | 4.495 | 52 | 0.041 | 787.4 |
P_11P3 | 11.3 | 1.314 | " | 0.543 | 371.0 |
P_11P5 | 12 | 16.093 | " | 0.097 | 1701.6 |
P_12P8 | 12.8 | 5.216 | " | 0.845 | 389.3 |
P_16P0 | 15 | 3.166 | " | 0.078 | 706.3 |
P_20 | 20 | 5.198 | 79 | 0.696 | 1045.4 |
P_25 | 25 | 4.277 | " | 1.250 | 1875.9 |
P_60 | 60 | 0.591 | 180 | 0.631 | 307.7 |
P_100 | 100 | 0.872 | " | 2.607 | 719.9 |
C_50 | 65 | 0.481 | 43.5 | 0.741 | 276.5 |
C_60 | 60 | 0.659 | " | 1.036 | 95.8 |
C_70 | 80 | 0.697 | " | 0.576 | 167.6 |
C_90 | 90 | 1.510 | " | 0.245 | 47.8 |
C_100 | 100 | 0.945 | " | 0.094 | 49.5 |
C_105 | 105 | 0.611 | " | 0.110 | 172.7 |
C_120 | 120 | 0.355 | 89.4 | 1.257 | 560.9 |
C_135 | 150 | 0.711 | " | 1.445 | 363.1 |
C_160 | 170 | 1.010 | " | 0.837 | 152.6 |
C_180 | 180 | 0.537 | " | 2.444 | 336.7 |
C_200 | 200 | 0.233 | " | 1.612 | 532.2 |
To check the relative effective transmission of filter bands, measurement blocks of the same detector were further grouped together, so that responsivity drifts would be minimal during that time. We verified this by repeating the first measurement of the sequence at the end. The results lead to corrections to the filter transmissions, that are discussed in Sect. 6.2.
All detector pixels were calibrated individually. Therefore,
measurements of the standard point sources were positioned at
the centre of every pixel. To minimize the measurement time for
the camera arrays, the spacecraft performed a raster mode
pointing sequence with a step size equal to the distance between
pixel centres (46
for C100, 92
for C200). Larger raster dimensions (
for C100 and
for C200) were chosen to obtain the background zero
level also. Where no raster measurement was required,
background measurements were performed in staring mode on
positions within a 5
radius of the source. For
aperture-photometry of faint sources, a one-dimensional raster
of 3 points with the source at the centre position was scanned
back and forth (nodding-mode), to enable elimination of the
baseline drift (see Fig. 4).
The use of a raster observation on a fixed sky position was
also necessary because ISO could neither observe
positions with a relative offset from a tracked Solar System
Object (SSO), nor perform raster observations while tracking.
Therefore, all raster observations on SSOs had to be scheduled
at fixed times with the telescope pointing adjusted to encounter
the moving object.
We made sure that the proper motion of the SSO due to the
relative motion w.r.t. ISO was always below
/hr
during observations.
The contribution from ISO's motion relative to the centre of the
Earth was only of the order of
/hr,
as science observations were made during the "slow''
part of the orbit.
During the maximum duration of a raster measurement on an
SSO with C100 (688 s), asteroids would travel only
.
Taking into account ISO's absolute pointing accuracy for fixed
targets of about
,
the worst case pointing error amounts to
,
which is still much smaller than the large detector apertures or
pixel sizes used at long wavelengths.
