A&A 377, 538-556 (2001)
DOI: 10.1051/0004-6361:20011093

X-ray emission from young stars in Taurus-Auriga-Perseus: Luminosity functions and the rotation - activity - age - relation[*]

B. Stelzer - R. Neuhäuser

Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, 85741 Garching, Germany

Received 4 September 2000 / Accepted 26 July 2001

Abstract
We report on a systematic search for X-ray emission from pre-main sequence and young main sequence stars in the Taurus-Auriga-Perseus region. Our stellar sample consists of all T Tauri stars from the Taurus-Auriga region, and all late-type stars from the Pleiades and Hyades clusters which have been observed by the ROSAT PSPC in pointed observations. We present the X-ray parameters for all observed stars in tables. Next to the basic results of the data analysis (such as count rates, exposure time, and off-axis angle) we give X-ray luminosities and hardness ratios for all detected stars. Upper limits are given for non-detections. Detection rates for different spectral types are compiled. We use these results to study the connection between coronal X-ray activity and stellar parameters for different subgroups of our sample. In particular we compile X-ray luminosity functions (XLF), and discuss the relations between X-ray emission and spectral type, age, and rotation, which have been disputed extensively in the past. Here, we study these questions with the largest sample so far. The XLF for classical and weak-line T Tauri stars are different, with weak-lines being the stronger X-ray emitters. Proceeding towards the main-sequence (Pleiades, Hyades) the X-ray luminosity declines for all spectral types examined (G, K, and M stars). Within an age group $L_{\rm x}$ decreases towards later spectral types, while $L_{\rm x}/L_{\rm bol}$ remains constant or even increases, reflecting the opposed influence of stellar radius, i.e. emitting area, and convection zone depth. For a given spectral type the fastest rotators show the highest X-ray luminosity. Rotation rate and X-ray emission are clearly correlated for all groups of stars with power law indices for ${\log{(L_{\rm x}/L_{\rm bol})}}$ versus $\log{P_{\rm rot}}$ of $\sim $-0.7 to -1.5. The study of XLF for binary stars shows that the known unresolved secondaries likely contribute a significant amount to the X-ray emission.

Key words: X-rays: stars - stars: late-type, pre-main sequence, coronae, activity


  
1 Introduction

Late-type stars are known to sustain a dynamo which is powered by the combination of convective motions and rotation. The resulting magnetic field is thought to be responsible for various observational phenomena commonly referred to as "activity''. Stellar activity indicators are pervasive in all layers of the atmospheres of late-type stars. The best-studied magnetic field tracers include chromospheric H$\alpha$ and Ca II emission lines and coronal X-rays.

Strong and variable X-ray emission is observed from the early pre-main sequence (PMS) T Tauri stage to main sequence flare stars. Comparative studies of the emission levels of young stars at different ages may shed light on the origin and evolution of magnetic activity, which may be linked to angular momentum evolution.

T Tauri Stars (TTS) are divided into two subclasses according to the strength of their H$\alpha$ emission. Classical TTS (cTTS) are characterized by strong H$\alpha$ emission, while in weak-line TTS (wTTS) the equivalent width of H$\alpha$ is smaller than $10~{\rm\AA}$. In contrast to cTTS, wTTS do not show obvious signs of accretion and optically thick disks, and therefore are thought to represent a later evolutionary stage at which the circumstellar disk has become optically thin or dispersed. Nevertheless, some wTTS occupy the same region in the Hertzsprung-Russell diagram as the cTTS (see e.g. Walter et al. 1988; Alcalá et al. 1997), i.e. there seems to be no preferred disk lifetime between several 105 and $10^7~{\rm yrs}$.

During the PMS contraction stars gain angular momentum and should spin up. However, cTTS show much slower rotation rates than wTTS (Bouvier et al. 1993) despite their high accretion rates. This can be explained by magnetic coupling between the star and the disk in cTTS which allows to regulate angular momentum transport without spinning up the star (Koenigl 1991; Edwards et al. 1993; Bouvier et al. 1997a).

The strength of activity is thought to decline with increasing stellar age. Skumanich et al. (1972) have proposed a $1/\sqrt{t}$-law for the decay of stellar activity in young stellar clusters based on CaII line observations. The power-law relation was confirmed by Feigelson & Kriss (1989) for a sample including PMS objects in Chamaeleon. However, the study of Walter et al. (1988) seemed to indicate that during the PMS phase the X-ray emission remains nearly constant, while for ages $\geq$ $10^8~{\rm yrs}$ it decays exponentially. Walter & Barry (1991) have argued that a power-law decay may be an artefact that occurs when the X-ray luminosity is used as activity indicator in a sample composed of stars with different stellar radii. Using the surface flux Walter & Barry (1991) have shown that the decay of various activity diagnostics probing the lower chromosphere, transition region, and corona can be described by an exponential.

An evolutionary decay of the X-ray emission is favored also by studies of the Einstein Observatory (EO) which have shown that the X-ray luminosity functions (XLF) of stellar clusters with different ages are displaced from each other (see e.g. Feigelson & Kriss 1989; Damiani et al. 1995). However, rather than being a pure age effect, the decreasing activity (i.e. the decay of the dynamo efficiency) might be explained by the slowing down of the rotation with increasing age on the main sequence (MS). A connection between the dynamo efficiency and the rotation rate is also supported by correlations between the X-ray activity and the rotational velocity (see Pallavicini et al. 1981; Bouvier 1990; Neuhäuser et al. 1995 = N95) found to hold for all kinds of active stars, featuring such different objects like dMe stars, RS CVn binaries, and TTS. For the fastest rotators among the Pleiads (Stauffer et al. 1994) and among the wTTS (Damiani & Micela 1995) the relation flattens out suggesting "saturation'' of the X-ray emission at very high rotation speeds. Stauffer et al. (1994) have proposed that the large spread observed in the X-ray luminosities of slower rotators are caused when more and more stars leave the saturation level thus increasing the dispersion. A later study by Micela et al. (1996) showed no significant correlation between $L_{\rm x}$ and ${v \sin{i}}$ for Pleiades stars, indicating that rotation can not be the only parameter governing the X-ray emission level of young stars. To date, no solution has been found to the question whether age or rotation determines the level of stellar activity.

If rotation does determine the activity, then cTTS should show lower X-ray luminosities than wTTS. XLF provide a statistical tool to compare the X-ray properties of different stellar samples. But so far, studies of the XLF of cTTS and wTTS have not led to a conclusive result concerning the evolution of X-ray activity during the PMS. N95 have shown that X-ray emission increases with age from cTTS to wTTS, but decreases after the wTTS phase. While N95 found that wTTS in Taurus-Auriga emit significantly more X-rays as compared to cTTS from the same region, Feigelson et al. (1993) found little evidence for systematic differences in the XLF of wTTS and cTTS in Chamaeleon, and argued that the differences in the X-ray luminosity between wTTS and cTTS in Taurus-Auriga might be attributed to as yet undicovered wTTS at the low-luminosity end of the distribution.

In this paper we examine the connection between X-ray activity, age, and rotation comparing different samples of young stars. The Taurus-Auriga-Perseus region is well suited for a study of the evolution of stellar activity because it hosts a large number of young stars at different ages: the molecular clouds of Taurus-Auriga are sites of ongoing star formation and have produced many TTS with ages between several 105 to $10^7~{\rm yrs}$. Besides this star forming region, two young star clusters are located in the area, the Pleiades and the Hyades, at ages of $10^8~{\rm yrs}$ and $6 \times 10^8~{\rm yrs}$ respectively.

Our sample is larger and the sensitivity improved compared to all previous studies of this issue. The paper presented here is connected to an earlier analysis of archived ROSAT observations (Stelzer et al. 2000). Here we present a list of X-ray parameters for all known TTS in Taurus-Auriga, the Pleiades, and the Hyades as observed by ROSAT during pointed PSPC observations. Both detected and undetected sources are considered, i.e. for non-detections upper limits are given. In Sect. 2 we describe the data base and data reduction and give the results from source detection. In Sect. 3 the Hertzsprung-Russell diagrams (H-R diagrams) for cTTS and wTTS in Taurus-Auriga are presented. Our special interest (Sect. 4) is to compare the XLF of the different stellar groups with respect to the following issues: (i) Are the luminosity functions of cTTS and wTTS different, (ii) how does the X-ray luminosity evolve with stellar age, (iii) how does it depend on the spectral types of the stars and their binary character. Furthermore, we will explore the relation between X-ray emission and rotation rate for the largest sample studied so far (Sect. 5). In Sect. 6 we discuss and summarize our results.

