![]() |
Figure 3: Final sample characteristics: Left: the histogram of the logarithm of outer subsystem period; Right: the distribution of the mass of the most massive star in the system. |
Some characteristics of the final sample are shown in
Fig. 3. As expected, the shortest periods are most
frequent, although the periods as long as
yr are present
(for nearby systems). The median period is 6100 yr. Having a
characteristic separation of
and best-represented
first epoch of 1835, the system with such a period gives a motion of
in 155 years. As we see, there is nothing
mysterious about detecting the orbital motion at such long periods.
The constraint accepted for maximal stellar mass in the system seems
reasonable: there are few cases of
.
So, our
study is restricted to low-to-intermediate mass stars.
The difference of our -angle distribution from a uniform one
is clearly seen. It is unlikely that this result is heavily distorted
by selection. The errors of the measurements of the position angle are
at least not larger than in separation (Pannunzio et al. 1988) so the excess of values near
is
hard to explain in this way. Both our and BDS92's samples refer roughly
to the same range of periods but, apparently, differ in fraction of highly
elongated orbits.
For visual orbits, a bell-shaped distribution of eccentricity was obtained by Ruymaekers (1999). Nevertheless, the author notices (after Harrington 1977b) that in orbit computation the quality of inclined or eccentric orbits is strongly degraded and that probably for this reason good high-e orbits are rare. It is obviously not the case for objects in our sample with periods longer than 500-1000 years. Since the position changes are mostly very small compared to the separation, the systems with large eccentricities are not discriminated to be discovered or measured.
Still keeping in mind the possibility of some selection in the MSC itself, we nevertheless suggest that eccentric long-period orbits among outer subsystems in multiple stars are rare. Apart from some possible unaccounted systematic errors in observations, two explanations can be advanced for our finding.
For a given C, we can derive some critical value of the
eccentricity
for each our system which would "make'' it
marginally stable. The cumulative distributions F of these
are shown in Fig. 4 (right). If we assume that
the universal
distribution applies to all multiple
systems and that the highest eccentricities are eliminated by
instability, then the modified distribution can be modeled as
,
where F(e) is the cumulative distribution of
critical eccentricities (thin lines in the same figure).
We reran our Monte-Carlo simulations with the modified f(e),
noticing the weak sensitivity of this f(e) to the value of C. As