In its simplest form we calculate the responsivity from the
signals measured on-source
and off-source
and the PSF-corrected in-band power,
,
according to
![]() |
Figure 9: Naive plots of responsivities against total in-band power, assuming linearity (Eq. (4)) for representative filter bands of all detectors. The total in-band power includes the contributions from both source and background. Upper and lower diagrams show the responsivities before and after linearisation. The upper diagrams show a clear dependence on in-band power except for P3. The remaining scatter in the linearised data is due to the variation of the responsivity with time. |
Open with DEXTER |
If the measured responsivity depends in some way on the
IR flux that falls onto the detector, R can also be
expressed as a function of the photocurrent or the detector
signal. We then rewrite Eq. (4) as
![]() |
Figure 10: Derivation of filter-to-filter corrections. We display the data for some representative detectors. Each diagram shows the normalized responsivities for the indicated detector, derived from various filter sequences. Each sequence was measured on a calibration standard within a time interval, sufficiently short to avoid long term drifts. Each sequence is connected by a line. The standard deviation of the scatter of the relative filter measurements is 2 to 9% for the P-detectors and 3 to 8% for the C-arrays. |
Open with DEXTER |
All further data reduction steps assume a linear system, so we
decided to linearise the detector signals, S, according
to
,
where
is a continuously
rising transfer function. The condition for
is such that
the results of
inserted into Eq. (4) should
no longer correlate with the detector signal, but should be
distributed around a constant responsivity with minimum
dispersion. The absolute value of this constant is arbitrary
because it cancels out in the flux calibration. We normalized
it to the median of the nonlinearised responsivities calculated
according to Eq. (4). It should be noted that
application of the signal linearisation requires the prior
subtraction of the dark signal.
Although the FCS calibration data comprise a large number of
measurements, the number of independent responsivities
distributed over the entire flux range per filter band ranges
only between 14 and 28. We developed a manual fitting method to
determine the linearisation tables, by displaying the
results of Eq. (6) and interactively modifying
the linearisation function,
.
This approach led to a
better exploration of parameter space, a smoother
transition at the boundaries, and a more tolerant treatment of
outliers without the need to develop sophisticated fitting
algorithms. We increased the objectivity of the method
by keeping the shape of
simple, generally
close to a polynomial of second or third order. We also minimised
differences between pixels of the array detectors by fitting
all pixels of one detector in parallel on the same
screen. In spite of the large scatter of responsivities,
simple functions
were found that significantly
increase the consistency of data measured at different flux
levels.
Signal linearisation is performed by interpolation in
a lookup table spanning the full range of possible signals.
This table is calibrated only in the range covered by
calibration standards but, in practice, signals occur
outside this range that are higher, lower, or even negative in
the case of noisy measurements close to the dark current.
Reasonable entries for these cases had to be defined. For
high signals beyond the point where data are available,
we maintained a constant responsivity.
Small signals are constrained so that
an already dark-subtracted zero signal is not
changed by signal linearisation. Therefore, we continue
between the smallest point in
the lookup table that is still determined by valid data, and
zero, by a straight line. This assumes that the
responsivity does not vary in that range.
c) The most difficult cases are negative signals, because
negative fluxes are simply undefined and appear only as a
result of noise. The number of such cases actually encountered
is low due to the reduced noise after signal averaging
over periods of constant flux (SCP level). We decided to continue
the transfer function such that
,
to cover all situations that occur.
The worst case is detector P1, where R varies by a factor
of 4 between filters P_3.29 and P_16 (see Fig. 10).
Currently, the wavelength-dependent flux losses of this detector
remain unexplained.
We speculate, however, that the sapphire substrate that
mechanically supports the detector crystal within the
kidney-shaped aluminium cavity might play a role.
Sapphire is transparent in the NIR and starts to absorb beyond
about 6 m onwards, in the middle of P1's
wavelength range (Tropf & Thomas 1998). The absorption peak
is at
17.5
m. Some fundamental lattice
vibration modes occur in the reststrahlen region
above 13
m.
Top and bottom of both detector and substrate are gold-coated.
The remaining effective area of the detector, where
radiation from within the cavity can enter, is only twice that
of the substrate. Given the high refractive index of Si, around 3.4, and the consequently higher reflectivity compared
to Al2O3 (refractive index of only 1.7), we estimate that
about the same number of photons enters both detector and
substrate.
The cavity was designed to counteract the high refractive
index of the detector material by maximizing the number of
reflections within it. Assuming that the sapphire substrate
turns "dark" at longer wavelengths, it is conceivable that,
with every reflection, a substantial fraction of the radiation
enters the substrate and is attenuated. The effective response
of the detector system would thus deteriorate.
Another IR absorber present within the cavity is glue (Stycast).
Unfortunately the question of P1's quantum efficiency remains
largely academic, so that the effort of a much more detailed
analysis is not justified.