  
2 Observations

  
2.1 Data base

The sky region examined is confined to the Taurus-Auriga-Perseus area. A detailed description of this region is given in Stelzer et al. (2000) (hereafter SNH00) where we have also presented a sky map showing the ROSAT PSPC observations subject to this and the previous study. The stellar sample investigated in this paper is identical to the one described in SNH00. However, we omit stars from the Perseus clouds IC348 (Preibisch et al. 1996) and NGC1333 (Preibisch 1997), since due to their larger distance the PSPC images are dominated by source confusion. We analyse the X-ray emission of young, late-type stars, represented by TTS and members from the Pleiades and Hyades clusters. The selection of the Pleiades and Hyades as examples of young clusters was motivated by their spatial vicinity to the Taurus-Auriga molecular clouds when projected to the sky. For this reason many Pleiads and Hyads lie in the same ROSAT PSPC fields. Most of the X-ray detected Pleiads and Hyads are zero-age main-sequence (ZAMS) stars. There are also some (higher-mass) post-MS stars which are not studied here, and many PMS brown dwarfs. The sample examined extends down to the latest M-type objects and includes brown dwarf candidates. Most of these are below the detection limit. However, we have detected an M9-type object in Taurus-Auriga, the latest type PMS dwarf seen to emit X-rays so far (see Sect. 2.5). The coolest object detected in the Pleiades has spectral type M5. In the Hyades we detect objects down to M9 (spectral types determined from measurements of B-V). With their different ages the three groups of stars (TTS, Pleiads, and Hyads) allow to examine the evolution of the X-ray luminosity.

We have selected all pointed PSPC observations from the ROSAT Public Data Archive available in October 1998 which contain any TTS in the Taurus-Auriga region, any Pleiad, or any Hyad in the field of view. The TTS in that area of the sky are part of the Taurus-Auriga molecular clouds located at $140~{\rm pc}$ (Elias 1978; Wichmann et al. 1998a). For the distance to the Pleiades cluster we have adopted $116~{\rm pc}$, the value given by Mermilliod et al. (1997). Those Hyades stars for which no individual Hipparcos parallaxes are available are assumed to be at a distance of $46~{\rm pc}$ (Perryman et al. 1998).

A detailed description of the membership lists for TTS, Pleiads, and Hyads is given in SNH00. SNH00 also have presented a complete list of the pointed ROSAT PSPC observations analysed here. In the earlier paper we were dealing with the same observations but have concentrated on large X-ray flares observed on detected stars. Now we discuss the X-ray characteristics of the whole sample, including non-flaring stars and non-detections. Therefore, we also analyse the short exposures and observations with unstable background marked with an asterisk in Table 1 of SNH00, and not considered in that earlier investigation.

  
2.2 Source detection

Source detection is performed based on a maximum likelihood method which combines local and map source detection algorithm (see Cruddace et al. 1988). Sources with a $ML \geq 7.4$ (corresponding to $\sim $3.5 Gaussian $\sigma$and shown to be the best choice by N95) are considered to be a detection. The probability for existence of a source of given ML is given by $P = 1 - \exp{(-ML)}$. For ML = 7.4 the probability is 0.9994, and among the $\sim $800 detected young stars we would expect to find less than one spurious source.

Observations whose center positions are less than $15^{\prime\prime}$apart have been merged to increase the sensitivity for faint detections. The photon extraction radius of the X-ray sources is not well defined if the off-axis positions in individual observations that are merged differ strongly from each other. Therefore, we have analysed observations with less overlap, i.e. more than $15^{\prime\prime}$ separation, separately. The center of the merged image is the center from all individual observations that are added up. The off-axis positions of X-ray sources in merged pointings are computed with respect to this averaged pointing position.

As the positional accuracy of the ROSAT PSPC declines towards the edge of the detector, the identification radius between optical and X-ray position depends on the off-axis angle of the source. We have computed the normalized cumulative number of identifications as a function of the offset between optical and X-ray position, $\Delta_{\rm ox}$, for different ranges of off-axis angles. Following N95, for each of these distributions we have determined the turnover point, $\Delta _{\rm ox,max}$, which corresponds to the value of $\Delta_{\rm ox}$ where wrong identifications begin to contribute significantly to the detected sources. We have then performed a linear fit to the mean off-axis angle as a function of this critical offset $\Delta _{\rm ox,max}$. The fit values of $\Delta _{\rm ox,max}$ for all examined off-axis ranges are listed in Table 1.

 

 
Table 1: Maximum offset allowed between optical and X-ray position $\Delta _{\rm ox,max}$ for different off-axis angles $\Omega $. $\Delta _{\rm ox,max}$ is the best-fit value of a linear distribution of offsets found from normalized cumulative numbers of identifications (see text).
Off-axis angle $\Delta _{\rm ox,max}$
[arcmin] [arcsec]
    $\Omega $ $\leq$ 27.5 40.0
27.5 < $\Omega $ $\leq$ 30 42.4
30 < $\Omega $ $\leq$ 32.5 49.5
32.5 < $\Omega $ $\leq$ 35 56.7
35 < $\Omega $ $\leq$ 37.5 63.8
37.5 < $\Omega $ $\leq$ 40 70.9
40 < $\Omega $ $\leq$ 42.5 78.1
42.5 < $\Omega $ $\leq$ 45 85.2
45 < $\Omega $ $\leq$ 47.5 92.3
47.5 < $\Omega $ $\leq$ 50 99.5


These values are used as identification radii for the cross-correlation of membership lists and X-ray observations. For off-axis angles below $27.5^\prime$ a maximum offset between optical and X-ray position of $40^{\prime\prime}$ is appropriate. Note, that this value agrees with the value found by N95 for the ROSAT All-Sky Survey (RASS). Sources which are located further than $50^\prime$ from the detector center are ignored in the analysis presented here, because at large off-axis angles the point spread function deviates from a Gaussian and can not be adequately modeled by the available software.

We have computed the count rates of detected and undetected sources by integrating all events within a circular region around the source position, i.e. the X-ray position for detections and the optical position for non-detections. We use the 99% quantile of the point spread function at 1 keV as photon extraction radius, except for those few cases where the broad band X-ray image shows that the source obviously exceeds this radius probably due to the energy being different from 1 keV. For these special cases we determine the optimum radius individually by visual inspection of the X-ray image.

The measured counts are background subtracted and divided by the exposure time obtained from the exposure map to determine the count rates. For the background subtraction we have used the information from the background maps. This method is useful in crowded fields where a background annulus around the source may easily be contaminated by adjacent sources.

In the crowded Pleiades region occasionally two or more X-ray sources show significant overlap. In order to separate the contributions from each star we were forced to decrease the photon extraction radius of these sources. This leads to an underestimation of the true count rate, but should not effect our results due to the low number of confused stars (15 versus >200 detections among the Pleiades).

  
2.3 Results of source detection

The result of source detection and identification is summarized in six tables: Tables 2, 3, and 4 contain the X-ray parameters of all detected TTS, Pleiads, and Hyads, and in Tables 5, 6, and 7 the X-ray characteristics of undetected TTS, Pleiads, and Hyads are listed.

In Tables 2-7 the first column contains a number for the observation referring to the numbering in Table 1 in SNH00. (See SNH00 for the ROSAT observation request numbers.) For merged observations we give the numbers of all pointings that have been added up. Column 2 is the designation of the stars. Column 3 contains two flags, one that gives the type of TTS ("W'' - wTTS, "C'' - cTTS) and another one for the multiplicity of the stellar system ("S'' - single, "B'' - binary, "T'' - triple, and "Q'' - quadruple). The distinction between cTTS and wTTS is based mainly on the standard H$\alpha$ equivalent width boundary of 10 Å together with the spectral type of the star (i.e. the H$\alpha$ flux), which is similar to the suggestion by Martín (1997) to use different $W_{\rm H\alpha}$boundaries for different spectral types (GKM). Furthermore, we make use of indications for circumstellar material as revealed from IR and mm observations. SUAur, e.g., is of spectral type G2 and $W_{\rm H\alpha}$ is between 3.5 and 5 Å, but it also has a massive disk and, therefore, clearly is a cTTS. The H$\alpha$ equivalent widths are taken from N95, Kenyon & Hartmann (1995), and Wichmann et al. (1996). The spectral types are shown in Col. 4. The spectral types of Pleiades and Hyades stars were derived from the B-V measurements given in the Open Cluster Data Base compiled by C. Prosser and colleagues (and available at ftp://cfa-ftp.harvard.edu/pub/stauffer/clusters) using the conversion of Schmidt-Kaler (1982). For TTS in Taurus-Auriga we have adopted the spectral types compiled by N95 and König et al. (2001).

For all detected stars (Tables 2-4) we list the X-ray position (Cols. 5 and 6), the offset $\Delta$ between optical and X-ray position (Col. 7), the off-axis angle (Col. 8), and the maximum likelihood (Col. 9) of existence. We give the X-ray hardness ratios HR1 and HR2 in Cols. 10 and 11. The PSPC hardness ratio HR1 is defined as follows:

\begin{displaymath}HR1 = \frac{H - S}{H + S}
\end{displaymath} (1)

where H is the hard band count rate between 0.5-2.0 keV, and S is the count rate in the soft band (between 0.1-0.4 keV). HR2 is given by:

\begin{displaymath}HR2 = \frac{H2 - H1}{H2 + H1}
\end{displaymath} (2)

where H2 and H1 are the count rates in the upper and lower part of the hard band between 0.5-0.9 keV (H1) and 0.9-2.0 keV (H2), respectively. In cases where no counts are observed in any one energy band, and therefore HR1 or HR2 are either +1.0 (no soft counts) or -1.0 (no hard counts) we have computed upper limits to the hardness from the counts in the background. Column 12 gives the exposure time and Col. 13 the X-ray luminosity.

