next previous
Up: The long-period companions of


5 Discussion


  \begin{figure}
\par\hbox{\hspace{0cm}\psfig{figure=h2825f3a.eps,height=5cm,clip=t} \hspace{0.3cm}\psfig{figure=h2825f3b.eps,height=5cm,clip=t} }\end{figure} Figure 3: Final sample characteristics: Left: the histogram of the logarithm of outer subsystem period; Right: the distribution of the mass of the most massive star in the system.


  \begin{figure}
\par\mbox{\psfig{figure=h2825f4a.eps,height=5cm,clip=t} \hspace{0.0cm}\psfig{figure=h2825f4b.eps,height=5.08cm,clip=t} }\end{figure} Figure 4: Left: the distribution of the projected separation ratio $a_{\rm out}/a_{\rm in}$; Right: thick lines: the cumulative distribution $F(e_{\rm crit})$ of critical eccentricities computed for stability limit $a_{\rm out}(1\!-\!e_{\rm crit})/a_{\rm in}$ equal to 3 (solid line) and 5 (dashed line). Thin lines: scaled twice respective ( differential) linear distributions of e with rejection: $f(e)\!=\!2e(1\!-\!F(e))$.

Some characteristics of the final sample are shown in Fig. 3. As expected, the shortest periods are most frequent, although the periods as long as ${\sim} 10^5$ yr are present (for nearby systems). The median period is 6100 yr. Having a characteristic separation of ${\sim}10\hbox{$^{\prime\prime}$ }$ and best-represented first epoch of 1835, the system with such a period gives a motion of ${\sim}1.4\hbox{$^{\prime\prime}$ }$ in 155 years. As we see, there is nothing mysterious about detecting the orbital motion at such long periods.

The constraint accepted for maximal stellar mass in the system seems reasonable: there are few cases of $M^*_{\rm max}\!>\!4~M_{\odot}$. So, our study is restricted to low-to-intermediate mass stars.

The difference of our $\gamma $-angle distribution from a uniform one is clearly seen. It is unlikely that this result is heavily distorted by selection. The errors of the measurements of the position angle are at least not larger than in separation (Pannunzio et al. 1988) so the excess of values near $90\hbox{$^\circ$ }$ is hard to explain in this way. Both our and BDS92's samples refer roughly to the same range of periods but, apparently, differ in fraction of highly elongated orbits.

For visual orbits, a bell-shaped distribution of eccentricity was obtained by Ruymaekers (1999). Nevertheless, the author notices (after Harrington 1977b) that in orbit computation the quality of inclined or eccentric orbits is strongly degraded and that probably for this reason good high-e orbits are rare. It is obviously not the case for objects in our sample with periods longer than 500-1000 years. Since the position changes are mostly very small compared to the separation, the systems with large eccentricities are not discriminated to be discovered or measured.

Still keeping in mind the possibility of some selection in the MSC itself, we nevertheless suggest that eccentric long-period orbits among outer subsystems in multiple stars are rare. Apart from some possible unaccounted systematic errors in observations, two explanations can be advanced for our finding.

Dynamical instability.

Our systems are all hierarchical: they have the size of the outer subsystem at least several times wider than that of inner subsystems (Fig. 4). To check whether the dynamical instability factor is responsible for "damping'' of high eccentricities in our f(e), we can apply the crude criterion of stability for the ratio of the outer subsystem periastron distance $R_{\rm p}^{\rm out}$ to the size of an inner orbit $a_{\rm in}$:

\begin{displaymath}\frac{R_{\rm p}^{\rm out}}{a_{\rm in}} \approx
\frac{\rho_{\rm out}(1-e_{\rm out})}{\rho_{\rm in}} > C
\end{displaymath}

where C is about 3-5 and, in principle, is a weak function of eccentricity $e_{\rm out}$ and mass ratio $q_{\rm out}$ (Harrington 1977a). In high-order (N>3) multiples, $a_{\rm in}$stands for the size of the widest subsystem (Mardling & Aarseth 2001, p. 414). Here we suppose that, statistically, the semi-major axis a of an orbit is close to the observed projected separation $\rho$.

