next previous
Up: Environmental effects in galaxies


3 The optical data


 
 
Table 2: Parameters of strong emission lines.

ESO-LV
Sample & F(H$\beta$)$\times$10-15 F([OIII]5007)$\times$10-15 F(H$\alpha$)$\times$10-15 F([NII]6583)$\times$10-15 EW(H$\alpha$) Type of
name Morph. ergs cm-2 s-1 ergs cm-2 s-1 ergs cm-2 s-1 ergs cm-2 s-1 Å Activity
(1) (2) (3) (4) (5) (6) (7) $^{\dagger}$ (8)

0310050
CS 3.5 4.0 0.3 15.0 8.2 8.2 HII
1060120 CS 6 10.2 1.5 38.0 18.0 12.4 HII
1080130 HDS 3.5 7.2 0.6 41.0 15.0 14.2 HII
1190190 HDS 5 5.7 1.3 12.0 6.7 5.5 HII
1420500 CS 5 10.0 2.8 20.0 16.0 3.0 L
1460090 CS 5 21.0 5.1 60.0 31.0 5.6 HII
1570050 HDS 5.5 14.5 4.4 53.0 17.0 27.9 HII
2010220 CS 5 12.0 8.8 45.8 13.1 16.6 HII
2030180 CS 4 45.4 23.3 160 63.0 29.2 HII
2340160 HDS 5 11.6 8.0 40.0 15.0 29.6 HII
2350550 HDS 5 3.0 2.4 8.7 17.0   L
2350570 HDS 4 2.1 2.7 5.9 11.0 1.2 L
2370020 CS 4.5 7.9 2.8 3.3 9.5 0.9 L
2400110 HDS 4.8 12.0 0.9 16.6 18.5 1.9 L
2850080 HDS 4 14.6 4.2 9.0 17.0 1.1 L
2860820 HDS 5 8.0 0.9 27.0 11.0 14.6 HII
2880260 HDS 5 19.0 1.0 49.0 32.0 6.6 L
2960380 CS 4 7.2 1.7 26.0 10.0 16.5 HII
3050140 CS 5 1.8 0.4 6.7 3.8 8.7 HII
3500140 CS 6 8.7 2.6 33.0 14.0 13.3 HII
3550300 CS 4 12.2 2.6 22.2 18.0 3.7 L
3570190 HDS 5 13.4 8.4 50.0 22.0 14.9 HII
4060330 HDS 6 43.0 21.0 180 66.0 27.4 HII
4070140 CS 5 53.2 51.0 190 58.0 40.6 HII
4190030 CS 4 5.1 1.6 22.0 7.8 24.2 HII
4200030 CS 5 15.2 4.7 48.0 18.0 13.3 HII
4710200 CS 4.5 24.3 6.5 98.0 47.0 10.3 HII
4780060 CS 4 23.1 6.0 63.0 26.0 13.7 HII
4820430 CS 4 6.9 2.6 17.0 9.4 6.7 HII
5320090 CS 5 16.8 7.3 51.0 21.0 13.4 HII
5390050 CS 5 16.7 9.2 64.0 28.0 20.0 HII
5450100 HDS 5 23.4 24.7 95.0 26.0 30.0 HII
5480310 HDS 3 16.0 1.0 53.0 35.0 4.2 L
5480380 HDS 6 5.6 1.4 24.0 9.6 28.8 HII
6010040 CS 4.6 8.6 1.0 30.0 14.0 6.6 HII


Column 2: $\rm CS=control$ sample, $\rm HDS=high$ density sample; morphological types are: $\rm 1=Sa$, $\rm 2=Sa$-b, $\rm 3=Sb$, $\rm 4=Sb$-c, $\rm 5=S$..., $\rm 6=Sc$, $\rm Sc$-d, $\rm 7=S$../Irr, 8=Sd. Column 8: $\rm HII=activity$ typical of HII regions, $\rm L=activity$ typical of LINERs.
$^{\dagger}$ Only EW(H$\alpha$) is corrected for internal reddening.



  \begin{figure*}
\centering
\includegraphics[angle=-90,width=16.5cm,clip]{MS1011f1.ps}\end{figure*} Figure 1: Left panel a): total molecular gas as a function of FIR luminosity. The CS is marked by open squares and HDS by filled circles. Right panel b): the same as in the left panel. Ultraluminous infrared galaxies (Sanders et al. 1991) are marked by open diamonds, normal spiral galaxies from Young et al. (1989) and Braine et al. (1993) are marked by dots, cluster galaxies (Coma and Fornax) from Casoli et al. (1991) and Horellou et al. (1995) are marked by open stars. Luminosity is in $L_{\odot}$ and mass is in $M_{\odot}$.