expected, the resulting
is a bit closer to the observed
one (thick grey line in Fig. 2), but still far from it.
WDS | SYS |
![]() |
![]() |
![]() |
![]() |
![]() |
note | WDS | SYS |
![]() |
![]() |
![]() |
![]() |
![]() |
note |
00057+4549 | AF | 328.0 | 254 | 215 | 24 | 1.6 | cO | 07185-5721 | AB | 2.4 | 254 | 97 | 13 | 0.6 | w |
00108-5729 | AB | 3.2 | 183 | 108 | 16 | 0.3 | 07204-5219 | AB | 9.2 | 26 | 128 | 5 | 1.6 | ||
00134+2659 | AC | 18.0 | 225 | 0 | 24 | 0.6 | wX | 07359+4302 | AB | 2.1 | 88 | 32 | 14 | 0.3 | |
00150+0849 | AB | 11.5 | 148 | 264 | 18 | 0.5 | 07378-0236 | AC | 1.4 | 303 | 31 | 6 | 0.6 | 1 | |
00174+0853 | BC | 4.0 | 235 | 195 | 14 | 0.3 | 1 | 07354-7417 | AB | 1.9 | 125 | 109 | 6 | 0.8 | |
00219-2300 | AB | 6.1 | 26 | 93 | 10 | 0.7 | 2 | 08047+4717 | AC | 5.9 | 214 | 303 | 15 | 0.2 | m |
00321-0511 | AC | 2.6 | 190 | 283 | 6 | 1.0 | 1 | 08044+1217 | AC | 5.0 | 213 | 99 | 4 | 2.3 | w1 |
00335-5520 | AC | 6.8 | 245 | 235 | 22 | 0.3 | 1O | 08065-0915 | AB | 30.6 | 327 | 132 | 22 | 0.4 | mx |
00345-0433 | AC | 19.7 | 45 | 194 | 24 | 0.5 | 1O | 08198-7131 | AB | 64.8 | 58 | 263 | 11 | 1.6 | |
00360+2959 | AB | 6.2 | 23 | 299 | 4 | 1.5 | 08267+2432 | AB | 5.7 | 50 | 104 | 5 | 1.2 | ||
00393+3052 | AB | 28.7 | 298 | 327 | 24 | 1.0 | w | 08368+7443 | AB | 1.5 | 234 | 191 | 13 | 0.3 | |
00493-2124 | AC | 11.0 | 299 | 342 | 13 | 0.1 | mX | 08555-0758 | AB | 4.1 | 3 | 130 | 8 | 0.7 | |
01041+2635 | AB | 0.8 | 244 | 5 | 23 | 0.1 | 09125-4337 | AB | 2.8 | 282 | 270 | 20 | 0.3 | ||
01137+0735 | AB | 22.9 | 63 | 216 | 19 | 0.9 | x | 09205-0933 | AB | 229.1 | 211 | 262 | 11 | 2.2 | |
01158-6853 | AC | 319.3 | 310 | 106 | 9 | 3.3 | 2O | 09272-0913 | AC | 10.5 | 176 | 174 | 24 | 0.3 | 1 |
01230-1258 | AB | 40.5 | 313 | 216 | 13 | 0.2 | mo | 09354+3958 | AB | 25.0 | 149 | 72 | 24 | 0.6 | |
01409+4952 | AC | 6.1 | 282 | 34 | 26 | 0.2 | 10311-2411 | AB | 1.9 | 67 | 352 | 24 | 0.2 | ||
01413+2545 | AB | 10.5 | 31 | 197 | 12 | 0.8 | w | 10350+0839 | AB | 2.2 | 157 | 217 | 15 | 0.3 | |
01493+4754 | AC | 20.8 | 178 | 303 | 26 | 0.5 | wO | 10401+1914 | AC | 6.4 | 355 | 49 | 29 | 0.3 | O |
01551+2847 | AC | 5.7 | 163 | 272 | 17 | 0.4 | 1O | 10409-3545 | AB | 0.6 | 48 | 236 | 23 | 0.2 | |
01590-2255 | AB | 8.6 | 303 | 301 | 24 | 0.3 | 10435+4612 | AB | 288.0 | 88 | 267 | 11 | 1.7 | ||
01586-5332 | AB | 2.3 | 103 | 306 | 17 | 0.3 | 10443-7052 | AB | 62.7 | 75 | 250 | 21 | 1.0 | x | |
02128+7941 | AB | 55.6 | 277 | 263 | 12 | 1.4 | 10575-1105 | AC | 4.5 | 8 | 91 | 13 | 0.5 | 1 | |
02124+3018 | AB | 3.9 | 70 | 274 | 8 | 0.7 | 11047-0413 | AB | 11.6 | 221 | 60 | 5 | 2.0 | 2 | |
02110-3540 | AC | 13.6 | 41 | 236 | 18 | 1.0 | O | 11170-0708 | AB | 1.0 | 210 | 229 | 16 | 0.4 | w |