In order to determine the count-to-energy-conversion-factor CECF for the compilation of luminosities we have used the hardness criterion given by Fleming et al. (1995): $CECF = (8.31 + 5.30 \cdot HR1) \times 10^{-12}~{\rm erg\,cm^{-2}\,cts^{-1}}$. Since the soft band in HR1 is sensitive to AV, this way we implicitly take account of the extinction. It should be noted that HR1 "saturates'' for extinctions ${A_{V} >} \sim$0.5. High extinctions are however rare in the Taurus region, and do not play a role for the Pleiades and Hyades. But to ensure that no systematic errors are introduced by this method of count-to-energy conversion we have compared the resulting distribution of X-ray luminosities with those directly derived from the available AV measurements (see Sect. 4.1).

The values of the luminosity given in Tables 2-4 have been derived dividing the count rate by the multiplicity of the stellar system. This means we assume that each of the components in the system contributes the same level of X-ray emission (see König et al. 2001 and Sect. 4.3). The mean value of the CECF is $1.00 \pm 0.25 \times 10^{-11}~{\rm
erg\,cm^{-2}\,cts^{-1}}$. This value was used to obtain the luminosity in cases where HR1 is a upper/lower limit, and therefore Fleming's relation cannot be applied. Uncertainties in $\log{L_{\rm x}}$ are derived from the statistical errors without taking account of systematic uncertainties in the distance estimate.

X-ray parameters for non-detections are summarized in Tables 5-7. The meaning of Cols. 1 to 4 in Tables 5-7 is the same as in Tables 2-4. In Cols. 5 and 6 we list the optical position. The off-axis angle of the undetected stars is given in Col. 7. Column 8 contains the upper limits to the source counts, Col. 9 the exposure time, and Col. 10 the X-ray luminosity. We have used the mean value of the CECF for the compilation of an upper limit to $L_{\rm x}$ in the case of non-detections. The X-ray luminosity was divided by the number of stellar components.

Multiple stellar systems are represented by a single entry in Tables 2-7, but the designations and if known the spectral types of all components are given. Whenever more than one star lies in the X-ray-to-optical identification radius we list the designations of all possible counterparts.

If a star was detected in both unmerged and merged observations we list only the result from the merged observations. The same applies to stars which are detected neither in the merged nor in the unmerged observations. Here, we list only the upper limit from the merged observation. In a few cases a star was detected in a single but not in the merged observations. This can occur if the source is not within the inner $50^\prime$ of the merged observation due to the shift in pointing centers during the merging process, or if the source or background is variable.

Stars which have shown an X-ray flare (discussed by SNH00) are represented by their quiescent emission, i.e. the flare has been removed from the data. We have marked the flare observations in Tables 2-7 by a label after the observation ID.

  
2.4 Detection rates

The aim of this study is to examine the X-ray emission from magnetically active stars. Stars of spectral types earlier than $\sim $F5 are not expected to show dynamo activity because they have no or only shallow convection zones (Walter 1983). We are not interested in the X-ray emission of these stars because they obey a different emission mechanism. Therefore, we restrict the following analysis to stars with spectral types G and later.

An overview over the detection rates for stars from the different stellar groups is given in Table 8.

 

 
Table 8: X-ray statistics of TTS, Pleiads, and Hyads observed and detected in pointed ROSAT PSPC observations. $N_{\rm D}$ - Number of detections, $N_{\rm N}$ - Number of non-detections, $N_{\rm stars}$ - Number of different stars observed, $N_{\rm mult. FOV}$ - Number of stars in the FOV of more than one observation, $N_{\rm mult. D}$ - Number of stars detected in more than one observation.
Sp.Type $N_{\rm D}$ $N_{\rm N}$ $N_{\rm stars}$ $N_{\rm mult. FOV}$ $N_{\rm mult. D}$
Taurus-Auriga TTS
G 28 19 17 12 11
K 66 30 59 23 19
M 74 88 98 44 33
Pleiades
G 41 82 41 31 20
K 118 231 112 87 59
M 52 139 65 47 31
Hyades
G 29 2 22 8 8
K 71 20 54 29 26
M 84 69 99 46 33


We have split up each sample according to the spectral types of its members. The column labeled "$N_{\rm D}$'' gives the sum of all detections, and "$N_{\rm N}$'' is the number of non-detections. The number of observed stars (column $N_{\rm stars}$) is smaller than $N_{\rm D} + N_{\rm N}$ due to multiple observations of a given sky position. The columns labeled " $N_{\rm mult. FOV}$'' and " $N_{\rm mult. D}$'' denote the total number of stars observed/detected in more than one observation. Note, that for most multiple stars only the spectral type of the primary is known, and therefore the stellar system has only one entry in Table 8.

Histograms of the distribution of spectral types in the different stellar samples are displayed in Fig. 1.

  \begin{figure}
\par\includegraphics[width=6.5cm,clip]{fig1a.eps}\hspace*{5mm}\includegraphics[width=6.4cm,clip]{fig1b.eps}\end{figure} Figure 1: Spectral type distribution of the observed late-type stars: a) single stars, b) multiple stellar systems. For multiples the spectral type of the primary is plotted, and the secondary is not taken into account. Solid lines denote the total number of stellar systems in any field of the ROSAT PSPC observations from Table 1 in SNH00. The hatched areas represent the number of detected systems. The numbers given in each panel represent the total number of observed systems (" $N_{\rm FOV}$'') and detected systems ("$N_{\rm D}$''). Note, that individual stellar systems may have been detected in more than one observation. The fraction of detected stars depends on distance, integration time, possible flaring activity, line-of-sight absorption, and stellar parameters such as age, mass, and rotation.
Open with DEXTER

We show separate histograms for single and multiple star systems. In the latter sample only the primary is considered. (For most secondaries the spectral type is unknown). The empty histogram bins give the number of stars in the ROSAT PSPC field of any observation and the hatched histograms the subgroup of detected stars. The total number of stars displayed in the figure is also given and labeled " $N_{\rm FOV}$'' (all observed stars) and "$N_{\rm D}$'' (all detected stars) respectively.

As seen in Fig. 1, the detection rate is higher for the Hyades than for the Pleiades or TTS, although the Hyades are older. This is probably due to their shorter distance. The relative number of detections is larger for TTS than for the Pleiades presumably because TTS are young and more active. Throughout all spectral types the detection rate is higher for unresolved binaries as compared to single stars. This could indicate that all stars in multiple systems contribute to the X-ray emission. The actual detection rate is a complicated function of many influencing factors, such as distance, integration time, absorption, age and mass. A detailed analysis of the X-ray emission levels of the different groups of stars is given in the following sections.

  
2.5 X-ray detection of very-late type dwarfs

A number of very low-mass dwarfs with spectral types between M5 and M9 have been detected. In particular, we report on the detection of LH0429+17, to date the latest PMS dwarf with X-ray emission. This object was listed as a candidate member of the Hyades in a photometric study by Leggett & Hawkins (1989). In the course of a spectroscopic survey for brown dwarfs in the Hyades Reid & Hawley (1999) have detected strong H$\alpha$ emission but weak absorption in the gravity sensitive Na I line, which is an indication for young age. Taking into account its location on the sky, LH0429+17 can, therefore, be considered as member of the Taurus star forming region.

X-rays from young brown dwarfs and brown dwarf candidates in the Chamaeleon, Taurus-Auriga and $\rho$Ophiuchus star forming regions have first been observed by Neuhäuser & Comerón (1998) and Neuhäuser et al. (1999). These objects have spectral types between M6 and M8. Note, that we confirm here the detection of all brown dwarfs and brown dwarf candidates in the Taurus region which have been listed in Neuhäuser et al. (1999).