Long-slit spectra were obtained with the Boller & Chivens Cassegrain spectrograph at the ESO 1.52 m telescope (La Silla) during several runs in 1997 and 1998 as part of a key project during Brazilian time. We used the Loral/Lesser CCD (No. 39) with $2048 \times 2048$ pixels ( $\rm 1~pixel = 15~\mu$m) and grating No. 27 which has 600 lines mm-1 and gives a spectral coverage of 3600-7500 Å and dispersion of 1.7 Å pix-1. The slit width was 3'' and positioned along the major axis of the galaxies which corresponds to galactic sizes of 250 pc for the closest galaxy in the sample and to 1 kpc for the most distant galaxy in the sample.

Spectrophotometric standard stars were observed close to zenith several times during the night with a slit width of 5''. A He-Ar lamp was observed after every exposure and used for wavelength calibration. Typical exposure times were $2 \times 20{-}30$ min for galaxies and 5-10 min for stars.

Standard data reduction, including bias and flat-field correction, was performed using IRAF. One dimensional spectra were extracted from each galaxy integrated along the slit length. We corrected for Galactic extinction using the Cardelli et al. (1989) extinction curve and E(B-V) from NED. All spectra are flux calibrated and corrected for Doppler shift which was calculated using a cross-correlation technique.

Starlight subtraction was particularly critical in weak lines such as H$\beta$. The starlight contribution was removed using the technique of McCall et al. (1985, see also Storchi-Bergmann et al. 1994). Taking into account that in the typical stellar population the equivalent width of H$\beta$ in absorption is of the order of 1.5 Å, we corrected for this effect by adding a factor of 1.5 times the continuum flux around H$\beta$ to the emission line flux. When no emission line was clearly visible we adopted a theoretical ratio, H$\alpha$/H $\beta=2.86$ (Ho et al. 1997). In this case, the value of H$\beta$ is an upper limit. Therefore, higher ratios of H$\alpha$/H$\beta$ can also be expected. We have investigated whether a higher ratio would influence our results by adopting ratios typical of AGNs (H$\alpha$/H$\beta=3.1$). We found no significant difference given the uncertainties in the continuum determination.

We tested a second method of starlight subtraction using templates of old stellar populations from Bica (1988). We subtracted our spectra from the templates and then measured the fluxes. Both methods gave similar results given the accuracy of the measurements, dominated by the uncertainty in the continuum determination (Cid Fernandes et al. 1998).

We measured the integrated fluxes and equivalent widths of the emission lines H$\beta$, [OIII]$\lambda$5007, [NII]$\lambda$6548, H$\alpha$, [NII]$\lambda$6583, [SII]$\lambda$6716,6731 for 35 galaxies with good signal-to-noise spectra. Internal reddening was estimated from the Cardelli et al. (1989) extinction curve and H$\alpha$/H$\beta$ ratios. H$\alpha$ equivalent width was measured after internal reddening correction, following the same procedure as in Ho et al. (1997).

The type of activity was classified by measuring line-intensity ratios (log([OIII] $\lambda$ 5007/H$\beta$) and log([NII] $\lambda$ 6583/H$\alpha$)) and applying standard diagnostic diagrams (Baldwin et al. 1981; Veilleux & Osterbrock 1987). In Paper II we show the diagnostic diagram used to classify the type of activity.

Table 2 lists the emission line parameters as follows. Column 1: designation in the ESO-Uppsala catalog (LV89); Col. 2: type of sample (control $\rm sample=CS$ and high density $\rm sample=HDS$) and morphological type (LV89) $\rm 1=Sa$, $\rm 2=Sa$-b, $\rm 3=Sb$, $\rm 4=Sb$-c, $\rm 5=S$..., $\rm 6=Sc$, Sc-d, $\rm 7=S$../Irr, $\rm 8=Sd$; Col. 3: H$\beta$ flux; Col. 4: [OIII]$\lambda$5007 flux; Col. 5: H$\alpha$ flux; Col. 6: [NII]$\lambda$6583 flux; Col. 7: H$\alpha$equivalent width in Å, and Col. 8: type of activity ( $\rm L=LINERS$, $\rm HII=HII$ region).

In Appendix A (only available in electronic form) we show the optical spectra of 35 galaxies of our sample. We also included in the Appendix the CO spectra described below and images from The Digitized Sky Surveys[*] which allows direct inspection of the galaxies morphology.

 
 
Table 3: CO data.

