A&A 381, L57-L60 (2002)
DOI: 10.1051/0004-6361:20011660
J. H. J. de Bruijne1 - A. P. Reynolds1 - M. A. C. Perryman1,2 - A. Peacock1 - F. Favata1 - N. Rando1 - D. Martin1 - P. Verhoeve1 - N. Christlieb3
1 - Astrophysics Division, European Space Agency, ESTEC, Postbus 299, 2200AG Noordwijk, The Netherlands
2 -
Sterrewacht Leiden, Postbus 9513, 2300RA Leiden, The Netherlands
3 -
Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany
Received 2 November 2001 / Accepted 26 November 2001
Abstract
We present observations of 11 quasars, selected in the range
-4.1, obtained with ESA's Superconducting Tunnel
Junction (STJ) camera on the WHT. Using a single template QSO
spectrum, we show that we can determine the redshifts of these objects
to about 1%. A follow-up spectroscopic observation of one QSO for
which our best-fit redshift (z = 2.976) differs significantly from
the tentative literature value (
)
confirms that the
latter was incorrect.
Key words: instrumentation: detectors - galaxies: distances and redshifts - galaxies: high-redshift - quasars: absorption lines - quasars: emission lines - quasars: general
Large ground and space telescopes combined with solid state detectors have revolutionized optical astronomy over the past two decades, yet deriving physical diagnostics of stars and galaxies still requires the somewhat indirect methods of filter photometry or dispersive spectroscopy to measure spectral features, energy distributions, and redshifts. The recent development of high-efficiency superconducting detectors (Perryman et al. 1993; Peacock et al. 1996) has introduced the possibility of measuring individual optical photon energies directly, and the first high time-resolution spectrally-resolved observations of rapidly variable sources such as cataclysmic variables and optical pulsars using these techniques have been reported (Perryman et al. 1999; Romani et al. 1999; Perryman et al. 2001; Bridge et al. 2001). Many extensive observational programmes which aim at determining the large-scale structure of the Universe, and galaxy formation and evolution (e.g., the Sloan Digital Sky Survey, Fan et al. 1999; the Anglo-Australian Telescope 2dF survey, Croom et al. 2001), demand high-efficiency extragalactic spectroscopy. Here we report the first optical measurements of spectral energy distributions of quasars using an imaging detector with intrinsic energy resolution, and show that we can determine their redshifts directly with excellent precision.
We observed 11 quasars in the redshift range z = 2.2-4.1, the
sample comprising relatively bright high-redshift Lyman-limit quasars
from the published literature (Sargent et al. 1989), supplemented by three
lower redshift objects, two of which were discovered in objective
prism-type surveys (Table 1). Observations used the ESA
superconducting tunnel junction (STJ) camera, S-Cam2 (Rando et al. 2000),
on the 4.2-m William Herschel Telescope, La Palma, between 2000
October 1-4. The camera is a
array of
m2 (
arcsec2) tantalum junctions,
providing individual photon arrival time accuracies to about 5
s,
a resolving power of
at
nm, and
high sensitivity from 310 nm (the atmospheric cutoff) to about 720 nm
(currently set by long-wavelength filters to reduce the thermal noise
photons). All objects show strong Ly-
and CIV emission
lines which, at these redshifts, will be present within our wavelength
response range. Observations were made in modest seeing (1-1.5 arcsec
at airmass X = 1), and at air-masses between X = 1.07-1.82.
Obs. | QSO | V | T |
![]() |
![]() |
Lit. |
name | (mag) | (s) | z | |||
1 | 0000-263 | 17.5 | 600 | 4.095 | 4.111 | S89 |
2 | 0052-009 | 18.2 | 1033 | 2.190 | 2.212 | C91 |
3 | 0055-264 | 17.5 | 600 | 3.625 | 3.656 | S89 |
4 | 0127+059 | 18.0 | 600 | 2.976 | 2.30 | M77 |
5 | 0132-198 | 18.0 | 900 | 3.073 | 3.130 | S89 |
6 | 0148-097 | 18.4 | 1800 | 2.845 | 2.848 | S89 |
7 | 0153+045 | 18.8 | 600 | 2.978 | 2.991 | S89 |
8 | 0302-003 | 18.4 | 900 | 3.263 | 3.286 | S89 |
9 | 0642+449 | 18.5 | 900 | 3.366 | 3.406 | S89 |
10 | 2143-158 | 21.2 | 1800 | 2.296 | 2.3 | C85 |
11 | 2233+136 | 18.6 | 900 | 3.110 | 3.209 | S89 |
Information on each detected photon consists of arrival time, x,ycoordinates of the junction, and an energy channel in the range
0-255. A photon of energy
(in eV) incident on a
particular junction is assigned to an energy channel
,
where each pixel is characterised by its own gain G(in channels per eV) and offset C (in channels). Laboratory
measurements have confirmed that all 36 junctions have a highly
linear, albeit slightly pixel-dependent, energy response. Calibration
consists of first bringing the observed energy channels to a common
reference scale, corresponding to an arbitrary reference pixel, using
a fixed gain map based on laboratory measurements. The offset of the
reference pixel is constant (C = -2.0), and its gain is then the
only free parameter in the absolute energy calibration. Small temporal
gain variations resulting from bias voltage drifts and small detector
temperature variations (
0.01 K on the nominal operating
temperature of
0.32 K) are monitored and calibrated.
Subtraction of the appropriate sky contribution for each quasar spectrum can in principle be based on the background signal in the outer array junctions, but given the small array size and seeing and refraction effects, we generally also took a nearby sky frame immediately following each quasar observation. Most observations were taken in astronomically dark time; QSO 2233+136, 2143-158, and 0148-097 were observed with the Moon setting, with background subtraction slightly less accurate.