  
3 H-R diagrams

In order to visualize the age and mass distribution of our stars we have placed the subset of TTS observed with the PSPC and with known bolometric luminosity $L_{\rm bol}$ and effective temperature $T_{\rm eff}$ in the Hertzsprung-Russell diagram (H-R diagram). We dispense with H-R diagrams for Pleiades and Hyades stars because most of the stars in these two clusters are well known to lie on the MS (see previous discussion). The H-R diagram for the TTS in Taurus-Auriga is shown in Fig. 2.

  \begin{figure}
\par\includegraphics[width=6.95cm,clip]{fig2a.eps}\\ [4mm]
\inclu...
...p]{fig2b.eps}\\ [4mm]
\includegraphics[width=6.95cm,clip]{fig2c.eps}\end{figure} Figure 2: H-R diagram of TTS observed with the ROSAT PSPC during pointed observations. Note, that the stars on display represent only a fraction of all X-ray observed TTS because $L_{\rm bol}$ and $T_{\rm eff}$ are not known in all cases. The data are compared to three different theoretical calculations for the PMS evolution: top - D'Antona & Mazzitelli (1994), middle - Baraffe et al. (1998), and bottom - Palla & Stahler (1999). The masses are given in solar units and the isochrones represent $\log{\rm age}$ except for Palla & Stahler (1999) where the ages are given in Myrs.
Open with DEXTER

We have used the $L_{\rm bol}$ values given by Kenyon & Hartmann (1995), and $T_{\rm eff}$ was obtained from the spectral types using the conversion by Schmidt-Kaler (1982). The location of the stars is compared to different models of evolutionary PMS tracks: D'Antona & Mazzitelli (1994), Baraffe et al. (1998), and Palla & Stahler (1999). All diagrams are drawn with the same scale to facilitate the perception of differences between the model calculations. The computation by Baraffe et al. (1998) does not represent a useful description of the complete TTS sample due to its restriction to masses below $\sim $ $1~{M_\odot}$. Furthermore, the lines of equal mass show significant deviations from the other calculations. A closer look reveals that there are also significant differences between the models of D'Antona & Mazzitelli (1994) and Palla & Stahler (1999).

It would be highly desirable to use the theoretical calculations to assign ages and masses to the individual TTS. However, from the comparison provided in Fig. 2 it is obvious that the calibration of the models is uncertain, i.e. tracks computed by different groups would lead to controversial results on the masses and ages of the stars.

Despite such uncertainties the H-R diagram can be used to demonstrate the average distribution of the cTTS and wTTS. Although the stars closest to the birthline tend to be cTTS, and those nearest to the MS are wTTS, the overall distribution of cTTS and wTTS is mixed. This indicates that individual wTTS are not always older than cTTS despite the fact that they represent a later evolutionary stage. This is known since the discovery of many wTTS by the EO (Walter et al. 1988), and the situation is similar in other star forming regions.

  
4 X-ray luminosity functions

The statistical analysis was performed with the ASURV package version 1.2 (see Feigelson et al. 1985; Isobe et al. 1986; LaValley et al. 1992). The ASURV software is particularly well suited for the study of data sets with censored points, i.e. non-detections. We exclude photons observed during the large X-ray flares presented by SNH00, i.e. for flaring stars only their quiescent radiation is taken into account.

XLF are frequently employed to characterize a stellar population. Our special interest here is to compare the XLF of the different stellar groups with respect to the following issues: (i) Are the luminosity functions of cTTS and wTTS different, (ii) how does the X-ray luminosity evolve with stellar age, (iii) how does it depend on the spectral types of the stars and their binary character.

A substantial number of stars are in the field of more than one pointed PSPC observation (see Table 8). However, every star should appear only once in the XLF. Therefore, we represent each star by its error weighted mean luminosity from all observations in which it was detected. If a star was observed in more than one observation, but not detected in any of them, we use the mean upper limit of all non-detections of this star as an estimate for its luminosity limit.

In Sect. 4.3 we will justify our assumption that the X-ray luminosity can be distributed equally among all stars in unresolved multiple systems. Therefore, if not specified otherwise, we have divided the mean X-ray luminosity by the number of components in the stellar system.

  
4.1 cTTS and wTTS in RASS and pointed PSPC data

When studying the X-ray emission of TTS in Taurus-Auriga observed during the RASS, N95 found that the wTTS are X-ray brighter than the cTTS. This is in contrast to findings in various other star forming regions (see e.g. Feigelson et al. 1993; Casanova et al. 1995; Grosso et al. 2000). This discrepancy is not yet understood. A possible explanation is that the XLF of the wTTS in Taurus-Auriga is uncomplete towards the low-luminosity end, because wTTS are not easily identified due to the lack of pronounced spectral features. In particular, many wTTS have been discovered with the EO. Therefore, even the pre-ROSAT sample studied in N95 could be biased towards X-ray bright wTTS.

Our analysis of a large set of pointed ROSAT observations allows to extend the sensitivity limit substantially with respect to the RASS. In Fig. 3 we compare the XLF of TTS derived from the pointed observations described in this paper to the results from the RASS.

  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{fig3.eps}\end{figure} Figure 3: XLF of TTS in Taurus-Auriga derived from the RASS and from pointed ROSAT PSPC observations. Shown are all cTTS and wTTS in Taurus-Auriga. The inset in the lower left shows the typical error bar.
Open with DEXTER

The XLF of the RASS have been newly compiled with respect to the analysis by N95 to include all TTS discovered since then, i.e. the sample consists of all TTS from N95 plus those listed in König et al. (2001) (including both EO and ROSAT discovered TTS). N95 did include EO discovered but no ROSAT discovered TTS.

The comparison with the RASS data clearly demonstrates the better sensitivity of the pointed observations. The XLF computed from the PSPC pointings extends by $\sim $1-2 orders of magnitude further into the low luminosity regime. We reproduce the result first found by N95: in Taurus-Auriga the wTTS are clearly X-ray brighter than the cTTS.

It was noted by Feigelson et al. (1993) that the XLF can change, if the stars included in the sample were found by different methods, e.g. H$\alpha$ versus X-ray surveys. In order to overcome this bias we have computed XLF where we exclude all X-ray discovered TTS. Figure 4 shows the Kaplan-Meier Estimator (KME) for three subsets of wTTS in Taurus-Auriga: ROSAT discovered wTTS, EO discovered wTTS, and all other wTTS.

  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{fig4.eps}\end{figure} Figure 4: XLF of wTTS in Taurus-Auriga derived from pointed ROSAT PSPC observations. The three different distributions are ROSAT discovered wTTS (solid line), EO discovered wTTS (dashed line), and wTTS discovered by other means (dotted line). The inset in the lower left shows the typical error bar. All distributions are similar indicating that the inclusion of X-ray discovered TTS does not introduce a selection bias into the sample of wTTS.
Open with DEXTER

The XLF of these groups do not differ significantly from each other. Therefore, we are led to conclude that the difference in the distributions of cTTS and wTTS is not due to an X-ray selection bias.

The differences to the $\rho$Oph and ChaI star forming regions (Feigelson et al. 1993; Casanova et al. 1995; Grosso et al. 2000) could also be caused by the difference in spatial extension between these two young clusters and the Taurus-Auriga region: The latter is widely dispersed, and, hence, its members may constitute a larger spread in age as compared to the more complex $\rho$Oph and ChaI regions in which the stars are probably more coeval. We can check this by selecting TTS from the central parts of the star forming region, and comparing the resulting XLF with that of the total sample. We have chosen the PSPC observations ROR 200001-0p and 200001-1p pointed on the L1495E cloud. These pointings are centered on the largest concentration of molecular material corresponding to a particular young part of the Taurus complex. In Fig. 5 we show the XLF for wTTS and cTTS in that region.

  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{fig5.eps}\end{figure} Figure 5: XLF of wTTS and cTTS in L1495E derived from a $\sim $30 ksec pointed ROSAT PSPC observation: dotted line - cTTS; dashed line - all wTTS; solid line - wTTS except those discovered by ROSAT. The inset in the lower left shows the typical error bar. The distributions of cTTS and wTTS are again different indicating that the discrepancy between the X-ray luminosities of cTTS and wTTS in Taurus-Auriga is not due to the spatial extension of the sample.
Open with DEXTER

A third distribution consists of all wTTS in L1495E which have not been discovered by ROSAT. The general shape of the XLF in L1495E is the same as that for the complete Taurus-Auriga area: wTTS are X-ray brighter than cTTS. This is also evident from the data in Strom & Strom (1994), an earlier analysis of these pointings in L1495E. We conclude that the X-ray luminosity does not depend on the spatial location within the Taurus region.

The difference in the XLF of wTTS and cTTS does also not depend on our choice of roughly 10 Å as boundary between cTTS and wTTS. It is clear that one should use the H$\alpha$ flux instead of the equivalent width as boundary (hence, we classify SUAur as cTTS) because the equivalent width depends on the underlying continuum which varies with spectral type. Martín (1997) suggested three different equivalent width boundaries for three spectral type regimes chosen such as to exclude that the H$\alpha$emission is due to chromospheric activity. Adopting these criteria only a few TTS change classification, but the difference in the XLF remains.

In Sect. 2.3 the conversion from count rates to luminosities by use of hardness ratios was explained. Using hardness ratios allows to indirectly take account of the extinction in the absence of actual AV measurements. However, HR1 is only sensitive to comparatively low extinctions. The extinction should generally be higher for the cTTS than for the wTTS due to the denser circumstellar environment of the former ones, and if not treated properly may lead to wrong estimates for the luminosities.

