next previous
Up: surface photometry of (S+S) galaxies


Subsections

   
3 Observations and data reduction

A journal of the first set of the photometric observations is given in Table 1. Column (1) gives the original catalogued number, Cols. (2)-(9) give the number of frames per filter, the integration time (in seconds) and seeing conditions (in arcsec).

 

 
Table 1: Journal of observations. The number of frames per filter, the integration time (in seconds), and the mean FWHM for each observation (in arcsec) are given.

Galaxy pair
B <B>FWHM V <V>FWHM R <R>FWHM I <I>FWHM

KPG64
$2\times 1200$ 2.4 $3\times 180$ 2.3 $5\times 90$ 2.6 $5\times 90$ 3.1
KPG68 $1\times 1200$ 2.3 $5\times 180$ 2.5 $10\times 60$ 2.3 $5\times 120$ 2.8
KPG75 $1\times 1800$ 2.1 $2\times 600$ 2.2 $3\times 240$ 2.1 $3\times 180$ 2.7
KPG88 $1\times 1800$ 2.4 $1\times 1800$ 2.5 $1\times 1200$ 2.6 $1\times 900$ 3.3
KPG98 $1\times 1800$ 2.6 $1\times 900$ 2.5 $2\times 300$ 3.1 $2\times 300$ 3.1
KPG102 $1\times 1800$ 2.1 $1\times 1200$ 2.4 $1\times 600$ 2.4 $1\times 600$ 2.6
KPG103 $1\times 1800$ 2.7 $1\times 600$ 2.5 $1\times 300$ 2.5 $1\times 300$ 2.8
KPG108 $1\times 1800$ 2.5 $1\times 1200$ 2.5 $1\times 600$ 2.2 $1\times 300$ 2.4
KPG112 $1\times 1800$ 2.5 $3\times 180$ 2.3 $5\times 60$ 2.2 $5\times 60$ 2.8
KPG125 $1\times 1800$ 2.6 $1\times 1200$ 2.9 $2\times 300$ 3.2 $2\times 300$ 3.6
KPG136 $1\times 1800$ 2.7 $2\times 900$ 2.5 $1\times 600$ 2.3 $2\times 300$ 2.9
KPG141 $1\times 1800$ 2.4 $1\times 1200$ 2.3 $1\times 600$ 2.2 $1\times 600$ 2.5
KPG150 $1\times 1800$ 2.7 $2\times 600$ 2.4 $2\times 300$ 2.4 $3\times 180$ 2.7
KPG151 $1\times 1800$ 2.4 $1\times 1200$ 2.6 $1\times 900$ 2.2 $1\times 600$ 3.3
KPG156 $1\times 1800$ 2.6 $1\times 1200$ 2.6 $1\times 600$ 2.9 $1\times 600$ 3.6
KPG159 $1\times 1800$ 3.6 $1\times 600$ 3.4 $1\times 600$ 3.2 $1\times 300$ 3.5
KPG160 $1\times 1800$ 2.5 $2\times 600$ 2.1 $3\times 240$ 2.3 $3\times 240$ 2.8
KPG168 $1\times 1200$ 3.1 $2\times 300$ 2.9 $3\times 120$ 2.9 $3\times 120$ 3.5
KPG195 $1\times 1200$ 3.0 $2\times 300$ 3.2 $5\times 90$ 2.6 $5\times 90$ 2.5
KPG211 $1\times 1800$ 2.7 $1\times 600$ 2.5 $2\times 240$ 3.0 $3\times 180$ 3.7
KPG216 $1\times 1800$ 2.9 $1\times 1200$ 2.7 $1\times 600$ 2.3 $1\times 600$ 2.4
KPG249 $1\times 1800$ 3.0 $1\times 600$ 3.3 $1\times 300$ 3.5 $1\times 300$ 3.4
KPG295 $1\times 1800$ 3.0 $2\times 600$ 3.2 $5\times 150$ 3.1 $5\times 120$ 2.9
KPG302 $1\times 1200$ 2.3 $3\times 300$ 2.3 $5\times 180$ 2.2 $6\times 120$ 2.7
KPG313 $1\times 1800$ 3.3 $1\times 600$ 3.2 $3\times 180$ 3.1 $3\times 120$ 2.6
KPG332 $1\times 1800$ 2.9 $1\times 1200$ 2.9 $2\times 300$ 2.5 $2\times 240$ 2.6
KPG347 $1\times 900$ 2.8 $1\times 600$ 3.0 $3\times 180$ 2.5 $3\times 120$ 2.6
KPG389 $1\times 1800$ 3.5 $1\times 1200$ 3.6 $2\times 600$ 3.2 $2\times 300$ 2.6
KPG396 $1\times 1800$ 2.4 $1\times 1200$ 2.7 $1\times 900$ 2.5 $1\times 900$ 2.7
KPG404 $1\times 900$ 2.7 $2\times 300$ 2.9 $5\times 150$ 3.1 $5\times 120$ 2.4
KPG426 $1\times 1800$ 2.9 $1\times 600$ 3.1 $2\times 300$ 3.2 $3\times 180$ 3.0
KPG440 $1\times 1200$ 2.4 $1\times 900$ 3.0 $2\times 300$ 2.8 $2\times 240$ 2.6
KPG455 $1\times 1800$ 2.3 $1\times 600$ 2.5 $3\times 180$ 2.6 $3\times 180$ 3.1