For a given C, we can derive some critical value of the eccentricity $e_{\rm crit}$ for each our system which would "make'' it marginally stable. The cumulative distributions F of these $e_{\rm crit}$ are shown in Fig. 4 (right). If we assume that the universal $f(e)\!=\!2e$ distribution applies to all multiple systems and that the highest eccentricities are eliminated by instability, then the modified distribution can be modeled as $f(e)=2e
\cdot [1-F(e)]$, where F(e) is the cumulative distribution of critical eccentricities (thin lines in the same figure).

We reran our Monte-Carlo simulations with the modified f(e), noticing the weak sensitivity of this f(e) to the value of C. As expected, the resulting $f(\gamma )$ is a bit closer to the observed one (thick grey line in Fig. 2), but still far from it.


 

 
Table 1: Angle $\gamma $ for objects of an output sample. Columns are: WDS-designation of the object; outer subsystem identification as given in MSC; second epoch separation and position angle; angle $\gamma $ and its error; motion $\delta \hbox {$^{\prime \prime }$ }=\Delta \mu (T_2 - T_1)$ between two epochs; note symbols (see bottom of the table). Values $\gamma $ and $\delta $ are corrected for the motion in the subsystems, if it is significant.
WDS SYS $\rho_2\hbox{$^{\prime\prime}$ }$ $\theta_2\hbox{$^\circ$ }$ $\gamma\hbox{$^\circ$ }$ $\epsilon_{\gamma}\hbox{$^\circ$ }$ $\delta\hbox{$^{\prime\prime}$ }$ note WDS SYS $\rho_2\hbox{$^{\prime\prime}$ }$ $\theta_2\hbox{$^\circ$ }$ $\gamma\hbox{$^\circ$ }$ $\epsilon_{\gamma}\hbox{$^\circ$ }$ $\delta\hbox{$^{\prime\prime}$ }$ note
00057+4549 AF 328.0 254 215 24 1.6 cO 07185-5721 AB 2.4 254 97 13 0.6 w
00108-5729 AB 3.2 183 108 16 0.3   07204-5219 AB 9.2 26 128 5 1.6  
00134+2659 AC 18.0 225 0 24 0.6 wX 07359+4302 AB 2.1 88 32 14 0.3  
00150+0849 AB 11.5 148 264 18 0.5   07378-0236 AC 1.4 303 31 6 0.6 1
00174+0853 BC 4.0 235 195 14 0.3 1 07354-7417 AB 1.9 125 109 6 0.8  
00219-2300 AB 6.1 26 93 10 0.7 2 08047+4717 AC 5.9 214 303 15 0.2 m
00321-0511 AC 2.6 190 283 6 1.0 1 08044+1217 AC 5.0 213 99 4 2.3 w1
00335-5520 AC 6.8 245 235 22 0.3 1O 08065-0915 AB 30.6 327 132 22 0.4 mx
00345-0433 AC 19.7 45 194 24 0.5 1O 08198-7131 AB 64.8 58 263 11 1.6  
00360+2959 AB 6.2 23 299 4 1.5   08267+2432 AB 5.7 50 104 5 1.2  
00393+3052 AB 28.7 298 327 24 1.0 w 08368+7443 AB 1.5 234 191 13 0.3  
00493-2124 AC 11.0 299 342 13 0.1 mX 08555-0758 AB 4.1 3 130 8 0.7  
01041+2635 AB 0.8 244 5 23 0.1   09125-4337 AB 2.8 282 270 20 0.3  
01137+0735 AB 22.9 63 216 19 0.9 x 09205-0933 AB 229.1 211 262 11 2.2  
01158-6853 AC 319.3 310 106 9 3.3 2O 09272-0913 AC 10.5 176 174 24 0.3 1
01230-1258 AB 40.5 313 216 13 0.2 mo 09354+3958 AB 25.0 149 72 24 0.6  
01409+4952 AC 6.1 282 34 26 0.2   10311-2411 AB 1.9 67 352 24 0.2  
01413+2545 AB 10.5 31 197 12 0.8 w 10350+0839 AB 2.2 157 217 15 0.3  
01493+4754 AC 20.8 178 303 26 0.5 wO 10401+1914 AC 6.4 355 49 29 0.3 O