We have, therefore, applied an alternative way of deriving X-ray luminosities for the TTS in Taurus-Auriga making use of the available AV data. In this approach the X-ray flux was computed with standard EXSAS tools assuming a 1 keV RS-model with absorbing column density $N_{\rm H}$ derived from AV according to Paresce (1984). Similar values for $N_{\rm H}$ are obtained when using the conversion given by Ryter (1996). Stars for which AV is $\leq$0.05 mag have been assigned a standard value of $N_{\rm H} = 10^{18}~{\rm cm}^{-2}$.

While for individual stars the $L_{\rm x}$ derived by the two methods show typical deviations of $\sim $50%, the statistical distribution of X-ray luminosities is unaffected by the specific choice of CECF, and the previously discussed differences between the XLF of cTTS and wTTS remain.

  
4.2 Dependence on spectral type

In the previous subsection, no distinction was drawn between stars of different spectral type, mass or other stellar parameters. This is justified for young, very low-mass stars which follow fully convective tracks. It is believed that for stars on the MS activity is governed by the relative size of radiative core and convective envelope. This should also apply to TTS once they have reached the radiative part of their PMS evolution. Therefore, to obtain homogeneous samples, stars with different interior structure, i.e. different mass, should be treated separately. As argued in Sect. 3 it is not possible to obtain reliable values for the individual masses and ages of the stars. As an approximation we distinguish the stars by their spectral type. But note, that while for stars on their Hayashi tracks this description is acceptable, for stars on radiative tracks a given spectral type represents a mass range rather than a single value for the mass.

Each subsample is subdivided in three spectral type bins: G, K, and M stars. The mean X-ray luminosities for the different stellar groups and spectral types are listed in Table 9.

 

 
Table 9: Mean X-ray luminosities $\langle \log{L_{\rm x}} \rangle $for cTTS, wTTS, and Pleiades and Hyades. The columns labeled "N'' and " $N_{\rm lim}$'' give the number of stars and number of upper limits within the sample. The second column provides a description of the sample: "C'' - cTTS, "W'' - wTTS, "s'' - single star, "b1'' - binary star assuming that all X-ray emission comes from one component, "b2'' - binary star assuming equal X-ray emission from both components.
Region   Spectral Type G Spectral Type K Spectral Type M
    N $N_{\rm lim}$ $\log{L_{\rm x}}$ N $N_{\rm lim}$ $\log{L_{\rm x}}$ N $N_{\rm lim}$ $\log{L_{\rm x}}$
TTS C 2 (1) $29.60 \pm 0.66$ 22 (9) $28.93 \pm 0.16$ 61 (30) $28.54 \pm 0.14$
TTS W 15 (0) $30.02 \pm 0.17$ 36 (5) $29.78 \pm 0.10$ 34 (9) $29.20 \pm 0.10$
Pleiades   41 (18) $28.98 \pm 0.12$ 112 (41) $28.94 \pm
0.06$ 65 (29) $28.80 \pm 0.07$
Hyades   22 (2) $28.97 \pm 0.05$ 54 (6) $28.52 \pm 0.11$ 99 (38) $27.99 \pm 0.10$
TTS s - - - 34 (11) $29.44 \pm 0.14$ 60 (28) $28.70 \pm 0.14$
TTS b2 - - - 17 (3) $29.47 \pm 0.18$ 29 (20) $28.85 \pm 0.18$
TTS b1 - - - 17 (3) $29.77 \pm 0.18$ 29 (10) $29.15 \pm 0.18$
Pleiades s 25 (13) $28.98 \pm 0.15$ 84 (38) $28.83 \pm 0.09$ 60 (29) $28.78 \pm 0.08$
Pleiades b2 16 (5) $29.03 \pm 0.16$ 27 (3) $29.00 \pm 0.08$ 5 (0) $28.93 \pm 0.08$
Pleiades b1 16 (5) $29.33 \pm 0.16$ 27 (3) $29.30 \pm 0.08$ 5 (0) $29.23 \pm 0.08$
Hyades s 12 (1) $28.97 \pm 0.06$ 36 (5) $28.41 \pm 0.15$ 89 (35) $27.95 \pm 0.10$
Hyades b2 10 (1) $28.96 \pm 0.07$ 18 (1) $28.75 \pm 0.14$ 9 (3) $28.47 \pm 0.19$
Hyades b1 10 (1) $29.26 \pm 0.07$ 18 (1) $29.05 \pm 0.14$ 9 (3) $28.77 \pm 0.19$


For all spectral types the wTTS distribution shows the largest values of $\langle \log{L_{\rm x}} \rangle $, and the Hyades have the lowest $\langle \log{L_{\rm x}} \rangle $. Note, that the group of cTTS of spectral type G is represented by only two stars. But for the other subsamples the statistics are significant. Since in most cases the spectral type (or B-V) is known only for the primary in multiples, we exclude the secondaries from this part of the analysis, except the few cases where the spectral types of all components are known (see Tables 2-7).

In Fig. 6 we provide a comparison of the XLF of TTS, Pleiads, and Hyads.

  \begin{figure}
\par\includegraphics[width=6.8cm,clip]{fig6a.eps}\\ [1mm]
\includ...
...ip]{fig6b.eps}\\ [1mm]
\includegraphics[width=6.8cm,clip]{fig6c.eps}\end{figure} Figure 6: XLF for TTS in Taurus-Auriga, for the Pleiades, and the Hyades. The distributions are shown for different spectral types, corresponding to different values of B-V or effective temperature or mass for the MS stars. a) G stars, b) K stars, and c) M stars.
Open with DEXTER

Throughout all examined spectral types the wTTS clearly represent the brightest class among the X-ray objects studied here, and Hyads show the weakest X-ray emission. For the M stars, where the mass range is comparatively small, the decline of $L_{\rm x}$ from TTS over Pleiades to the Hyades can be interpreted as an age effect. G and K type stars represent a larger spread in the mass distribution such that the influences of mass and age may not easily be disentangled. However, the difference between $\langle L_{\rm x} \rangle$ of Pleiades and Hyades decreases towards earlier types indicating that age and not mass is the dominant effect.

The distributions of cTTS and Pleiads intersect each other because of the much shallower slope of the XLF of cTTS, i.e. larger spread in luminosities. This effect may be caused by our assumption of uniform distance for all stars in a given sample: in contrast to the strongly clustered Pleiades region the TTS in Taurus-Auriga may be subject to a larger distance spread that translates to an apparent spread in $L_{\rm x}$.

Luminosity differences between various stars may generally be due to differences in emitting area. In order to eliminate this effect the X-ray to bolometric luminosity ratio, ${\log{(L_{\rm x}/L_{\rm bol})}}$, is often used to characterize the X-ray emission. We have examined the relation between the effective temperature and ${\log{(L_{\rm x}/L_{\rm bol})}}$. $L_{\rm bol}$ of Pleiads and Hyads was computed from the V magnitude and B-V (needed to determine the bolometric correction) given in the Open Cluster Data Base. The effective temperatures of Pleiades and Hyades stars were obtained from B - V. We have assumed negligible absorption to both star clusters. In Fig. 7 all late-type stars (spectral type later than F or ${\log{T_{\rm eff}}}$ < 3.78) are plotted.

  \begin{figure}
\par\includegraphics[width=6.85cm,clip]{fig7a.eps}\\ [5mm]
\inclu...
...p]{fig7b.eps}\\ [5mm]
\includegraphics[width=6.85cm,clip]{fig7c.eps}\end{figure} Figure 7: Relation between X-ray to bolometric luminosity ratio, ${\log{(L_{\rm x}/L_{\rm bol})}}$, and effective temperature, ${\log{T_{\rm eff}}}$. From top to bottom: TTS, Pleiades, and Hyades. Only stars with spectral type later than F are considered. The plotting symbols have been scaled to the projected rotational velocity of the stars. Upper limits to $L_{\rm x}$ are indicated by arrows.
Open with DEXTER

Figure 7 shows that within the TTS sample, which is characterized by a decline of $\log{L_{\rm x}}$ with spectral type, ${\log{(L_{\rm x}/L_{\rm bol})}}$ does not depend on effective temperature. Pleiades and Hyades, however, demonstrate a clear anticorrelation between ${\log{(L_{\rm x}/L_{\rm bol})}}$ and ${\log{T_{\rm eff}}}$ (see also e.g. Micela et al. 1999). The fact that we do not see such a trend in the TTS sample may be due to the large age spread among the TTS. Note, that in Fig. 7 only stars with known projected rotational velocity are shown. The plotting symbols have been scaled to ${v \sin{i}}$. With few exceptions the fastest rotators are situated close to the upper envelope, indicating a connection between the activity level and the rotation rate (see also Sect. 5).