The other detectors show less dramatic variations by factors up to 2. Moreover, the ratios found between different filters are not the same for different pixels of the same C-detector array. We attribute this to a projection of spatial nonuniformities of the filter surface onto the detector array, because the ISOPHOT filters are not located at the pupil of the optical path, but close to the detectors. The overall variation between filters of all detectors, except P1, is most likely due to optical misalignments and diffraction effects that are neglected in our ideal instrument model.
We applied a correction to the responsivity by introducing a
matrix,
.
It works equally for P- and C-detectors.
To obtain a wavelength independent detector responsivity, we
split
of Eq. (7)
into filter-independent and filter-dependent parts,
so that
.
The matrix,
,
was established from multi-filter
measurements
on calibration standards, executed so that the
change of responsivity with time could be neglected for
a filter sequence.
After eliminating poor quality measurements, the responsivities
measured for a detector pixel, p, in a filter sequence were
renormalized. The factors per sequence were chosen to
achieve the best match among all sequences for a given pixel.
After calculating the average responsivities,
,
per filter, f,
we normalized to the maximum responsivity found for that
pixel using
,
thus assuming that the matrix
describes flux losses w.r.t. the ideal model.
The normalized data and the resulting filter-to-filter
corrections,
,
for some detector pixels and filter bands,
are shown in Fig. 10.
The standard deviation of the scatter of the relative
filter measurements is 3 to 8% for the C-arrays and
2 to 9% for the P-detectors.
![]() |
Figure 11: Constructing a power curve from calibration data. The names indicate the sources that have been used to calibrate the respective data points. |
Open with DEXTER |
![]() |
Figure 12: Relative illumination of the array detectors C100 and C200 (illumination matrices) by FCS1 (valid after rev. 93). Pixel numbers and ISO coordinate axes are given. |
Open with DEXTER |
FCS power curves for different pixels of the same C-array differ
by constant factors.
These factors result from both the nonuniform illumination of
the detector arrays by the FCS and the putative spatial inhomogeneities
in the filter. For each filter, these factors constitute the
illumination matrix,
,
as shown in Fig. 12.
Thus the FCS curve for each filter is split into
a pixel-independent part,
,
and a pixel-dependent factor,
,
so that
.
The FCS curve is normalized such that
,
averaged over
all pixels becomes 1, for a given filter.
The resulting FCS power curves for FCS1 are shown in
Figs. 13 and 14.
Between revolution 93 and 94 the TRS2 of FCS1, which was
routinely used with the long-wavelength detectors, abruptly increased
its brightness by about a factor of 2. This change necessitated a
recalibration of the corresponding filter bands and
resulted in a second set of FCS calibration tables for
P3, C100 and C200.
Figure 14 shows the FCS power curves that apply to the
period before revolution 94.
The non-uniformity of the FCS illumination also affects the
FCS signal measured in different apertures of the P-detectors.
For a fixed heating power the FCS signal is not proportional to
the area of the aperture. Strong deviations exist for apertures
much larger or smaller than the standard apertures. The
treatment of these cases is still poorly understood and is
beyond the scope of this paper.
For use with standard and very similar apertures,
the in-band powers of the PHT-P power curves were divided by
the area of the standard aperture of the
measurement, and are expressed in units of W/mm2.