Table 2 reports some relevant information for the observed pairs coming from the literature. Column (1) is the KPG catalogued number, Col. (2) reports other identifications, Col. (3) the apparent B magnitude from the Nasa Extragalactic Database (NED), Col. (4) the linear separation (in kpc), Col. (5) the radial velocity in km s-1 from NED, and finally, Col. (6) gives the major axis diameter (at $\mu_{B} = 25$) for each component galaxy (in kpc).

 

 
Table 2: General data for the observed galaxies.

KPG Number
Identif. B mag x12 (kpc) $V_{\rm Rad}$ (km s-1) A25 (kpc)

KPG64A
UGC 01810 13.42(p) 39.5 7563 55.8
KPG64B UGC 01813 15.08(p)   7335 27.4
KPG68A NGC 0935 13.63(p) 17.4 4142 29.3
KPG68B IC 1801 14.56(p)   4023 19.3
KPG75A UGC 02222 14.56(p) 21.5 4913 32.0
KPG75B UGC 02225 15.21(p)   4965 18.6
KPG88A UGC 02627 14.89(a) 32.7 4224 30.8
KPG88B UGC 02629 15.28(p)   4128 15.1
KPG98A UGC 02954 15.23(p) 41.2 5306 17.4
KPG98B MRK 1081 15.15(p)   5345 16.0
KPG102A CGCG 393-070 15.50(p) 34.4 10778 21.0
KPG102B UGC 03136 15.00(p)   10674 34.8
KPG103A CGCG 420-003 15.70(p) 55.2 8313 20.3
KPG103B UGC 03179 14.46(p)   8337 28.4
KPG108A UGC 03405 15.32(p) 33.9 3738 20.1
KPG108B UGC 03410 14.99(p)   3921 29.8
KPG112A UGC 03445 14.25(p) 9.7 3119 21.3
KPG112B UGC 03446 13.86(p)   3116 21.2
KPG125A NGC 2341 13.84(a) 50.9 5227 24.9
KPG125B NGC 2342 13.10(a)   5276 29.1
KPG136A CGCG 086-028 14.80(p) 37.8 9907 31.1
KPG136B CGCG 086-029 15.00(p)   9813 32.1
KPG141A UGC 04005 14.60(p) 89.8 5044 31.8
KPG141B CGCG 030-014 14.80(p)   4896 14.4
KPG150A NGC 2486 14.16(a) 99.3 4649 29.5
KPG150B NGC 2487 13.23(a)   4841 45.6
KPG151A UGC 04133 16.00(p) 32.5 9130 50.5
KPG151B UGC 04134 15.37(p)   8968 32.6
KPG156A NGC 2535 13.31(a) 27.7 4097 30.9
KPG156B NGC 2536 14.70(a)   4142 17.0
KPG159A CGCG 088-052 15.60(p) 26.0 5232 9.9
KPG159B UGC 04286 14.32(p)   5143 19.9
KPG160A NGC 2544 13.80(a) 17.4 2828 16.0
KPG160B CGCG 331-037 15.50(p)   3589 11.0
KPG168A NGC 2648 12.74(p) 17.6 2060 23.1
KPG168B CGCG 060-036 15.40(p)   2115 9.2
KPG195A NGC 2798 13.04(a) 11.5 1726 16.3
KPG195B NGC 2799 14.32(p)   1865 11.3
KPG211A NGC 2959 13.65(p) 26.8 4429 29.3
KPG211B NGC 2961 15.52(p)   4501 12.2
KPG216A NGC 3018 14.13(p) 17.8 1863 6.45
KPG216B NGC 3023 13.50(p)   1879 14.7
KPG249A NGC 3395 12.40(a) 8.8 1625 10.5
KPG249B NGC 3396 12.63(p)   1625 12.3
KPG295A NGC 3786 *13.24(p) 14.9 2678 19.2
KPG295B NGC 3788 13.46(p)   2699 13.9
KPG302A NGC 3893 11.16(s) 13.9 977 17.1
KPG302B NGC 3896 13.89(p)   980 5.9
KPG313A IC 0749 12.92(s) 10.9 784 7.5
KPG313B IC 0750 12.94(s)   701 9.1
KPG332A NGC 4298 12.04(s) 9.5 1135 10.3
KPG332B NGC 4302 12.50(s)   1149 13.0
KPG347A NGC 4567 12.06(s) 10.8 2274 20.2
KPG347B NGC 4568 11.68(s)   2255 29.3
KPG389A NGC 5257 *13.50(p) 36.6 6798 39.0
KPG389B NGC 5258 *13.49(p)   6757 37.8
KPG396A UGC 08713 15.25(p) 28.6 4956 24.3
KPG396B UGC 08715 14.50(p)   4517 22.7