ESO-LV
Sample & $V_{\rm CO}$ $\Delta V_{\rm CO}$ log $L_{\rm B}$ $L_{\rm FIR}$$\times$109 $I_{\rm CO(1-0)}$ $M_{\rm H_2}$$\times$109 $I_{\rm CO(2-1)}$
name Morph. kms-1 kms-1 $L_{\odot}$ $L_{\odot}$ K kms-1 $M_{\odot}$ K kms-1
(1) (2) (3) (4) (5) (6) (7) (8)  

0310050
CS 3.5 4714 287 10.11 13.60 $\pm$ 0.39 3.62 $\pm$ 0.26 3.30 $\pm$ 0.23 3.64 $\pm$ 0.22
1060120 CS 6 4154 180 9.97 6.90 $\pm$ 0.39 2.75 $\pm$ 0.28 1.93 $\pm$ 0.19  
1080130 HDS 3.5 2941 135 9.78 2.67 $\pm$ 0.15 2.43 $\pm$ 0.21 0.81 $\pm$ 0.07  
1080200 CS 3.9 1720 183 9.37 4.45 $\pm$ 0.20 6.28 $\pm$ 0.25 0.65 $\pm$ 0.03 3.63 $\pm$ 0.18
1190060 HDS 7.5 1256 43 9.48 1.66 $\pm$ 0.05 1.99 $\pm$ 0.14 0.11 $\pm$ 0.01  
1190190 HDS 5 1527 33 9.94 2.52 $\pm$ 0.07 5.06 $\pm$ 0.19 0.42 $\pm$ 0.02  
1420500 CS 5 2135 165 10.10 4.40 $\pm$ 0.09 3.40 $\pm$ 0.25 0.59 $\pm$ 0.04  
1460090 CS 5 1652 183 10.13 10.40 $\pm$ 0.34 11.68 $\pm$ 0.66 1.10 $\pm$ 0.06  
1570050 HDS 5.5 1311 40 9.30 0.39 $\pm$ 0.02 1.66 $\pm$ 0.06 0.10 $\pm$ 0.01 0.88 $\pm$ 0.09
1890070 CS 4.0 3006 169 10.44 9.15 $\pm$ 0.36 4.22 $\pm$ 0.26 1.48 $\pm$ 0.09  
2010220 CS 5 3990 188 9.70 3.53 $\pm$ 0.23 1.50 $\pm$ 0.11 0.98 $\pm$ 0.07 1.30 $\pm$ 0.11
2030180 CS 4 4123 157 10.27 25.39 $\pm$ 1.17 4.66 $\pm$ 0.23 3.30 $\pm$ 0.16 5.04 $\pm$ 0.14
2340160 HDS 5 5218 10 10.01 3.72 $\pm$ 0.50 0.82 $\pm$ 0.05 0.94 $\pm$ 0.06 0.45 $\pm$ 0.12
2350550 HDS 5 5098 70 10.73 9.92 $\pm$ 1.11 1.88 $\pm$ 0.11 2.04 $\pm$ 0.12 1.34 $\pm$ 0.11
2350570 HDS 4 5069 248 10.03 11.08 $\pm$ 1.30 3.22 $\pm$ 0.12 3.45 $\pm$ 0.13 3.56 $\pm$ 0.22
2370020 CS 4.5 5214 236 10.58 13.72 $\pm$ 0.70 4.42 $\pm$ 0.16 4.90 $\pm$ 0.18 1.96 $\pm$ 0.11
2400110 HDS 4.8 2890 278 10.00 5.81 $\pm$ 0.31 5.20 $\pm$ 0.17 1.65 $\pm$ 0.05  
2400130 HDS 3 3284 50 9.80 5.17 $\pm$ 0.31 2.58 $\pm$ 0.15 1.08 $\pm$ 0.06  
2850080 HDS 4 2838 132 10.63 4.45 $\pm$ 0.23 1.97 $\pm$ 0.21 0.64 $\pm$ 0.07  
2860820 HDS 5 4958 134 9.98 4.42 $\pm$ 0.51 1.62 $\pm$ 0.09 1.66 $\pm$ 0.09 1.68 $\pm$ 0.08
2880260 HDS 5 2383 80 9.79 1.42 $\pm$ 0.10 1.51 $\pm$ 0.11 0.32 $\pm$ 0.02  
2960380 CS 4 3645 51 9.90 3.73 $\pm$ 0.33 0.84 $\pm$ 0.12 0.44 $\pm$ 0.06  
3050140 CS 5 4761 450 10.11 4.31 $\pm$ 0.55 2.38 $\pm$ 0.10 2.31 $\pm$ 0.10 1.21 $\pm$ 0.08
3470340 HDS 3 1671 117 9.92 7.85 $\pm$ 0.79 23.46$^{\dagger}$ $\pm$ 0.62 2.27 $\pm$ 0.06  