01551+2847 AC 5.7 163 272 17 0.4 1O 10409-3545 AB 0.6 48 236 23 0.2  
01590-2255 AB 8.6 303 301 24 0.3   10435+4612 AB 288.0 88 267 11 1.7  
01586-5332 AB 2.3 103 306 17 0.3   10443-7052 AB 62.7 75 250 21 1.0 x
02128+7941 AB 55.6 277 263 12 1.4   10575-1105 AC 4.5 8 91 13 0.5 1
02124+3018 AB 3.9 70 274 8 0.7   11047-0413 AB 11.6 221 60 5 2.0 2
02110-3540 AC 13.6 41 236 18 1.0 O 11170-0708 AB 1.0 210 229 16 0.4 w
02128-0224 AB 16.6 234 57 6 1.9   11366+5608 AB 6.1 166 326 6 0.9  
02280-5808 AC 17.6 299 264 26 0.3 O 11387+4507 AB 9.2 250 238 3 3.1  
02370+2439 AB 38.2 275 127 25 0.7   12143+1149 AB 1.7 16 359 16 0.4  
02411+1848 AC 65.5 242 61 12 0.4 m 12413-1301 AB 5.3 312 99 5 1.2  
02529+5300 AC 1.6 312 73 10 0.5 1 12492+8325 AB 21.5 326 130 16 0.8  
02583-4018 AB 8.3 90 93 7 1.1   12563+5406 AB 3.8 281 313 8 0.7  
03158+5057 AB 1.5 102 5 4 0.9   13066-6434 AB 0.5 234 154 13 0.3  
03302+5922 AB 2.6 70 120 20 0.4 X 13123-5955 AC 1.9 7 84 7 0.7 1*
03480+6840 AB 17.1 14 272 12 0.9 2* 13145-2417 AC 12.5 332 282 22 0.5 1
03470+4126 AB 7.3 54 139 3 2.1   13196+3507 AB 17.6 129 90 5 2.9  
03566+5042 AB 75.3 31 270 22 0.8   13258+4430 AC 2.6 205 79 6 1.2 w
04226+2538 AB 19.4 25 263 28 0.5   13328-1746 AB 1.2 26 326 12 0.3  
04436-0848 AB 9.3 318 316 27 0.3   13437-4204 AC 0.9 72 40 24 0.2 1
04475+4324 AC 1.4 24 270 14 0.4 1 14135+5147 AB 13.5 236 339 8 1.0  
04563+5206 AC 4.6 114 341 7 0.7 1 14158+1018 AC 3.9 148 312 7 0.7 1
05012+3430 AB 1.7 229 339 19 0.2   14182-2731 AC 3.3 111 284 17 0.3 1x
05017+2640 AC 78.4 160 248 26 0.8 1 14234+0827 AB 6.3 194 85 7 0.9  
05098+2802 AB 11.5 28 181 26 0.3 2* 14375+4743 AC 78.8 117 100 15 1.2  
05133+0252 AB 6.9 63 223 25 0.3   14426+1929 AC 135.0 309 90 11 1.5 1
05154+3241 AC 14.2 225 213 18 0.5   14497+4843 AB 2.8 45 173 4 0.9  
05239-0052 AB 2.9 160 338 2 1.6 2 15185-4753 BC 22.7 129 317 18 0.6 O
05248-5219 AC 38.1 288 96 25 0.7 1 15245+3723 AB 108.1 171 103 15 1.4 2
05301+2933 AC 15.1 352 148 15 0.0 mO 15290-2852 AC 9.5 9 66 12 0.7 c1
05364+2200 AB 4.0 272 76 3 1.6   15332-2429 AB 9.1 301 106 14 0.6 2
05508-3945 AC 3.7 197 306 19 0.3 1 15387-0847 AB 11.8 189 103 15 0.6  
06047-4505 AC 196.2 321 271 6 3.0 O 15382+3615 AC 15.0 86 142 29 0.2 *Oo
06200+2826 AC 2.9 263 95 7 0.8 1 16035-5747 AC 11.0 243 299 7 1.7 w
06298-5014 AC 12.0 312 221 5 2.0 3 16086-3906 AC 44.2 184 93 20 0.9 x
06462+5927 AC 8.7 309 99 13 0.0 mO 16235+3321 AC 1.0 35 264 13 0.4  
06423-3824 AB 7.9 277 166 11 0.1 m 16242+3702 AB 8.3 341 250 10 0.8  
06482+5542 BA 4.6 77 219 23 0.2   16238+6142 AB 1.0 352 296 24 0.3 X
07031+5410 AB 9.0 66 152 13 0.1 m 16362+5255 AC 90.2 193 81 15 1.1 O
07040-4337 AC 184.9 335 79 10 2.1 O 16579+4722 AC 112.5 262 92 18 1.5 O
07148-1529 AC 15.7 2 277 28 0.4 1O 17130-5836 AB 3.1 322 279 18 0.3  
07171-1202 AC 15.9 242 48 22 0.5 1 17153-2636 AC 732.8 74 83 9 5.8  
07201+2159 AB 5.8 220 129 3 2.7 w 17131+5408 AC 88.5 233 98 8 2.4  