 
Table 2: continued.

KPG Number
Identif. B mag x12 (kpc) $V_{\rm Rad}$ (km s-1) A25 (kpc)

KPG404A
NGC 5394 13.70(a) 26.2 3472 22.8
KPG404B NGC 5395 12.10(a)   3491 34.1
KPG426A UGC 09376 14.70(p) 26.8 7676 40.6
KPG426B CGCG 220-030 14.89(p)   7764 46.8
KPG440A NGC 5774 12.74(s) 27.2 1567 20.9
KPG440B NGC 5775 12.24(s)   1681 21.2
KPG455A NGC 5857 13.86(a) 38.4 4682 21.6
KPG455B NGC 5859 13.27(a)   4764 41.7


(a) Total (asymptotic) magnitude in the B system, derived by extrapolation from photoelectric aperture-magnitude data.
(s) Total asymptotic magnitude in the B system, derived by extrapolation from (surface) photometry with photoelectric zero point.
(p) Photographic magnitude reduced to the $B_{\rm T}$ system.


Images were debiased, trimmed, and flat-fielded using standard IRAF[*] procedures. First, the bias level of the CCD was subtracted from all exposures. A run of 5-10 bias images was obtained per night, and these were combined into a single bias frame which was then applied to the object frames. The images were flat-fielded using sky flats taken in each filter at the beginning and/or at the end of each night.

Photometric calibration was achieved by nightly observations of standard stars of known magnitudes from the "Dipper Asterism'' M 67 star cluster (Chevalier & Ilovaisky 1991). A total of 29 standard stars with a colour range $ -0.1
\leq (B-V) \leq 1.4$ and a similar range in (V-I) were observed. The principal extinction coefficients in B, V, R and I as well as the colour terms were calculated according to the following equations:

\begin{eqnarray*}&&\hspace*{-3.5mm}B-b = \alpha_{B} + \beta_{B}(b-v)_{0}\\
&&\h...
...)_{0}\\
&&\hspace*{-3.5mm}I-i = \alpha_{I} + \beta_{I}(v-r)_{0}
\end{eqnarray*}


where B, V, R and I are the standard magnitudes, b, v, r and i are the instrumental (and airmass-corrected) magnitudes. $\alpha$ and $\beta$ are the transformation coefficients for each filter.