02128-0224 | AB | 16.6 | 234 | 57 | 6 | 1.9 | 11366+5608 | AB | 6.1 | 166 | 326 | 6 | 0.9 | ||
02280-5808 | AC | 17.6 | 299 | 264 | 26 | 0.3 | O | 11387+4507 | AB | 9.2 | 250 | 238 | 3 | 3.1 | |
02370+2439 | AB | 38.2 | 275 | 127 | 25 | 0.7 | 12143+1149 | AB | 1.7 | 16 | 359 | 16 | 0.4 | ||
02411+1848 | AC | 65.5 | 242 | 61 | 12 | 0.4 | m | 12413-1301 | AB | 5.3 | 312 | 99 | 5 | 1.2 | |
02529+5300 | AC | 1.6 | 312 | 73 | 10 | 0.5 | 1 | 12492+8325 | AB | 21.5 | 326 | 130 | 16 | 0.8 | |
02583-4018 | AB | 8.3 | 90 | 93 | 7 | 1.1 | 12563+5406 | AB | 3.8 | 281 | 313 | 8 | 0.7 | ||
03158+5057 | AB | 1.5 | 102 | 5 | 4 | 0.9 | 13066-6434 | AB | 0.5 | 234 | 154 | 13 | 0.3 | ||
03302+5922 | AB | 2.6 | 70 | 120 | 20 | 0.4 | X | 13123-5955 | AC | 1.9 | 7 | 84 | 7 | 0.7 | 1* |
03480+6840 | AB | 17.1 | 14 | 272 | 12 | 0.9 | 2* | 13145-2417 | AC | 12.5 | 332 | 282 | 22 | 0.5 | 1 |
03470+4126 | AB | 7.3 | 54 | 139 | 3 | 2.1 | 13196+3507 | AB | 17.6 | 129 | 90 | 5 | 2.9 | ||
03566+5042 | AB | 75.3 | 31 | 270 | 22 | 0.8 | 13258+4430 | AC | 2.6 | 205 | 79 | 6 | 1.2 | w | |
04226+2538 | AB | 19.4 | 25 | 263 | 28 | 0.5 | 13328-1746 | AB | 1.2 | 26 | 326 | 12 | 0.3 | ||
04436-0848 | AB | 9.3 | 318 | 316 | 27 | 0.3 | 13437-4204 | AC | 0.9 | 72 | 40 | 24 | 0.2 | 1 | |
04475+4324 | AC | 1.4 | 24 | 270 | 14 | 0.4 | 1 | 14135+5147 | AB | 13.5 | 236 | 339 | 8 | 1.0 | |
04563+5206 | AC | 4.6 | 114 | 341 | 7 | 0.7 | 1 | 14158+1018 | AC | 3.9 | 148 | 312 | 7 | 0.7 | 1 |
05012+3430 | AB | 1.7 | 229 | 339 | 19 | 0.2 | 14182-2731 | AC | 3.3 | 111 | 284 | 17 | 0.3 | 1x | |
05017+2640 | AC | 78.4 | 160 | 248 | 26 | 0.8 | 1 | 14234+0827 | AB | 6.3 | 194 | 85 | 7 | 0.9 | |
05098+2802 | AB | 11.5 | 28 | 181 | 26 | 0.3 | 2* | 14375+4743 | AC | 78.8 | 117 | 100 | 15 | 1.2 | |
05133+0252 | AB | 6.9 | 63 | 223 | 25 | 0.3 | 14426+1929 | AC | 135.0 | 309 | 90 | 11 | 1.5 | 1 | |
05154+3241 | AC | 14.2 | 225 | 213 | 18 | 0.5 | 14497+4843 | AB | 2.8 | 45 | 173 | 4 | 0.9 | ||
05239-0052 | AB | 2.9 | 160 | 338 | 2 | 1.6 | 2 | 15185-4753 | BC | 22.7 | 129 | 317 | 18 | 0.6 | O |
05248-5219 | AC | 38.1 | 288 | 96 | 25 | 0.7 | 1 | 15245+3723 | AB | 108.1 | 171 | 103 | 15 | 1.4 | 2 |
05301+2933 | AC | 15.1 | 352 | 148 | 15 | 0.0 | mO | 15290-2852 | AC | 9.5 | 9 | 66 | 12 | 0.7 | c1 |
05364+2200 | AB | 4.0 | 272 | 76 | 3 | 1.6 | 15332-2429 | AB | 9.1 | 301 | 106 | 14 | 0.6 | 2 | |
05508-3945 | AC | 3.7 | 197 | 306 | 19 | 0.3 | 1 | 15387-0847 | AB | 11.8 | 189 | 103 | 15 | 0.6 | |
06047-4505 | AC | 196.2 | 321 | 271 | 6 | 3.0 | O | 15382+3615 | AC | 15.0 | 86 | 142 | 29 | 0.2 | *Oo |
06200+2826 | AC | 2.9 | 263 | 95 | 7 | 0.8 | 1 | 16035-5747 | AC | 11.0 | 243 | 299 | 7 | 1.7 | w |
06298-5014 | AC | 12.0 | 312 | 221 | 5 | 2.0 | 3 | 16086-3906 | AC | 44.2 | 184 | 93 | 20 | 0.9 | x |