![]() |
Figure 13: FCS power curves of all filter bands. For P3, C100 and C200 we show the versions valid after the change of FCS1/TRS2 in rev. 94. The interpolated parts are indicated by solid or dashed lines with small squares at the boundaries, while the model extrapolations are indicated by dotted lines. |
Open with DEXTER |
![]() |
Figure 14: FCS power curves of all filter bands of the long wavelength detectors before the change in FCS1/TRS2. |
Open with DEXTER |
Filter | n | ![]() |
![]() |
![]() |
![]() |
[%] | [%] | [%] | [%] | ||
P_3P29 | 5 | 6 | 4 | 4 | - |
P_3P6 | 13 | 17 | 6 | 8 | 1 |
P_4P85 | 10 | 27 | 10 | - | 3 |
P_7P3 | 19 | 26 | 8 | 11 | 4 |
P_7P7 | 17 | 15 | 5 | 5 | 5 |
P_10 | 11 | 21 | 8 | - | 6 |
P_11P3 | 6 | 15 | 8 | - | 8 |
P_11P5 | 26 | 42 | 13 | 18 | 4 |
P_12P8 | 15 | 19 | 8 | 9 | 7 |
P_16P0 | 16 | 40 | 15 | 12 | 17 |
P_20 | 17 | 14 | 7 | 4 | 4 |
P_25 | 32 | 19 | 10 | 9 | 10 |
P_60 | 75 | 82 | 20 | 22 | 12 |
P_100 | 27 | 52 | 25 | 27 | 22 |
C_50 | 372 | 53 | 15 | 14 | 16 |
C_60 | 330 | 48 | 13 | 15 | 12 |
C_70 | 332 | 44 | 15 | 11 | 16 |
C_90 | 250 | 76 | 18 | 15 | 20 |
C_100 | 621 | 94 | 18 | 19 | 14 |
C_105 | 295 | 76 | 11 | 14 | 7 |
C_120 | 154 | 22 | 9 | 10 | 7 |
C_135 | 158 | 40 | 9 | 10 | 9 |
C_160 | 239 | 57 | 16 | 18 | 11 |
C_180 | 157 | 31 | 8 | 8 | 8 |
C_200 | 153 | 45 | 8 | 10 | 6 |
Filter | n | ![]() |
![]() |
![]() |
![]() |
[%] | [%] | [%] | [%] | ||
P_60 | 13 | 54 | 21 | 16 | 22 |
P_100 | 8 | 10 | 7 | - | 8 |
C_50 | 106 | 35 | 18 | 15 | 19 |
C_60 | 92 | 58 | 22 | 25 | 19 |
C_70 | 108 | 29 | 14 | 13 | 14 |
C_90 | 109 | 31 | 17 | 20 | 14 |
C_100 | 94 | 39 | 16 | 18 | 12 |
C_105 | 92 | 41 | 17 | 16 | 17 |
C_120 | 49 | 17 | 7 | 7 | 6 |
C_135 | 41 | 16 | 6 | 6 | 7 |
C_160 | 58 | 23 | 8 | 8 | 8 |
C_180 | 35 | 13 | 5 | 4 | 6 |
C_200 | 27 | 15 | 7 | 7 | - |
To obtain another quantitative representation, we considered the
deviations for individual filters and computed the maxima and
the rms. We also calculated the rms of the portions left
and right of the dotted lines in Figs. 15 and 16, to seek any differences between higher and
lower fluxes. Table 3 contains the values
applicable for most of the mission while Table 4
shows the values for the time before rev. 94. These figures and
tables give an overview of the accuracy expected for an
observation of a point source in the standard aperture,
including measurements of background, source, FCS and cold
FCS. Since the FCS straylight measurement can in most cases be
replaced by the dark signal, the validity of this
assessment extends to even a larger number of observations.
For multi-filter measurements, where an FCS measurement in only
a single filter is available to determine R (Eq. (9)),
this FCS calibration can be transferred to a sky measurement in
another filter of the same subsystem, because the ratios of
transmissions between filters have been determined
(see Sect. 6.2).
However, this transfer also accretes the uncertainty
of the factor
(
10%) for any filter
different from the one that was actually used during the
FCS measurement.
![]() |
Figure 15: Calibration accuracy derived from calibration consistency. The diagrams show the ratio of the FCS power curves times the illumination matrices and the data points derived for the P-detectors, plotted against FCS in-band power. The residuals of all filters of a subsystem are combined within one plot. The scatter is a measure of the error budget for single observations. The vertical dashed line separates the low and high flux intervals. |
Open with DEXTER |
These numbers serve as a guideline for the astronomer as to what accuracies to expect for a staring or raster observation that underwent a complete data reduction, involving all reduction steps and all necessary supporting measurements, i.e. background, FCS, FCS straylight. To assess the uncertainty of the FCS power curves alone, however, they only represent upper limits, since statistical uncertainties decrease with the number of data points used.
The uncertainties obtained are similar to or larger than the
accuracies quoted for the SEDs of the celestial standards.
This limits our ability to discriminate problematic
standards in comparison to others. A first analysis
is given by Schulz (2001).
