A&A 380, 148-150 (2001)
DOI: 10.1051/0004-6361:20011290
Research Note
N. R. Deacon - N. C. Hambly
Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
Received 27 July 2001 / Accepted 7 September 2001
Abstract
We present a measurement of the trigonometric parallax for a nearby
very low mass star recently discovered by Delfosse et al. (2001).
Using schmidt plates measured on the SuperCOSMOS plate scanning machine we find
a parallax of
mas, giving a distance of
d=5.2+1.2-0.8 pc.
Using this distance we find the absolute magnitude and kinematics
for the object to be consistent with an intermediate-age disk object
of mass
.
This star is
clearly nearby and is on these measurements between the 30th and 86th
closest known stellar system to the Sun; it could be the
closest M9 dwarf to the Sun.
Key words: astrometry - stars: low mass - stars: individual: DENIS 1048-39
In recent years the DEep Near Infrared Survey (hereafter DENIS;
Epchtein 1997) has
been systematically surveying the southern sky. With high sensitivity in
the infrared this survey, along with the 2MASS survey (Kleinman et al.
1994),
is excellent for identifying very low mass (VLM) stars and brown dwarfs (BDs)
in the immediate solar neighbourhood (e.g. Kirkpatrick et al. 2000). Without knowledge of the
distances to these new discoveries, however, it is difficult to assign masses
and hence measure the VLM/BD mass function into the brown dwarf régime.
One particularly interesting object is DENIS-P J104814.7-395606.1, hereafter
DENIS 1048-39, (Delfosse et al. 2001).
The object distance was estimated from the available data (i.e. spectroscopy)
as being
pc for a single star or up to 5.8 pc for a double
star although they left this as an open question until a
trigonometric parallax could be determined.
Fortuitously, several survey and non-survey schmidt plates
containing the target in question exist in the ROE plate library.
These were
scanned using the SuperCOSMOS microdensitometer. This measures
the centroids of well-exposed stars (>3 mag above the plate
limit) to an accuracy of as good as 0.5
m or
33 mas at the schmidt plate scale of 67 arcsec mm-1giving exceptionally accurate relative postitional data (Hambly et al. 1998).
The plates used are listed in Table 1 (note that southern sky
survey plates are being systematically scanned and the data made
available via the WWW - see Paper I of Hambly et al. 2001 and references therein).
Plate | Date | LST | Emul- | Filter | Exp. | ![]() |
![]() |
Notes |
No. | (yymmdd) | sion | (min) | (mas) | (mas) | |||
J1478 | 750513 | 10:38 | IIIaJ | GG395 | 90 | Survey original plate | ||
R6366 | 860212 | 09:51 | IIIaF | RG630 | 200 | 43 | 38 | Copy of ESO survey original plate |
OR13569 | 900126 | 10:13 | IIIaF | OG590 | 550 | 29 | 35 | Non-survey plate |
OR15472 | 930415 | 09:58 | IIIaF | OG590 | 550 | 40 | 33 | Non-survey plate |
OR15601 | 930619 | 12:15 | IIIaF | OG590 | 550 | 48 | 42 | Survey original plate |
Firstly a model with only proper motion and no parallax was fitted to
the positional data of the target star
using routines from the positional astronomy library SLALIB
(Wallace 1998). The
value, ie. normalised per degree of freedom,
was calculated as 4.65 - significantly greater than one and therefore
indicating a poor fit. The positional residuals are
plotted in Fig. 1a showing a clear scatter from zero. This is
evidence for a possible parallax. Once a model including parallax was
introduced a better fit was found. The proper motions were found
to be
mas/yr and
mas/yr. The parallax was
mas. The final
value was
0.29. The residuals are plotted in Fig. 1b; no scatter larger
than the estimated positional errors is present. Figure 2 shows
the data points with proper motion subtracted plotted against the
parallax model.
To show the results are not an artefact of the method the reference
stars were used as a control group. These results are plotted in
Fig. 3 showing clearly that the proper motion, and in particular the parallax results
for DENIS 1048-39 are statistically significant. The mean
value of the
reference stars was 1.35 indicating generally good fits.
To ensure that the reference stars were not so close as to produce an
error in our relative parallax measurement their mean colour was found.
Assuming they are all main sequence stars the correction for their parallaxes (0.68 mas) is far less than the stated errors.
We also investigated the effects of differential colour refraction for each
plate. For the R plates the effects were negligible (less than 10 mas on either axis) but for the blue plate the effect was
substantial (9 mas in RA; 47 mas in Dec) vindicating the
decision not to use the BJ plate for astrometric measurements.
![]() |
Figure 1: Comparing the residuals of the non parallax model a) with the parallax model b). |
Open with DEXTER |
![]() |
Figure 2: Comparing the observed proper motion subtracted data (solid points with error bars) with the model parallax predicted displacement (dotted lines). |
Open with DEXTER |
![]() |
Figure 3: Comparing the proper motion and parallax of the reference stars with those of DENIS 1048-39. |
Open with DEXTER |
With this distance, applying a 1 sigma error and referring to the
RECONS list of the 100 nearest stellar systems
(http://www.chara.gsu.edu/RECONS) makes DENIS 1048-39 the 30th to 86th nearest stellar system. With the distance
measurement of 5.2 pc it would be the 50th nearest stellar system and
at the lower limit of distance would be closer than LP 944-20 making
it the nearest M9 dwarf known.
From the distance and proper motion measurements the
space velocities of this object can be calculated. Taking Delfosse et
al.'s radial velocity of +10.5 kms-1, the galactocentric
velocities are U = -3, V = 210, W = -22 kms-1, consistent with
membership of the disk population.
Delfosse et al. measured the magnitudes of DENIS 1048-39 and with a
trigonometric distance these can now be converted into absolute
magnitudes. This gives
MR = 17.1,
MI = 14.2,
MJ = 11.0 and
MK = 10.0with an error of 0.4 mag from the parallax error alone.
Delfosse et al.'s spectral analysis suggested that the object
was older and more massive than the nearby brown dwarf LP
944-20 for which Tinney (1998) gave an age of 475 to 650 Myr and
mass 0.056 to 0.064
.
There is no evidence
DENIS 1048-39 is metal poor, so comparing the photometry with
models for solar metallicity low mass stars (Baraffe et al. 1998) a
reasonably good fit is found for a star of mass
and
an age of
1.0+0.8-0.2 Gyr.
The above estimates as to the nature of DENIS 1048-39 assume that it
is a single star. Delfosse et al. also suggested that it could be an
unresolved double with a distance of up to 5.8 pc and with our
measurement this distance is possible. Further spectrosopic and
astrometric measurements are required to find if this is the case.
Of course, the motions of a binary system could affect the astrometric
measurements made in this paper; however there is currently no evidence
of such effects since the parallax model appears to be
a good fit to the data (albeit with a small number of degrees of freedom).
Acknowledgements
N.R.D. thanks the Royal Society of Edinburgh for a Cormack Vacation Research Scholarship. We thank the referee, Xavier Delfosse, for a prompt and useful report.