 
Table 1: continued.
WDS SYS $\rho_2\hbox{$^{\prime\prime}$ }$ $\theta_2\hbox{$^\circ$ }$ $\gamma\hbox{$^\circ$ }$ $\epsilon_{\gamma}\hbox{$^\circ$ }$ $\delta\hbox{$^{\prime\prime}$ }$ note WDS SYS $\rho_2\hbox{$^{\prime\prime}$ }$ $\theta_2\hbox{$^\circ$ }$ $\gamma\hbox{$^\circ$ }$ $\epsilon_{\gamma}\hbox{$^\circ$ }$ $\delta\hbox{$^{\prime\prime}$ }$ note
17190-3459 AC 32.0 138 66 4 5.5 w1 20078+0924 AB 3.3 340 201 3 1.4  
17237+3709 AB 4.1 318 75 8 1.0 X 20205-2912 AC 27.2 321 71 11 0.1 m
17322+5511 AB 62.0 311 82 26 0.7   20210-1447 AB 205.2 267 94 24 1.0 Xx
17350+6153 AP 737.4 160 267 2 15.0 c 20203+3924 AC 3.4 282 279 8 0.7 1
17465+2743 AB 33.8 247 48 4 5.5 w 20587-7025 AB 6.8 113 117 13 0.5 2
17460+3919 AB 7.9 349 9 29 0.2   20591+0418 AC 10.6 68 260 5 1.7 1
17592-3656 AB 7.5 103 328 7 0.9   21022-4300 AB 57.4 73 88 27 0.6  
18028+7547 AC 22.9 274 258 11 1.9 w 21041-0549 AB 2.4 195 139 13 0.4  
18002+8000 AB 19.0 232 168 7 1.7   21094-7310 AC 7.2 123 235 5 1.8 w
18118+3327 AC 0.7 218 57 23 0.2   21047+0332 AB 3.4 173 108 4 1.5  
18178+4351 AC 1.8 164 269 16 0.4 1O 21086+3012 AB 3.4 305 258 9 0.6  
18238+5139 AB 2.6 205 95 23 0.2   21135+0713 AD 184.1 172 100 8 2.8 c1
18272+0012 AB 3.8 319 97 15 0.4 1X 21148+3803 AQ 89.9 184 264 21 1.0 wO
18239+5848 AC 88.9 20 95 29 1.0 O 21221+1948 AB 36.2 311 96 26 0.7  
18338+1744 AC 1.8 275 166 10 0.5 1x 21223+5734 AP 83.7 192 189 15 0.0 mO
18497-7300 AB 1.9 271 56 8 0.5   22024-1658 AB 3.9 246 66 16 0.3  
18455+0530 AB 2.5 119 62 8 0.6 2 22038+6438 AB 7.9 276 323 2 2.6  
18448+3736 AD 43.7 150 90 27 0.6   21582+8252 AB 13.8 67 272 7 1.4  
18465-0058 AB 12.7 121 164 13 0.6   22375+2356 AC 5.8 194 64 28 0.2 O
19021+5216 AB 5.2 299 311 12 0.5 2 22388-2037 AB 24.5 351 311 4 4.4 w
19037+5727 AB 10.6 57 42 13 0.2 m 22361+7253 AD 42.2 137 91 20 0.9 c
19091+3436 AB 16.1 262 134 6 1.7   22397-2820 AB 86.5 159 76 10 0.2 m
19083+5520 AC 6.5 30 262 9 0.8 1 23069-4331 AC 159.3 292 267 19 0.7 O
19313-0207 AB 1.3 63 298 29 0.1   23100+4758 AB 15.6 256 62 8 1.2  
19407-1618 AC 45.6 42 87 26 0.7   23175+1652 AB 2.2 26 228 16 0.3 o
20014+1045 AB 3.8 354 167 5 1.0   23191-1328 AB 12.6 351 125 6 1.5  

