next previous
Up: Radio-optically selected clusters of galaxies


Subsections

  
5 Optical observations

A first set of 14 visually good candidate clusters associated with pointlike NVSS radio sources have been observed with the 3.6 m ESO telescope at La Silla, with the EFOSC1 spectrograph in multislit mode. Moreover, photometry of each field in the r-Gunn filter has been acquired during the first night of observation to achieve magnitude $r \simeq 22.5$ - corresponding to roughly $b_{\rm J} \sim 24$ - with a photometric accuracy better than 0.2 mag.

The targets for spectroscopic observations were chosen on the basis of these photometric observations. For 12 candidate clusters the spectra of the radiogalaxy and about 10-14 companions were acquired. Observations were made with the B300 grism, characterized by a wavelength range 3740-6950 Å, central wavelength $\lambda_{\rm c} =$ 5250 Å and dispersion 230 Å mm-1. The slit width was chosen to be $2.1\hbox{$^{\prime\prime}$ }$ while the slit length varied in order to optimize the number of acquired spectra. The resolution on the spectra was about 20 Å.

 

 
Table 1: Measured velocities and r-Gunn magnitudes for galaxies in the 12 observed cluster candidates. Notes: "R'' = radiogalaxy; "E'' = emission line galaxy; "$\ast $'' = star.

NAME
N$m_{\rm r}$v $\sigma _{\rm v}$   Notes
    ${\rm (km~s^{-1})}$ ${\rm (km~s^{-1})}$ 

294N15
119.6989125$\pm$86 
 219.0992061$\pm$60 
 317.6719572$\pm$300E
 417.4290363$\pm$41R
 519.7885666$\pm$122 
 620.10-- 
 718.5589065$\pm$50 
 820.0589540$\pm$46 
 915.6221186$\pm$48 
 1020.5361998$\pm$100 
 1120.13-- 
 1220.3390960$\pm$259 

295N35
120.90-- 
 219.5023511$\pm$130 
 319.6831000$\pm$300 
 419.0879401$\pm$309 
 519.5397000$\pm$300 
 620.1078568$\pm$107 
 717.8479110$\pm$379R
 821.2914800-E
 9--- 
 1020.5198925$\pm$114 
 1118.3879863$\pm$198 

349N02
119.5934237$\pm$300 
 218.8029093$\pm$130 
 318.8163333$\pm$85 
 4--- 
 518.42--$\ast $
 616.0333698$\pm$49R
 718.83--$\ast $
 819.69123966$\pm$300E
 920.84146819$\pm$300E
 1021.45-- 

350N71
116.9742919$\pm$74 
 217.1642586$\pm$86 
 320.6280696$\pm$112 
 417.7369681$\pm$169 
 516.2356290$\pm$80 
 618.7956099$\pm$280 
 717.8069904$\pm$109 
 817.9170484$\pm$82R
 918.4470824$\pm$119 
 1018.3670060$\pm$121 

352N47
119.7751980$\pm$137 
 216.6851988$\pm$114R
 319.6081249$\pm$258 
 418.0651233$\pm$150 
 520.85-- 
 618.7052499$\pm$150 
 720.0286464$\pm$300 
 819.6363814$\pm$220 
 919.9097518$\pm$172 
 1019.81-- 



 
Table 1: continued.

NAME
N$m_{\rm r}$v $\sigma _{\rm v}$   Notes
    ${\rm (km~s^{-1})}$ ${\rm (km~s^{-1})}$ 

352N63
118.2354587$\pm$71 
 219.0155881$\pm$189 
 321.28-- 
 420.07-- 
 516.7354698$\pm$118 
 618.3854699$\pm$76R
 718.2953486$\pm$84 
 818.7455275$\pm$78 
 920.60-- 
 1020.32-- 
 1119.85-- 

352N75
119.57-- 
 218.9140809$\pm$144 
 318.4140764$\pm$62 
 418.5954726$\pm$131 
 519.1855821$\pm$271 
 616.1555316$\pm$123 
 716.5940492$\pm$63R
 818.6341140$\pm$68 
 920.11-- 
 1018.04-- 
 1118.16--$\ast $
 1218.4337199$\pm$151 
 1317.6040377$\pm$54 
 1420.33-- 