![]() |
Figure 1:
Results for QSO 0127+059, 0148-097, and 0642+449.
Left: the observed (black curves) and modeled (grey curves)
energy channel distributions (arbitrary units). Insets indicate the
estimated Poisson noise. Numbers above the top left panel show the
mapping between energy channel and wavelength. Right: the
corresponding dependence of ![]() |
Open with DEXTER |
We have determined each quasar redshift by comparing the calibrated
energy distributions,
,
with a single rest-frame
composite quasar spectrum (Zheng et al. 1997) based on 284 Hubble Space
Telescope Faint Object Spectrograph spectra of 101 quasars with z >
0.33. For a given gain G and redshift z, we construct the model
energy-channel distribution
,
as follows. The
template spectrum is shifted from the rest frame to redshift z, and
a mean accumulated absorption of the Lyman forest for this redshift is
introduced (Møller & Jakobsen 1990) (all our objects are at high Galactic
latitude, and we neglect Galactic reddening). The resulting spectrum
is corrected for the mean atmospheric transmission at the relevant
airmass, adjusted for the instrument and telescope efficiency curves
and exposure time, transformed from wavelength spectra to
energy-channel spectra, and finally convolved with a suitable Gaussian
in order to account for the finite energy resolution of the
detector. We then derive redshift z and gain G (and a
normalization constant N), by minimizing the classical
function:
![]() |
(1) |
QSO 0127+059 is our single prominent outlier. It was discovered in a
thin prism survey (MacAlpine et al. 1977), classified as a possible quasar, and
tentatively assigned a redshift of
,
but with an
uncertain line identification. Although the quality of our fit is
acceptable (Fig. 1), our derived redshift, z = 2.976,
differs significantly from the literature value. We subsequently
obtained a 1200 s spectrum of QSO 0127+059 (Fig. 3) with
the Siding Spring Observatory 2.3-m telescope. The wavelength
coverage (not optimised for quasar spectroscopy) was 345-537 and
560-753 nm, using the Double Beam Spectrograph with dichroic 1
and gratings 600B and 600R. We determine a spectroscopic redshift
z = 3.04, which agrees with our estimate to about 2%
(Fig. 2).
![]() |
Figure 2:
Observed versus literature redshifts. Numbers refer to the objects
listed in Table 1, and symbol sizes correspond to ![]() |
Open with DEXTER |
![]() |
Figure 3:
The spectrum of QSO 0127+059 obtained with the Siding
Spring Observatory 2.3-m telescope, and smoothed with a 15 Å FWHM Gaussian. We determine z = 3.04; the resulting redshifted
locations of Ly-![]() |
Open with DEXTER |
A small systematic offset in the overall correlation, of
0.03 in z, can be attributed to a small mismatch in the
shape of the energy broadening function or the overall throughput used
in the modeling. The mean scatter for all observations is
;
removing the systematic offset, 8 of the 11 objects agree to
within 1%. Several factors, such as gain variations, erroneous sky
subtraction or extinction correction (e.g., due to unmodeled seasonal
Saharan dust in the atmosphere), or template mismatch at the object
level (related to continuum slope, line ratios, etc.), may explain the
observed spread. Formally, none of the fits is particularly good, in
the sense that none of them has reduced
.
A key
factor in
-statistics, however, is the absence of systematic
errors, which will exist here in part due to template mismatch,
although details are largely hidden as a result of the limited
detector resolution. The general consistency between the models and
the observations, and the pronounced, deep and narrow, minima in all
versus z plots, nonetheless indicate that our fits, as a
set, are acceptable.
The pronounced minima are apparent in our data sets truncated a posteriori to observation times as small as, e.g. 10-20 s for
the z = 4.1 object QSO 0000-263, where 350 source
photons s-1 were recorded.
Although extraction of detailed physical information from the spectra
is limited by the modest resolving power (
)
of the
current device, a significant improvement in energy resolution can be
expected in the future (Perryman et al. 1993; Peacock et al. 1997), and additional template
spectra could then be used for model fitting. Our results show that
low-resolution spectroscopy of faint extragalactic sources is possible
with these devices, enabling the determination of redshift, and
perhaps morphological type and emission and absorption line ratios
(Jakobsen 1999; Mazin & Brunner 2000). Our instrument development is aimed at larger
format arrays to facilitate sky subtraction and possibly for
multi-object spectroscopy, and an increased energy resolution to
improve physical diagnostic capability. An overall wavelength response
extending further to the red, consistent with the fundamental device
response characteristics, would also open up a larger accessible
redshift range.
Acknowledgements
The William Herschel Telescope is operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. We thank J. Verveer and S. Andersson for instrument contributions, P. Jakobsen for advice on the template spectrum, I. Busa and B. Fuhrmeister for obtaining and reducing the spectrum of QSO 0127+059, and the referee, Scott Croom, for helpful comments. This research has made use of the ADS (NASA) and SIMBAD (CDS) services.