Notes:
``c'': first epoch $\rho$, $\theta$ are taken from CCDM rather than from WDS;
``w'': second epoch position is taken from WDS (no Hipparcos or Tycho identifications);
``*'': one of the alternative Hipparcos solutions is accepted;
``1'',``2'' or ``3'': Hipparcos or Tycho photocenter positions are computed for primary, secondary or both subsystems of the object, respectively;
``m'': Tycho-II proper motion difference is used to compute $\gamma $instead of $\rho$, $\theta$-change;
``O'',``o'': position parameters are corrected for orbital motion in primary, secondary subsystems of the object;
``X'',``x'': uncertainty from unpredictable motion in primary, secondary subsystem is taken into account in $\epsilon_\gamma$.



  \begin{figure}
\par\psfig{figure=h2825f5.eps,height=5cm,clip=t}
\end{figure} Figure 5: Distributions $f(\gamma )$ for two halves of the sample: with $a_{\rm out}/a_{\rm in}$ less than 44 (dashed line) and more than 44 (solid line). Deviations of $f(\gamma )$ from flat are characterized by $\chi^2\!\approx\!29$ and $\chi^2 \approx~15$, respectively; this tendency is expected from stability constraints.

Alternatively, we can try to look for the variation of $f(\gamma )$among the subsamples with different $a_{\rm out}/a_{\rm in}$. The output sample was thus divided in two halves by the ratio $a_{\rm out}/a_{\rm in}$(the median ratio is $\approx$44). We find that, indeed, the significance of the deviation of $f(\gamma )$ from the uniform one decreases for a "stable'' half-sample of objects ( $a_{\rm out}/a_{\rm in}\!>\!44$; see Fig. 5): the ${\sim}90\hbox{$^\circ$ }$ bins are redistributed into $150\hbox{$^\circ$ }$- $180\hbox{$^\circ$ }$bin. Nevertheless, evidently, the dynamical stability constraint alone is unable to account for the observed $f(\gamma )$.

Angular momentum transfer.

The outer subsystem may receive angular momentum and get circularized via the torques from the gaseous material in the system and those from the inner binary (see Artymowicz & Lubow 1996; Reipurth 2000; Mardling & Aarseth 2001 and references therein). This process may take place at the earliest stages of the formation of the system. In general, it is characterized by the outward transfer of the angular momentum which makes the inner system more eccentric and the outer more circular. Thus the outer system may become nearly circular, having a degree of hierarchy far above that demanded by pure dynamical stability constraints.

At the current stage, we cannot reach more definitive conclusions about the shape and origin of f(e) for orbits in multiple stars. Larger samples of systems with precisely measured relative proper motions will give a better input information. In this respect, the launch of the GAIA mission of ESA seems to be most promising.

Acknowledgements

Part of this work was supported by the Fellowship of the Belgian Services Fédéraux des Affaires Scientifiques, Techniques and Culturelles, which provided the possibility for the author to work at the Royal Observatory of Belgium. I'm grateful to Dr. A. Tokovinin for his support and encouraging through the progress of this work and to E. van Dessel and Th. Nakos for remarks on the text.
This research made extensive use of Simbad database operated at CDS, Strasbourg, France and of the Digital Sky Survey produced at the Space Telescope Science Institute, USA.


next previous
Up: The long-period companions of

Copyright ESO 2001