In a first iteration, a constant value associated with the sky background was subtracted using an interactive procedure that allows the user to select regions on the frame free of galaxies and bright stars. However, occasionally, at the end of the reduction procedure, we still had images with a noticeable gradient in the sky background. For these images, a fifth-order polynomial was fitted and subtracted from the entire frame. After this processing, the sky background is usually flat to a level ${\sim} 1{-}2$%. Errors in determining the sky background, are, in fact, probably the dominant source of error in the estimation of the colour and surface brightness profiles. For this reason, we decided to apply this polynomial correction to all the images in this work.

The most energetic cosmic-ray events were automatically masked using the COSMICRAYS task and field stars were removed using the IMEDIT task when necessary. Within the galaxy itself, care was taken to identify superimposed stars. A final step in the basic reduction involved registration of all available frames for each galaxy and in each filter to within $\pm 0.1$ pixel. This step was performed by measuring centroids for foreground stars on the images and then performing geometric transformations using GEOMAP and GEOTRAN tasks in IRAF.

Elliptical surface brightness contours were fitted using the STSDAS package ISOPHOTE. An initial starting guess for the ellipse-fitting routine was provided interactively by estimating points that represent the ends of the major and minor axis at an isophotal level of relatively high signal-to-noise ratio. Since we are interested on the mean global properties of these profiles and not in their detailed structure, we report azimuthally averaged profiles for spirals by fitting ellipses with a fixed position angle and ellipticity previously determined on the external isophotes of each galaxy. A more detailed analysis and interpretation will be presented in a forthcoming paper (Hernández-Toledo & Puerari, in preparation).

3.1 Errors

Total magnitudes can be calculated by analytically extrapolating a fitting of a disk beyond the outermost isophote to infinity. However, disk fitting is notoriously fraught with uncertainty (cf. Knapen & van der Kruit 1991). Alternatively, we estimate in this work a total magnitude computed from polygonal apertures chosen interactively to assure that they are large enough to contain the whole galaxy and still small enough to limit the errors due to the sky error and light contamination from a neighbor galaxy. This is achieved in each band by using polygonal apertures with and without the the sky background removed within POLYPHOT routines in IRAF. In an Appendix, we are also reporting total magnitudes at three different circular apertures by using the PHOT routines in IRAF. Foreground stars within the aperture were removed interactively. In some cases, the separation of the galaxies allowed us to model the light distribution in each galaxy and then to try an iterative subtraction as reported in Junqueira et al. (1998). In cases where this procedure was not possible, our estimations must be taken with care. See Table 3 and comments on individual objects.

An estimation of the errors in our photometry involves two parts: 1) the procedures to obtain instrumental magnitudes and 2) the uncertainty when such instrumental magnitudes are transformed to the standard system. For 1), notice that the magnitudes produced at the output of the IRAf routines (QPHOT, PHOT and POLYPHOT) have a small error that is internal for those procedures. Since we also have applied extinction corrections to the instrumental magnitudes in this step, our estimation of the errors are mainly concerned with these corrections and the estimation of the airmass. After a least square fitting, the associated errors to the slope for each principal extinction coefficient are; $\delta(k_{B}) \sim 0.038$, $\delta(k_{V}) \sim 0.035$, $\delta(k_{R}) \sim 0.020$ and $\delta(k_{I}) \sim 0.020$. An additional error $\delta({\rm airmass}) \sim 0.005$ from the airmass routines in IRAF was also considered.

For 2), the zero point and first order colour terms are the most important to consider. After transforming to the standard system, by adopting our best-fit coefficients, the formal errors from the assumed relations for $\alpha$ were 0.05, 0.04, 0.04 and 0.04 in B, V, R and I and 0.04, 0.03, 0.03 and 0.04 for $\beta$. To estimate the total error in each band, it is necessary to use the transformation equations and then propagate the errors. Total typical uncertainties are 0.15, 0.14, 0.15 and 0.14 in B, V, R and I bands, respectively.