06462+5927 | AC | 8.7 | 309 | 99 | 13 | 0.0 | mO | 16235+3321 | AC | 1.0 | 35 | 264 | 13 | 0.4 | |
06423-3824 | AB | 7.9 | 277 | 166 | 11 | 0.1 | m | 16242+3702 | AB | 8.3 | 341 | 250 | 10 | 0.8 | |
06482+5542 | BA | 4.6 | 77 | 219 | 23 | 0.2 | 16238+6142 | AB | 1.0 | 352 | 296 | 24 | 0.3 | X | |
07031+5410 | AB | 9.0 | 66 | 152 | 13 | 0.1 | m | 16362+5255 | AC | 90.2 | 193 | 81 | 15 | 1.1 | O |
07040-4337 | AC | 184.9 | 335 | 79 | 10 | 2.1 | O | 16579+4722 | AC | 112.5 | 262 | 92 | 18 | 1.5 | O |
07148-1529 | AC | 15.7 | 2 | 277 | 28 | 0.4 | 1O | 17130-5836 | AB | 3.1 | 322 | 279 | 18 | 0.3 | |
07171-1202 | AC | 15.9 | 242 | 48 | 22 | 0.5 | 1 | 17153-2636 | AC | 732.8 | 74 | 83 | 9 | 5.8 | |
07201+2159 | AB | 5.8 | 220 | 129 | 3 | 2.7 | w | 17131+5408 | AC | 88.5 | 233 | 98 | 8 | 2.4 |
WDS | SYS |
![]() |
![]() |
![]() |
![]() |
![]() |
note | WDS | SYS |
![]() |
![]() |
![]() |
![]() |
![]() |
note |
17190-3459 | AC | 32.0 | 138 | 66 | 4 | 5.5 | w1 | 20078+0924 | AB | 3.3 | 340 | 201 | 3 | 1.4 | |
17237+3709 | AB | 4.1 | 318 | 75 | 8 | 1.0 | X | 20205-2912 | AC | 27.2 | 321 | 71 | 11 | 0.1 | m |
17322+5511 | AB | 62.0 | 311 | 82 | 26 | 0.7 | 20210-1447 | AB | 205.2 | 267 | 94 | 24 | 1.0 | Xx | |
17350+6153 | AP | 737.4 | 160 | 267 | 2 | 15.0 | c | 20203+3924 | AC | 3.4 | 282 | 279 | 8 | 0.7 | 1 |
17465+2743 | AB | 33.8 | 247 | 48 | 4 | 5.5 | w | 20587-7025 | AB | 6.8 | 113 | 117 | 13 | 0.5 | 2 |
17460+3919 | AB | 7.9 | 349 | 9 | 29 | 0.2 | 20591+0418 | AC | 10.6 | 68 | 260 | 5 | 1.7 | 1 | |
17592-3656 | AB | 7.5 | 103 | 328 | 7 | 0.9 | 21022-4300 | AB | 57.4 | 73 | 88 | 27 | 0.6 | ||
18028+7547 | AC | 22.9 | 274 | 258 | 11 | 1.9 | w | 21041-0549 | AB | 2.4 | 195 | 139 | 13 | 0.4 | |
18002+8000 | AB | 19.0 | 232 | 168 | 7 | 1.7 | 21094-7310 | AC | 7.2 | 123 | 235 | 5 | 1.8 | w | |
18118+3327 | AC | 0.7 | 218 | 57 | 23 | 0.2 | 21047+0332 | AB | 3.4 | 173 | 108 | 4 | 1.5 | ||
18178+4351 | AC | 1.8 | 164 | 269 | 16 | 0.4 | 1O | 21086+3012 | AB | 3.4 | 305 | 258 | 9 | 0.6 | |
18238+5139 | AB | 2.6 | 205 | 95 | 23 | 0.2 | 21135+0713 | AD | 184.1 | 172 | 100 | 8 | 2.8 | c1 | |
18272+0012 | AB | 3.8 | 319 | 97 | 15 | 0.4 | 1X | 21148+3803 | AQ | 89.9 | 184 | 264 | 21 | 1.0 | wO |
18239+5848 | AC | 88.9 | 20 | 95 | 29 | 1.0 | O | 21221+1948 | AB | 36.2 | 311 | 96 | 26 | 0.7 | |
18338+1744 | AC | 1.8 | 275 | 166 | 10 | 0.5 | 1x | 21223+5734 | AP | 83.7 | 192 | 189 | 15 | 0.0 | mO |
18497-7300 | AB | 1.9 | 271 | 56 | 8 | 0.5 | 22024-1658 | AB | 3.9 | 246 | 66 | 16 | 0.3 | ||
18455+0530 | AB | 2.5 | 119 | 62 | 8 | 0.6 | 2 | 22038+6438 | AB | 7.9 | 276 | 323 | 2 | 2.6 | |
18448+3736 | AD | 43.7 | 150 | 90 | 27 | 0.6 | 21582+8252 | AB | 13.8 | 67 | 272 | 7 | 1.4 | ||
18465-0058 | AB | 12.7 | 121 | 164 | 13 | 0.6 | 22375+2356 | AC | 5.8 | 194 | 64 | 28 | 0.2 | O | |