  
4.3 Single and binary stars

All XLF presented above may rely to some degree on our assumption that all components in multiple systems emit X-rays (at the same level). In order to check this hypothesis we have studied the XLF of single and binary stars separately. Again we have constructed separate XLF for G, K, and M type stars. In Fig. 8 we show these XLF for TTS, Pleiades and Hyades stars. For comparison we display also the XLF for binaries derived without taking account of the binary character, i.e. XLF in which each binary has been regarded as a single star with the observed X-ray luminosity (dashed in Fig. 8). Henceforth, these distributions are termed "b1'', in contrast to the distributions "b2'' for which equal partition of $L_{\rm x}$ onto the components was assumed (dotted in Fig. 8). As before, binary components with unknown spectral type are not considered.

The mean and median of $\log{L_{\rm x}}$ for all compiled distributions are listed in Table 9. Obviously, throughout all examined groups of stars the distributions "b1'' are shifted towards higher luminosities with respect to the distributions "b2''. We have performed two-sample tests within ASURV to quantify the differences. The results are summarized in Table 10.

 

 
Table 10: Results of two-sample tests performed with ASURV to distinguish between the XLF of single and binary stars. For each group (TTS, Pleiads, and Hyads) and each spectral type we have compared three distributions: s - single stars, b1 - binary stars with only one X-ray emitter, b2 - binary stars assuming that both components emit equal amounts of X-rays. The probabilities given are for the null-hypothesis that the compared pair of XLF is drawn from the same parent distribution. We have applied Gehan's generalized Wilcoxon test (GW), the logrank test, and the Peto & Prentice generalized Wilcoxon test.
Sample size (ul.) Prob Prob Prob
    GW HV log rank P & Pren.
TTS K stars
s-b2 34 (11)-17 (3) 0.948 0.852 0.948
s-b1 34 (11)-17 (3) 0.073 0.165 0.084
TTS M stars
s-b2 60 (28)-29 (10) 0.238 0.471 0.275
s-b1 60 (28)-29 (10) 0.006 0.051 0.010
Pleiads G stars
s-b2 25 (13)-16 (5) 0.844 0.953 0.789
s-b1 25 (13)-16 (5) 0.085 0.103 0.089
Pleiads K stars
s-b2 84 (38)-27 (3) 0.825 0.286 0.688
s-b1 84 (38)-27 (3) 0.002 0.001 0.004
Pleiads M stars
s-b2 60 (29)-5 (0) 0.710 0.294 0.665
s-b1 60 (29)-5 (0) 0.002 0.001 0.009
Hyads G stars
s-b2 12 (1)-10 (1) 0.657 0.711 0.620
s-b1 12 (1)-10 (1) 0.003 0.005 0.005
Hyads K stars
s-b2 36 (5)-18 (1) 0.134 0.095 0.150
s-b1 36 (5)-18 (1) 0.000 0.000 0.001
Hyads M stars
s-b2 89 (35)-9 (3) 0.059 0.217 0.083
s-b1 89 (35)-9 (3) 0.002 0.022 0.005


The comparison between "s'' and "b2'' shows in most cases a high probability that the distributions are similar. Only for the Hyades K and M stars the probability that the distributions of singles and "b2'' are different is $\sim $90%. All samples "s'' and "b1'', on the contrary, have high probability for different underlying parent distributions.

The XLF of Hyades stars have first been examined by Pye et al. (1994) on the basis of ROSAT observations. Their finding that Hyades dK binaries are X-ray brighter than single Hyads of the same spectral type were confirmed by Stern et al. (1995) on a larger sample. Our analysis shows that the comparison depends sensitively on the way in which binary stars are treated. The effect is strongly reduced if it is assumed that both components in binaries emit X-rays ("b2'') with respect to distributions of type "b1'' examined by Pye et al. (1994) and Stern et al. (1995).

  
5 Rotation-activity relations

The rotation-activity connection has been extensively studied by Walter (1981),

  \begin{figure}
\par\includegraphics[width=6.4cm,clip]{fig8a.eps}\hspace*{6.4cm}
...
...4cm,clip]{fig8b.eps}\includegraphics[width=6.4cm,clip]{fig8c.eps} }
\end{figure} Figure 8: XLF of single and binary stars of spectral type G, K and M. a) TTS, b) Pleiades, and c) Hyades. solid lines - single stars (s), dotted lines - binary stars assuming equal $L_{\rm x}$ from both components (b2), dashed lines - binary stars assuming only one X-ray emitting component (b1). See text for a more detailed description of these samples. All G type TTS in Taurus-Auriga are single stars, and therefore not displayed in this figure.
Open with DEXTER

Walter & Bowyer (1981), Walter (1982), Bouvier (1990), Damiani et al. (1991), Grankin (1993), N95, Bouvier et al. (1997b), and Wichmann et al. (1998a).

In this section we study the subsample of the stars from Tables 2 to 7 with measured rotation periods $P_{\rm rot}$ or projected rotational velocity ${v \sin{i}}$. The choice of the best parameters describing the activity-rotation relation is not undisputed. We have, therefore, examined different parameter combinations. On the X-ray side we use the luminosity $L_{\rm x}$, the surface flux $F_{\rm s}$, and the ratio between X-ray and bolometric luminosity $L_{\rm x}/L_{\rm bol}$ to characterize the stars. Each star is represented by its mean X-ray luminosity or upper limit to $L_{\rm x}$ as described in Sect. 4. For binaries only one component is considered, because spectral types and rotation rates are in most cases known only for the primary. The stellar radii used to compute $F_{\rm s}$were determined from the Stefan-Boltzmann law. The rotation is described by the projected rotational velocity, ${v \sin{i}}$, or the rotation period, $P_{\rm rot}$. $P_{\rm rot}$ and ${v \sin{i}}$ of Pleiades and Hyades stars are listed in the Open Cluster Data Base. Values for the rotation rates of TTS are taken from N95, Bouvier et al. (1997b), and Wichmann et al. (1998a).

For the statistical analysis cTTS and wTTS have been combined to yield a larger sample, although generally wTTS are faster rotators than cTTS, and they are more X-ray luminous. A linear regression has been fitted to all pairs of rotation-activity combinations using the ASURV EM algorithm or the method by Schmitt (1985) for doubly censored data. In Table 11 we summarize the results of all correlation tests,

 

 
Table 11: Results of statistical tests with ASURV for the relation between X-ray emission and stellar rotation for TTS, Pleiads, and Hyads. The first two columns are the names of the two parameters to be compared. Next is the size of the sample, N, and in brackets the number of upper limits, $N_{\rm lim}$, to the rotation and X-ray parameter. Columns 5 and 6 give the probability that there is no correlation between the two parameters according to Kendall's and Spearman's test. The slope of a linear regression to the pair of parameters is given in Col. 7. For doubly censored data we have used the linear regression method of Schmitt (1985). All samples where $P_{\rm rot}$ is the rotation parameter have upper limits only in the X-ray parameters, and the EM algorithm is used.
Par 1 Par 2 N $N_{\rm lim}$ Kendall Spearman slope
TTS
${\log{(v \sin{i})}}$ $\log{L_{\rm x}}$ 65 (0/17) 0.0031 0.0047 $1.08 \pm 0.36$
${\log{(v \sin{i})}}$ $\log{F_{\rm s}}$ 52 (0/14) 0.0009 0.0011 $1.57 \pm 0.46$
${\log{(v \sin{i})}}$ ${\log{(L_{\rm x}/L_{\rm bol})}}$ 52 (0/14) 0.0053 0.0040 $1.22 \pm 0.44$
$\log{P_{\rm rot}}$ $\log{L_{\rm x}}$ 39 (0/7) 0.0000 0.0001 $-1.52 \pm 0.39$
$\log{P_{\rm rot}}$ $\log{F_{\rm s}}$ 38 (0/6) 0.0000 0.0000 $-1.93 \pm 0.39$
$\log{P_{\rm rot}}$ ${\log{(L_{\rm x}/L_{\rm bol})}}$ 38 (0/6) 0.0001 0.0002 $-1.49 \pm 0.42$
Pleiades
${\log{(v \sin{i})}}$ $\log{L_{\rm x}}$ 164 (6/53) 0.0000 0.0000 0.61
${\log{(v \sin{i})}}$ $\log{F_{\rm s}}$ 164 (6/53) 0.0000 0.0000 0.67
${\log{(v \sin{i})}}$ ${\log{(L_{\rm x}/L_{\rm bol})}}$ 164 (6/53) 0.0000 0.0000 0.88
$\log{P_{\rm rot}}$ $\log{L_{\rm x}}$ 46 (0/13) 0.0008 0.0005 $-0.42 \pm 0.11$
$\log{P_{\rm rot}}$ $\log{F_{\rm s}}$ 46 (0/13) 0.0000 0.0001 $-0.52 \pm 0.11$
$\log{P_{\rm rot}}$ ${\log{(L_{\rm x}/L_{\rm bol})}}$ 46 (0/13) 0.0000 0.0000 $-0.66 \pm 0.12$
Hyades
${\log{(v \sin{i})}}$ $\log{L_{\rm x}}$ 67 (41/2) 0.0008 0.0000 1.58
${\log{(v \sin{i})}}$ $\log{F_{\rm s}}$ 67 (41/2) 0.0000 0.0001 1.56
${\log{(v \sin{i})}}$ ${\log{(L_{\rm x}/L_{\rm bol})}}$ 67 (41/2) 0.0003 0.0089 1.64
$\log{P_{\rm rot}}$ $\log{L_{\rm x}}$ 21 (0/2) 0.0003 0.0004 $-1.13 \pm 0.32$
$\log{P_{\rm rot}}$ $\log{F_{\rm s}}$ 21 (0/2) 0.0016 0.0016 $-0.94 \pm 0.28$
$\log{P_{\rm rot}}$ ${\log{(L_{\rm x}/L_{\rm bol})}}$ 21 (0/2) 0.3515 0.3489 $-1.51 \pm 0.32$