![]() |
Figure 16: Calibration accuracy derived from calibration consistency. The diagrams show the ratio of the FCS power curves and the data points derived for the C-detectors, plotted against FCS in-band power. The residuals of all filters of a subsystem are combined within one plot. The scatter is a measure of the error budget for single observations. The vertical dashed line indicates the separation between low and high flux intervals. |
Open with DEXTER |
The measurements on NGC 6543 were repeated every 5 weeks on
average; the fainter sources were measured every 2 weeks. The
planetary nebula was measured at the centre of each detector system,
after performing a background measurement at a position about
5
away. The faint sources were observed either in
nodding mode for the P-detectors or with a small raster of
or
for C100 and C200 respectively, to
minimize the uncertainties due to background subtraction.
We find the
reproducibility of measurements on bright sources to be around
2-3%, except for P1 and P3 for which this is 6-7%.
The fainter sources show larger scatter because uncertainties of
source, background, FCS and FCS straylight contribute equally to
the error, compared to the uncertainties only of source and FCS
that contribute at higher fluxes. Photon noise and glitch
noise also contribute relatively more at low fluxes. The
reproducibility below 1 Jy ranges from 7 to 12%.
A summary is given in Table 5.
source | filter | apert. | ![]() |
![]() |
![]() |
[Jy] | [Jy] | [%] | |||
HD 172323 | P_11.5 | 52
![]() |
0.085 | 0.087 | 10.0 |
HR 5986 | P_25 | 79
![]() |
0.667 | 0.588 | 12.3 |
HR 7310 | P_60 | 180
![]() |
0.667 | 0.574 | 7.0 |
HR 7310 | C_100 | - | 0.229 | 0.250 | 10.6 |
HR 6705 | C_160 | - | 0.672 | 0.631 | 7.2 |
NGC 6543 | P_11.5 | 52
![]() |
- | 6.8 | 5.9 |
NGC 6543 | P_25 | 79
![]() |
- | 107 | 1.8 |
NGC 6543 | P_60 | 180
![]() |
- | 144 | 6.6 |
NGC 6543 | C_100 | - | - | 59.5 | 2.0 |
NGC 6543 | C_160 | - | - | 15.9 | 2.6 |
We have described the photometric calibration of ISOPHOT using celestial standards. We used point sources either stars, planets or asteroids, to cover the full wavelength range. Standards at all flux levels were used to calibrate nonlinearities.
Because the detector responsivity varied with time, stable internal IR sources were calibrated against celestial standards and measurements of these references were included in each scientific observation. The reproducibility of results derived from the ratios of these signals was verified for high and low flux levels. We corrected for non-ideal effects like nonlinearities, imperfect optics and detector transients, and reduced their influence on the measurements to a minimum.
The photometric calibration of the internal sources initiated the definition of empirical FCS power curves and FCS illumination tables as well as the introduction of matrices of calibration factors, to account for pixel- and filter-dependent attenuations, which are probably caused by misalignments, diffraction and spatial gradients in filter transmissions. A major step in achieving a consistent picture was the correction for the flux dependence of the responsivity. A set of formulae describing the path from raw detector signals to flux densities was derived, which uses the detector responsivity to characterise the state of a detector pixel at the time of the observation.
To quantify the accuracies achievable by absolute photometry, a comparison was made of the derived calibration curves of the internal sources and the measured data. Depending mainly on flux level, the achievable uncertainties are around 10 to 20%, but can exceed 30% under exceptional conditions and at low flux levels. The filters of each subsystem were calibrated relative to each other with accuracies better than 10%.
The use of point sources and standard apertures for each filter for the aperture photometer defines a baseline within the parameter space, which serves as a reference for the calibration of further instrument modes like chopped measurements, multi-aperture measurements and mapping.
Acknowledgements
We would like to thank U. Grözinger for vital support. N. Lu and A. Wehrle are acknowledged for helpful comments on an early version of the manuscript. MC thanks the University of Florida for supporting his contributions to this work through subcontracts (under prime grants NAGW-4201 and NAG 5-3343) with VRI and, in later years, through subcontract UF99025 with Berkeley.