The estimated total magnitudes in this work were compared against other external estimations reported in the literature. This has been done for: 1) the standard stars and 2) those paired galaxies in common with other works.

3.2 Standard stars

For the standard stars, a comparison of our CCD magnitudes against those reported in Chevalier & Ilovaisky (1991) for 29 stars in common, are shown in Fig. 1.

  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{MS1209f1.ps}\end{figure} Figure 1: Comparison between our estimated magnitudes and those from Chevalier & Ilovaisky (1991) for 29 standard stars in common.

Figure 1 shows no significant deviations between our CCD magnitudes and the standard star magnitudes. According to these results, a $\sigma \sim 0.13$, or a similar value, could be expected as the typical error for our magnitude estimations in paired galaxies. This is in agreement with our error estimations.

3.3 Paired galaxies

We begin with a comparison in Fig. 2 of our total magnitudes in B and V bands and those reported in the RC3 Catalogue (de Vaucouleurs et al. 1991).

  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{MS1209f2.ps}\end{figure} Figure 2: Comparison between our total B and V magnitudes and total magnitudes from RC3 Catalogue.

We find that, except for three galaxies (KPG347B, KPG404B and KPG440A) the agreement with our measures is reasonably good. Rms values from our comparisons are 0.17 and 0.13 mag in B and V bands respectively. However, as noted in Table 3 KPG347 and KPG404 involve two overlapping pairs (CP) where our iterative magnitude estimation procedure could produce some error. In addition, the associated errors in B and V magnitudes reported in RC3 are 0.1 mag for KPG347B and KPG440A and 0.2 mag for KPG404B.

 

 
Table 3: Magnitudes and colour indices.