and also give the slopes of the linear regression. According to the statistical tests X-ray emission and rotation are clearly correlated for most of the examined stellar samples. For a given X-ray parameter the probability for a correlation with $P_{\rm rot}$ is in most cases larger than the probability for a correlation with ${v \sin{i}}$. This is probably due to the unknown inclination angle in ${v \sin{i}}$ whose arbitrary orientation tends to destroy any intrinsic correlation between the rotation and X-ray emission. Using $P_{\rm rot}$ should therefore be more meaningful. However, measurements of the actual periods (by spot modulation) are much sparser than spectroscopic observations of ${v \sin{i}}$, leading to a smaller data set.

We show correlations of all possible combinations of the above mentioned X-ray parameters with $P_{\rm rot}$ in Figs. 9 to 11 for TTS,

  \begin{figure}
\par\includegraphics[width=6.9cm,clip]{fig9a.eps}\\ [4.5mm]
\incl...
...]{fig9b.eps}\\ [4.5mm]
\includegraphics[width=6.9cm,clip]{fig9c.eps}\end{figure} Figure 9: Relation between the rotation period and different X-ray parameters for TTS from the Taurus-Auriga region: top - X-ray luminosity, middle - X-ray surface flux, and bottom - Ratio between X-ray luminosity and bolometric luminosity. cTTS are represented by filled symbols and wTTS by open symbols. TTS of unknown nature are displayed as asterisks. Multiple stars are marked by boxes. The solid lines are linear regressions computed with the EM algorithm implemented in ASURV. The size of the errors bars varies a lot due to very different ROSAT exposure times, and they are sometimes smaller than the plotting symbol.
Open with DEXTER


  \begin{figure}
\par\includegraphics[width=6.9cm,clip]{fig10a.eps}\\ [4.5mm]
\inc...
...fig10b.eps}\\ [4.5mm]
\includegraphics[width=6.9cm,clip]{fig10c.eps}\end{figure} Figure 10: Same as Fig. 9 for the Pleiades.
Open with DEXTER


  \begin{figure}
\par\includegraphics[width=6.9cm,clip]{fig11a.eps}\\ [4.5mm]
\inc...
...fig11b.eps}\\ [4.5mm]
\includegraphics[width=6.9cm,clip]{fig11c.eps}\end{figure} Figure 11: Same as Fig. 9 for the Hyades.
Open with DEXTER

Pleiads, and Hyads. Overlaid are the linear regressions corresponding to the power law relation from Table 11. The lowest significance is found in the Hyades. This may however be due to the limited range in rotation period (only two stars with $P_{\rm rot} <
4~{\rm d}$), and because the Hyades with known period have a small range of spectral types.

  
6 Discussion

  
6.1 The XLF of cTTS and wTTS

We have reanalysed the XLF for cTTS and wTTS in Taurus-Auriga, first presented by N95, increasing the sensitivity with respect to the RASS by $\sim $2 orders of magnitude. Our pointed PSPC observations confirm that in Taurus-Auriga wTTS are on average more X-ray luminous than cTTS. This is in contrast to studies of Cha I and $\rho$ Oph (Feigelson et al. 1993; Casanova et al. 1995; Grosso et al. 2000), where no difference was found between the two sub-classes of TTS concerning their X-ray emission level. In a study of the Orion Nebula region with the ROSAT HRI Gagné & Caillault (1995) found slightly lower median $L_{\rm x}$ and $L_{\rm x}/L_{\rm bol}$ values for stars with massive accretion disks, i.e. cTTS. Alcalá et al. (1997) have found higher X-ray luminosities for ROSAT discovered wTTS in the outer parts of the Cha I and Cha II regions. This seems to indicate that samples of wTTS may be biased towards strong X-ray emitters, and that discrepancies can arise from the different spatial distribution of the cTTS and wTTS sample.

We have ruled out such an X-ray selection bias for our sample, by comparing the XLF for wTTS discovered by means of their X-ray emission to those which have been identified in other ways. XLF constructed for a coeval subgroup of cTTS and wTTS located in a central portion of the Taurus-Auriga complex, the L1495E cloud, show the same disagreement. Therefore, the difference does not seem to be related to the wide spatial extension (hence large age spread) of the Taurus star forming region. In addition this test shows that the disagreement is not caused by the different sensitivities (due to different exposure times) of the various combined PSPC observations.

Further effects, like different spectral type distribution, the specific choice of the $W_{\rm H\alpha}$ boundary between cTTS and wTTS, or our way of splitting the X-ray emission on all components in multiples, can not explain the observed discrepancies between the cTTS and wTTS XLF. To investigate whether the high number of upper limits in the cTTS sample affects the shape of the XLF we have also computed XLF neglecting all upper limits. (Grosso et al. 2000 have not included upper limits in their XLF of $\rho$ Oph.) The structure of the XLF, however, remains unaffected.

We conclude that there is an intrinsic difference in X-ray emission from cTTS and wTTS in Taurus. Besides the extinction effect discussed above the different evolutionary state of TTS in different star forming regions may contribute to the observed discrepancies. It should be noted that the subsamples of cTTS and wTTS in Taurus with known $T_{\rm eff}$ and $L_{\rm bol}$ occupy the same region in the H-R diagram, i.e. the difference in $L_{\rm x}$ seems not to be a direct age effect.

The correlation between the X-ray luminosity and $P_{\rm rot}$ we found for all examined samples suggests that the X-ray emission level may be governed by rotation. To check this hypothesis we have computed separate XLF for fast rotating wTTS ( $v \sin{i} > 22~{\rm km\,s^{-1}}$, the mean ${v \sin{i}}$ for wTTS), and slowly rotating wTTS ( $v \sin{i} < 12~{\rm km\,s^{-1}}$). Indeed, the slow rotators are characterized by lower X-ray luminosity ( $\log{L_{\rm x,mean}} = 29.54 \pm 0.13$versus $30.00 \pm 0.11$ for the fast group). This explains some but not all of the discrepancy between the XLF of Fig. 3. From the mean rotation rate of cTTS and wTTS and the mean $\log{L_{\rm x}}$ values derived from the KME analysis the slope in Fig. 9 would be expected to be much steeper. But note, that only a small fraction of TTS has measured rotation periods, and the large spread in the observed rotation-activity relation may be due to mixing of stars with different mass.

If, indeed, rotation is the major parameter that determines the amount of X-rays emitted by a given star then cTTS and wTTS in Taurus-Auriga are expected to have different $L_{\rm x}$ because the wTTS are on average faster rotators (see Bouvier et al. 1993 and our Fig. 9). Different distributions of rotation periods are also found in other star forming regions, e.g. Lupus (Wichmann et al. 1998b). Only in Orion cTTS and wTTS are found to rotate at the same speed (Stassun et al. 1999). The rotational state of the PMS stars in Cha I and $\rho$ Oph has not yet been investigated in detail. We suspect that most of the wTTS in Taurus-Auriga (including those in L1495E) have spent a longer time than those in Cha I and $\rho$ Oph since they have dispersed their disks, and therefore have had more time to spin up, and consequently should drive a more powerful dynamo. This implies that the disk lifetimes depend on the local condition in the star forming region. We remark that this hypothesis can only be tested after more measurements of rotational velocities in these different regions are available. In a later paper we will compare the XLF in different star forming regions in more detail.

  
6.2 Spectral type and age dependence of the X-ray emission

We have compared the XLF of TTS in Taurus-Auriga, the Pleiades, and the Hyades. Following early studies by the EO the XLF of Pleiades and Hyades had been examined with the improved sensitivity of ROSAT (see e.g. Hodgkin et al. 1995; Micela et al. 1996; Pye et al. 1994; Stern et al. 1995). However, all studies of X-ray luminosity on these young clusters were based on smaller data sets than the one presented here.