19021+5216 | AB | 5.2 | 299 | 311 | 12 | 0.5 | 2 | 22388-2037 | AB | 24.5 | 351 | 311 | 4 | 4.4 | w |
19037+5727 | AB | 10.6 | 57 | 42 | 13 | 0.2 | m | 22361+7253 | AD | 42.2 | 137 | 91 | 20 | 0.9 | c |
19091+3436 | AB | 16.1 | 262 | 134 | 6 | 1.7 | 22397-2820 | AB | 86.5 | 159 | 76 | 10 | 0.2 | m | |
19083+5520 | AC | 6.5 | 30 | 262 | 9 | 0.8 | 1 | 23069-4331 | AC | 159.3 | 292 | 267 | 19 | 0.7 | O |
19313-0207 | AB | 1.3 | 63 | 298 | 29 | 0.1 | 23100+4758 | AB | 15.6 | 256 | 62 | 8 | 1.2 | ||
19407-1618 | AC | 45.6 | 42 | 87 | 26 | 0.7 | 23175+1652 | AB | 2.2 | 26 | 228 | 16 | 0.3 | o | |
20014+1045 | AB | 3.8 | 354 | 167 | 5 | 1.0 | 23191-1328 | AB | 12.6 | 351 | 125 | 6 | 1.5 |
Notes:
``c'': first epoch ![]() ![]() ``w'': second epoch position is taken from WDS (no Hipparcos or Tycho identifications); ``*'': one of the alternative Hipparcos solutions is accepted; ``1'',``2'' or ``3'': Hipparcos or Tycho photocenter positions are computed for primary, secondary or both subsystems of the object, respectively; ``m'': Tycho-II proper motion difference is used to compute ![]() ![]() ![]() ``O'',``o'': position parameters are corrected for orbital motion in primary, secondary subsystems of the object; ``X'',``x'': uncertainty from unpredictable motion in primary, secondary subsystem is taken into account in ![]() |
Alternatively, we can try to look for the variation of among the subsamples with different
.
The output
sample was thus divided in two halves by the ratio
(the median ratio is
44). We find that, indeed, the
significance of the deviation of
from the uniform one
decreases for a "stable'' half-sample of objects
(
;
see Fig. 5): the
bins are redistributed into
-
bin. Nevertheless, evidently, the dynamical stability constraint
alone is unable to account for the observed
.
At the current stage, we cannot reach more definitive conclusions about the shape and origin of f(e) for orbits in multiple stars. Larger samples of systems with precisely measured relative proper motions will give a better input information. In this respect, the launch of the GAIA mission of ESA seems to be most promising.
Acknowledgements
Part of this work was supported by the Fellowship of the Belgian Services Fédéraux des Affaires Scientifiques, Techniques and Culturelles, which provided the possibility for the author to work at the Royal Observatory of Belgium. I'm grateful to Dr. A. Tokovinin for his support and encouraging through the progress of this work and to E. van Dessel and Th. Nakos for remarks on the text.
This research made extensive use of Simbad database operated at CDS, Strasbourg, France and of the Digital Sky Survey produced at the Space Telescope Science Institute, USA.
Copyright ESO 2001