KPG
B V R I B-V B-I $B_{\rm T}^{0}$ $(B-V)_{\rm T}^{0}$ Notes

KPG64A
13.70 12.92 12.37 11.70 0.78 2.00 13.32 0.66  
KPG64B 15.17 14.21 13.66 12.98 0.96 2.18 14.44 0.75  
KPG68A 13.56 12.82 12.19 11.51 0.73 2.05 13.02 0.58 CP
KPG68B 14.73 13.98 13.31 12.65 0.75 2.08 14.07 0.58 CP
KPG75A 14.62 13.68 13.19 12.18 0.95 2.44 14.07 0.80  
KPG75B 15.36 14.49 13.99 12.97 0.87 2.39 14.50 0.65  
KPG88A 15.06 13.69 12.90 12.17 1.37 2.89 14.13 1.15  
KPG88B 16.12 14.85 14.11 13.44 1.27 2.68 15.21 1.05  
KPG98A 15.62 15.34 14.08 13.28 0.28 2.34 14.76 0.10  
KPG98B 15.51 14.22 13.03 12.07 1.29 3.44 14.89 1.12  
KPG102A 15.68 15.18 14.84 13.87 0.51 1.81 14.98 0.29  
KPG102B 15.06 14.57 14.22 13.42 0.49 1.64 14.41 0.29  
KPG103A 16.27 15.48 14.99 14.18 0.79 2.10 15.66 0.61  
KPG103B 15.12 14.47 14.11 13.42 0.64 1.69 14.62 0.47  
KPG108A 15.17 13.95 13.49 12.55 1.22 2.62 14.31 1.01  
KPG108B 14.35 13.17 12.67 11.76 1.17 2.59 13.45 0.95  
KPG112A 13.24 12.41 11.85 11.19 0.83 2.05 12.33 0.60 CP
KPG112B 13.47 12.63 12.05 11.35 0.84 2.12 12.85 0.68 CP
KPG112s 12.55 11.78 11.20 10.52 0.77 2.03      
KPG125A 13.65 12.88 12.21 11.39 0.77 2.26 13.16 0.63  
KPG125B 12.92 12.15 11.56 10.81 0.77 2.11 12.42 0.63  
KPG136A 14.98 14.29 13.72 13.31 0.69 1.67 14.73 0.58  
KPG136B 15.21 14.34 13.73 13.24 0.87 1.97 14.87 0.75  
KPG141A 15.21 13.96 13.40 12.65 1.25 2.56 14.49 1.06  
KPG141B 14.97 13.92 13.50 12.67 1.05 2.30 14.62 0.95  
KPG150A 14.24 13.26 12.46 11.90 0.98 2.34 13.84 0.86 BS
KPG150B 13.28 12.23 11.57 10.85 1.05 2.43 12.80 0.95 BS
KPG151A 15.40 14.17 13.42 12.77 1.22 2.63 14.32 0.93 CP
KPG151B 15.07 13.87 13.13 12.53 1.20 2.53 14.60 1.05 CP
KPG151s 14.67 13.33 12.55 11.94 1.34 2.73      
KPG156A 13.02 12.60 12.11 11.71 0.42 1.31 12.61 0.30 CP
KPG156B 14.54 13.93 13.42 12.95 0.61 1.59 14.26 0.52 CP
KPG159A 16.39 15.89 15.39 15.45 0.50 0.94 15.90 0.36  
KPG159B 14.61 13.88 13.34 12.95 0.73 1.66 14.16 0.60  
KPG160A 13.98 13.09 12.58 11.74 0.89 2.23 13.80 0.83  
KPG160B 15.44 14.57 14.07 13.23 0.87 2.22 14.83 0.71  
KPG168A 12.80 11.82 11.21 10.68 0.99 2.12 12.29 0.86 CP
KPG168B 15.16 14.23 13.73 13.25 0.93 1.91 14.49 0.77 CP
KPG195A 13.24 12.38 11.81 11.20 0.87 2.04 12.87 0.77  
KPG195B 14.42 13.71 13.28 12.78 0.71 1.64 13.88 0.58  
KPG211A 13.68 12.69 12.01 11.43 0.99 2.25 13.45 0.91  
KPG211B 15.75 14.70 13.99 13.39 1.05 2.36 15.05 0.87  
KPG216A                 BS
KPG216B 13.28 12.70 12.37 11.67 0.58 1.62 12.88 0.36 BS
KPG249A 12.45 12.10 11.67 11.42 0.35 1.03 12.26 0.30 CP
KPG249B 12.93 12.50 12.01 11.68 0.43 1.24 12.51 0.32 CP
KPG249s 11.89 11.49 11.03 10.75 0.40 1.14      
KPG295A 13.45 12.59 11.97 11.42 0.86 2.03 13.23 0.79 CP
KPG295B 13.30 12.50 11.92 11.34 0.80 1.97 12.86 0.69 CP
KPG302A 11.23 10.67 10.28 9.64 0.56 1.59 11.03 0.51  
KPG302B 14.05 13.57 13.18 12.56 0.46 1.47 13.90 0.42  
KPG313A 13.17 12.52 12.10 11.87 0.64 1.30 13.09 0.62  
KPG313B 13.26 12.17 11.39 10.68 1.09 2.57 12.97 1.02  
KPG332A 12.19 11.35 10.97 10.14 0.84 2.05 11.91 0.77  
KPG332B 12.71 11.61 11.11 10.09 1.10 2.62 12.04 0.94  
KPG347A 12.13 11.34 10.85 10.26 0.79 1.87 11.97 0.74 CP
KPG347B 12.11 11.19 10.61 9.96 0.92 2.15 11.80 0.83 CP
KPG347s 11.40 10.52 9.96 9.39 0.89 2.02      
KPG389A 13.69 12.99 12.37 12.15 0.71 1.55 13.40 0.61 CP



 
Table 3: continued.