409N03
118.1564532$\pm$127 
 217.4447583$\pm$429 
 316.3841309$\pm$50R
 420.01-- 
 520.1546345$\pm$145 
 617.6546765$\pm$61 
 715.8947150$\pm$55 
 818.3046879$\pm$57 
 920.31-- 
 1019.4647460$\pm$247 
 1119.8346630$\pm$457 
 1219.62-- 

409N15
120.0697958$\pm$75 
 217.4445837$\pm$39 
 318.7445687$\pm$42 
 418.5445682$\pm$46 
 516.6245280$\pm$31R
 620.4385363$\pm$98E
 719.0045343$\pm$58 
 820.5338136$\pm$79 
 920.6743891$\pm$100E
 1019.9878625$\pm$65 
 1119.5979383$\pm$165 

409N44
119.8098238$\pm$172 
 220.0269000$\pm$200 
 319.9141416$\pm$158 
 417.6240147$\pm$61R
 519.6941300$\pm$300 
 618.0758828$\pm$73 
 717.7140332$\pm$74 
 818.1839350$\pm$42 



 
Table 1: continued.

NAME
N$m_{\rm r}$v $\sigma _{\rm v}$   Notes
    ${\rm (km~s^{-1})}$ ${\rm (km~s^{-1})}$ 
 918.2658805$\pm$195 

412N23
120.4029350$\pm$300 
 219.8149474$\pm$110 
 317.6977698$\pm$144R
 417.1348980$\pm$80 
 519.1432075$\pm$200 
 616.8830590$\pm$300 
 718.7876139$\pm$98 
 820.83-- 
 919.8447521$\pm$78E
 1019.0729934$\pm$57 
 1119.5260417$\pm$300 

475N50
118.9961683$\pm$84 
 219.8664065$\pm$300 
 318.2462720$\pm$300 
 418.5963050$\pm$300 
 517.9861318$\pm$94 
 617.3463758$\pm$130 
 717.9864280$\pm$173 
 817.4963160$\pm$108R
 920.79-- 
 1019.6263421$\pm$124 
 1119.47--$\ast $
 1219.3364246$\pm$118 


Exposures of He-Ar lamps for wavelength calibration have been acquired through the same masks used in the scientific exposures. Spectroscopic dome flats proved not to be useful during the data reduction phase: due to the low quality of the slit profiles achieved with the mask Punching Machine, the flatfielding process did not significantly help in the extraction of spectra. As we did not apply flat field correction, the obtained spectra are not flux calibrated.

  
5.1 Data reduction

Multislit spectroscopic data reduction has been made interactively by means of the IRAF package. Reduction steps involved bias subtraction, spectra extraction, spectra wavelength calibration. We found no need to correct for dark current. This procedure has been applied both to astronomical and to calibration lamps exposures.

We acquired a total number of 129 galaxy spectra, plus 4 stars, for 12 successfully observed candidates, and determined the velocity of galaxies from absorption and, in a few cases, emission lines by means of the RVSAO package. None of the radiogalaxies we observed show emission lines in their spectra. Templates for the cross-correlation consist of 8 galaxy and 8 star spectra known from previous observative programs: the 8 galaxies were observed during the Edinburgh-Milano Cluster Survey (Collins et al. 1995) with EFOSC1 and with the same spectral resolution as our observations. The 8 stars come from ESO Slice Project (Vettolani et al. 1997) observations with the fiber spectrograph OPTOPUS.

To allow for cleaning of cosmic rays, multiple exposures were taken for each field, for a total exposure time varying from 40 to 60 min. In Fig. 3 the direct imaging exposures of these 12 candidates are shown, together with the targets we selected for spectroscopy.

In Table 1 the r-Gunn magnitudes, the measured velocities and their associated errors are given for each galaxy we observed in the selected candidate clusters. As can be seen from Table 1, for 22 out of the 129 observed galaxies the S/N was not good enough to measure the redshift. The typical r magnitude for galaxies with measured redshift is 18.7. Stars are marked with an asterisk. The high errors associated to some velocity measurements are mainly due to the low spectral S/N.


next previous
Up: Radio-optically selected clusters of galaxies

Copyright ESO 2001