3500140 CS 6 3400 35 10.09 3.30 $\pm$ 0.25 2.68 $\pm$ 0.09 1.23 $\pm$ 0.04  
3520530 HDS 3 3874 260 10.27 21.89 $\pm$ 0.93 10.85 $\pm$ 0.52 6.55 $\pm$ 0.32  
3550260 CS 4 1985 105 9.42 0.95 $\pm$ 0.07 1.02 $\pm$ 0.13 0.15 $\pm$ 0.02  
3550300 CS 4 4448 336 10.25 10.05 $\pm$ 0.43 4.08 $\pm$ 0.44 3.33 $\pm$ 0.36  
3570190 HDS 5 1789 66 9.83 1.52 $\pm$ 0.06 3.40 $\pm$ 0.28 0.41 $\pm$ 0.03  
4050180 CS 1 3375 124 10.27 10.67 $\pm$ 0.68 7.70 $\pm$ 0.37 3.52 $\pm$ 0.17  
4060250 HDS 5 1470 83 9.98 4.42 $\pm$ 0.20 27.44$^\ddagger$ $\pm$ 0.74 2.04 $\pm$ 0.05  
4060330 HDS 6 1922 110 9.71 5.01 $\pm$ 0.21 3.15 $\pm$ 0.17 0.42 $\pm$ 0.02  
4070140 CS 5 2761 129 9.85 3.54 $\pm$ 0.23 2.64 $\pm$ 0.14 0.78 $\pm$ 0.04  
4190030 CS 4 4146 83 10.20 11.19 $\pm$ 0.36 1.52 $\pm$ 0.13 1.10 $\pm$ 0.09  
4200030 CS 5 4093 163 10.22 6.41 $\pm$ 0.41 2.86 $\pm$ 0.20 2.02 $\pm$ 0.14  
4710200 CS 4.5 3017 160 10.30 12.49 $\pm$ 0.53 5.46 $\pm$ 0.36 1.95 $\pm$ 0.13  
4780060 CS 4 5401 164 10.58 51.12 $\pm$ 2.91 8.79 $\pm$ 0.37 10.86 $\pm$ 0.46 15.16 $\pm$ 0.33
4820430 CS 4 4073 85 10.17 6.57 $\pm$ 0.33 3.36 $\pm$ 0.30 2.35 $\pm$ 0.21  
4840250 CS 2 4128 191 10.13 16.54 $\pm$ 0.64 3.63 $\pm$ 0.31 2.65 $\pm$ 0.22  
5320090 CS 5 2582 83 9.91 4.22 $\pm$ 0.20 1.54 $\pm$ 0.17 0.41 $\pm$ 0.05  
5390050 CS 5 3158 256 9.98 5.03 $\pm$ 0.29 4.95 $\pm$ 0.33 1.99 $\pm$ 0.13  
5450100 HDS 5 1715 21 9.55 3.21 $\pm$ 0.14 1.29 $\pm$ 0.09 0.15 $\pm$ 0.01 2.67 $\pm$ 0.13
5450110 HDS 5 1456 168 10.35 14.78 $\pm$ 0.72 27.01 $\pm$ 0.92 2.15 $\pm$ 0.07  
5480070 HDS 3.5 1557 17 9.87 1.05 $\pm$ 0.05 1.79 $\pm$ 0.11 0.17 $\pm$ 0.01  
5480310 HDS 3 1531 108 9.79 3.17 $\pm$ 0.13 6.99 $\pm$ 0.32 0.65 $\pm$ 0.03  
5480380 HDS 6 1874 86 10.03 10.56 $\pm$ 0.31 2.14 $\pm$ 0.15 0.30 $\pm$ 0.02  
6010040 CS 4.6 5219 103 10.01 3.85 $\pm$ 0.56 1.01 $\pm$ 0.08 1.17 $\pm$ 0.09 0.78 $\pm$ 0.04


$^{\dagger}$ added CO(1-0) intensities of 5 points (map);
$^\ddagger$ added CO(1-0) intenstities of 7 points (map).
Column 2: CS=control sample, $\rm HDS=high$ density sample; morphological types are: $\rm 1=Sa$,
$\rm 2=Sa$-b, $\rm 3=Sb$, $\rm 4=Sb$-c, $\rm 5=S$..., $\rm 6=Sc$, Sc-d, $\rm 7=S$../Irr, $\rm 8=Sd$.



next previous
Up: Environmental effects in galaxies

Copyright ESO 2002