KPG
B V R I B-V B-I $B_{\rm T}^{0}$ $(B-V)_{\rm T}^{0}$  

KPG389B
13.67 12.83 12.23 11.62 0.84 2.06 13.47 0.76 CP
KPG396A 14.78 14.26 13.84 13.17 0.52 1.61 14.18 0.35  
KPG396B 14.06 13.65 13.28 12.48 0.41 1.57 13.99 0.36  
KPG404A 13.84 13.12 12.60 12.08 0.72 1.76 13.61 0.65 CP
KPG404B 12.57 11.81 11.26 10.63 0.76 1.93 12.33 0.68 CP
KPG426A 14.77 13.78 13.14 12.57 0.99 2.20 14.46 0.88  
KPG426B 15.01 14.11 13.50 13.02 0.90 1.99 14.84 0.82  
KPG440A 13.22 12.94 12.63 12.81 0.28 0.41 13.01 0.22  
KPG440B 12.42 11.34 10.87 9.90 1.08 2.52 11.79 0.92  
KPG455A 13.99 13.11 12.61 11.80 0.88 2.19 13.66 0.78  
KPG455B 13.10 12.47 12.02 11.17 0.63 1.93 12.61 0.50  


CP = Pair apparently in Contact.
BS = Bright Star nearby in the Field.


It is important to note that a high fraction of the RC3 data available for our pairs comes from Zwicky photographic magnitudes that were transformed to the $B_{\rm T}$ system ((p) in Table 2). The possibility of systematic errors in the Zwicky magnitudes has been discussed by numerous authors (cf. Haynes & Giovanelli 1984). Although these and other authors present recursion relations to convert Zwicky magnitudes to those of other systems, most notably to the photographic magnitudes in the Holmberg system (1958), or to the $B_{\rm T}$ system (de Vaucouleurs et al. 1991), it has been shown that these recursion relations are probably unsatisfactory for magnitudes fainter than 14.0. For this reason, in Fig. 2 we take into account only the total (asymptotic) magnitudes in RC3 derived by extrapolation either from photoelectric aperture-magnitude data ((a) in Table 2) or from surface photometry with photoelectric zero point ((s) in Table 2). In relation to this comparison, Reshetnikov (1993) reports that the total magnitudes for interacting galaxies in RC3 obtained by means of photographic photometry are ${\sim} 0.2{-}0.3$ brighter compared to magnitudes from surface photometry with photoelectric zero point or by extrapolating the photoelectric data.
  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{MS1209f3.ps} %
\end{figure} Figure 3: Comparison between our CCD data and available CCD data from various authors for (S+S) galaxies.

The next step involves comparison of our CCD magnitudes with other CCD measures in the four colour bands. Figure 3 shows the comparison with filled symbols denoting CCD measurements in the Cousins system, primarily from Han (1992); Reshetnikov (1993); and Laurikainen et al. (1998). Open symbols denote CCD measurements in the Johnson system, mainly Godwin et al. (1977); Doroshenko & Terebizh (1979); de Vaucouleurs & Longo (1988) and Márquez & Moles (1996). Metcalfe et al. (1998) reports B and V band photometry in the Landolt system while R and I are in the Cousins system. Giovanelli et al. (1997) report I-band data from a combination of sources. No attempt has been made to transform from any of the above photometric systems to Cousins system.

Notice that in Fig. 3 there seems to be no clear systematic tendency between the compared data, in spite of the small number of galaxies in common. The sigma values obtained through a comparison (only) in the Cousins systems are 0.25, 0.25, 0.20 and 0.30 in B, V, R and I respectively. However, it is fair to mention that this is not a straightforward comparison, since we are also comparing both intrinsic and extrinsic differences involved in each photometric system as well as differences in the reduction procedures, that are more easily detected at fainter magnitudes.

Finally, for most paired galaxies, more than one long exposure per filter is available. Thus we evaluate in addition, the internal accuracy of our photometry by comparing the total magnitudes derived from the individual exposures. We find rms differences between individual measurements of $\delta(B) \sim
0.06$, $\delta(V) \sim 0.06$, $\delta(R) \sim 0.05$ and $\delta(I)
\sim 0.05$. Additionally, by estimating total magnitudes for all galaxies before and after sky subtraction, typical values $\delta(B) \sim
0.06$, $\delta(V) \sim 0.07$, $\delta(R)
\sim 0.06$ and $\delta(I) \sim 0.07$ are obtained. In the Appendix, we report additional estimations of magnitudes at three concentric circular apertures for all the paired galaxies in this study.


next previous
Up: surface photometry of (S+S) galaxies

Copyright ESO 2001