In lack of the knowledge about individual masses we take account of the known mass dependence of the X-ray luminosity by regarding G, K, and M stars separately. For all spectral type groups wTTS are found to be the strongest X-ray emitters, and the Hyades show the lowest level of X-ray emission. The difference between $\langle L_{\rm x} \rangle$ of the Pleiades and the Hyades is small for G stars where the spread in the mass distribution is largest, but large for M stars which have more uniform masses. This suggests that the decline in the X-ray emission is mostly an age effect. The XLF of cTTS and the Pleiades intersect each other, because the Pleiades are characterized by a much steeper distribution indicating less spread in $L_{\rm x}$. This difference may be a result of the uniform distance assumed for all stars in a given group (except the Hyades for which individual Hipparcos parallaxes were used). If the extension in the direction along the line-of-sight is comparable to the observed spatial dispersion, the TTS in Taurus-Auriga should be subject to a distance spread of $\sim $50 pc. Consequently the luminosities of some stars are underestimated while others are overestimated, thus leading to a larger spread in $L_{\rm x}$ and a flattening of the XLF. For the more compact Pleiades region instead the assumption of uniform distance may be adequate.

The XLF of Hyades K stars show a substructure appearing as an edge at $\log{L_{\rm x}} \sim 28.7$. In order to explain this feature we have divided the K star Hyades into two subgroups of $\log{L_{\rm x}}$ larger/smaller than 28.7. No differences between these two samples were found concerning the distribution of effective temperature, distances, and location on the sky. Only few of the Hyades K stars have measured ${v \sin{i}}$ or rotation period. Therefore, the hypothesis that the high-luminosity tail is composed of the fast rotators can not be tested. Note, that the edge in the slope is seen in both single and binary stars (see Fig. 8), but seems to be more pronounced for single stars. We suggest, that the effect is due to as yet undiscovered multiples among the K type Hyades.

We have extended our investigation of the dependence of the X-ray emission on spectral type by direct examination of correlations between these parameters (see Fig. 7). This investigation reveals differences between TTS, Pleiades, and Hyades which we suppose are related to the different ages of these groups. For stars on the MS $T_{\rm eff}$ corresponds to mass, and mass is related to the depth of the convection zone. The observed anti-correlation between ${\log{(L_{\rm x}/L_{\rm bol})}}$ and ${\log{T_{\rm eff}}}$ from Fig. 7 therefore demonstrates the importance of convection for X-ray activity. Although there is a tendency of ${\log{(L_{\rm x}/L_{\rm bol})}}$ being larger for cooler stars, the absolute amount of X-rays emitted is smaller (see Figs. 6 and 7). In the Pleiades $L_{\rm x}$ does not strongly depend on spectral type, although ${\log{(L_{\rm x}/L_{\rm bol})}}$ decreases with increasing $T_{\rm eff}$. This is most likely due to the shorter time the latest type stars in the Pleiades have spent on the MS. Most of the late K and M type Pleiads did not spin down to loose their high initial activity level, yet. The PMS TTS show no correlation between ${\log{(L_{\rm x}/L_{\rm bol})}}$ and ${\log{T_{\rm eff}}}$. This may be due to the large age spread in the TTS sample (105..7 yrs).

The most active stars of all groups are characterized by ${\log{(L_{\rm x}/L_{\rm bol})}}$ $\sim -3$, the canonical value for late-type stars. This behavior is been referred to as "saturation'', and has been described in the literature; see e.g. Fleming et al. (1989), Feigelson et al. (1993), Micela et al. (1996), Randich et al. (1996), Stauffer et al. (1997), Micela et al. (1999). A common explanation is that all saturated stars have reached their highest possible level of X-ray activity, e.g. by coverage of the full surface with active regions. The stellar radius rather than rotation would then determine the X-ray emission level (see Fleming et al. 1989). The correlation between $L_{\rm x}$ and spectral type in TTS may be understood in terms of such a saturation effect: Fig. 7 suggests that many TTS regardless of their spectral type have reached the saturation level. However, the more luminous the stars, the larger they are, and the higher the saturation level for $L_{\rm x}$. Therefore, for given $L_{\rm bol}$ the X-ray luminosity is limited by a value that corresponds to saturation, and which is lower for later spectral types.

The dispersion of $\log{L_{\rm x}}$ for given spectral type can be regarded from two points of view: (a) all stars of given spectral type show intrinsically similar amounts of X-ray emission, and the spread in $L_{\rm x}$is caused by variability of individual stars, or (b) the dispersion reflects different activity levels of the stars. Our analysis of the longterm X-ray behavior of these stars (to be presented in a subsequent paper; Stelzer et al. in prep.) suggests little variability on long timescales making the former hypothesis improbable. The distribution of $L_{\rm x}$ within stars of homogeneous spectral type thus more likely reflects the variety of X-ray emission from individual stars.

  
6.3 Are Hyades binaries overluminous?

Pye et al. (1994) have examined the XLF of Hyades stars combining 11 ROSAT PSPC observations. In their sample they found that Hyades dK binaries are overluminous in X-rays: all binary dK stars analysed by Pye et al. (1994) were brighter than any of the single dK stars. This result was confirmed by Stern et al. (1995) on a larger sample of Hyades drawn from the RASS.

In our analysis of the XLF in the Hyades we have treated binary stars in two ways: (A) in the same way as singles, i.e. without taking account of the multiplicity (sample "b1''), and (B) dividing the observed luminosity by two to account for X-rays from both components (sample "b2''). We find a probability of $\sim $10-15% for the null-hypothesis that the distributions of singles ("s'') and "b2'' among the Hyades K stars are drawn from the same parent distribution. For Hyades M stars (not examined by Pye et al. 1994 due to lack of statistics but found to display a similar though less pronounced divergence between single and binary XLF in the study of Stern et al. 1995) we find a similar probability for the rejection of the null-hypothesis that "s'' and "b2'' are drawn from the same parent distribution. However, the sample of M star binaries in the Hyades is very small (9 stellar systems). For all other pairs of "s'' - "b2'' distributions, i.e. those of Hyades G stars, Pleiades, and TTS, there is no statistical evidence for differences. The agreement between the XLF of single ("s'') and binary ("b2'') stars is expected if the components in binaries have no mutual influence on their activity, and if indeed the distribution of the observed X-ray emission equally on all components conforms with the real situation. This seems likely because binaries with very high mass ratio, i.e. largely different $L_{\rm x}$, are more difficult to detect than equal mass ratio binaries.

When compared to the distributions "b1'', singles are fainter in all cases (probability for the distributions being similar <10%). This is in agreement with the study of Pye et al. (1994) and Stern et al. (1995) who have examined samples of type "b1''.

This results emphasize that it is important to consider the binary character when analysing XLF of double stars. Splitting the X-ray emission onto the components significantly decreases the difference between single and binary XLF. However, some discrepancy for the Hyades K and M stars remains unexplained. A proper treatment of binary stars is also important in correlation studies, as it decreases the spread.

  
6.4 The age-activity-rotation connection

We have shown that the rotation period and various measures for the X-ray activity (i.e. luminosity, surface flux, and $L_{\rm x}/L_{\rm bol}$-ratio) are correlated for all examined age groups. The steepness of the activity-rotation relation is very different for TTS, Pleiades, and Hyades, with the largest slope for the TTS, e.g. slow rotators in the Pleiades have much higher surface flux than TTS with similar periods (see Figs. 9 to 11). We think that these differences can be explained by the particular distribution of spectral types: In Fig. 12 we show the $\log{F_{\rm s}} - \log{P_{\rm rot}}$diagrams with plotting symbols scaled according to $T_{\rm eff}$.

  \begin{figure}
\par\includegraphics[width=6.85cm,clip]{fig12a.eps}\\ [4.5mm]
\in...
...ig12b.eps}\\ [4.5mm]
\includegraphics[width=6.85cm,clip]{fig12c.eps}\end{figure} Figure 12: X-ray surface flux versus rotation period for TTS, Pleiades, and Hyades indicating the distribution of effective temperatures (plotting symbols are scaled to $T_{\rm eff}$). Note, that most of the slow rotators in the TTS sample are cool objects. Open circles are upper limits for undetected objects.
Open with DEXTER

In the TTS sample we observe a clear clustering of cooler stars at slow rotation periods. For given $L_{\rm bol}$ and $L_{\rm x}$ cooler stars have larger radius and therefore smaller surface flux. This results in a steeper slope for the TTS sample.

Fast rotators are found at all spectral types in the Pleiades and among the TTS. Indeed, the fastest rotators form the upper envelope to the ${\log{(L_{\rm x}/L_{\rm bol})}}$- ${\log{T_{\rm eff}}}$ diagram (Fig. 7). At the age of the Hyades most stars (regardless of spectral type) have slowed down their rotation, such that the range of measured periods is limited, and definitive statements about the activity-rotation connection for the Hyades are difficult.

We have examined the mean level of X-ray surface flux for each age group in order to infer a decay law. In Fig. 13 the mean $F_{\rm s}$ is plotted for cTTS,

  \begin{figure}
\par\includegraphics[width=8.1cm,clip]{fig13.eps}\end{figure} Figure 13: Time evolution of the X-ray surface flux for TTS, Pleiades, and Hyades for three spectral type groups (plotting symbols for G and M stars for clarity with a small offset on the age-scale). The thick solid line represents a fit to the mean of $F_{\rm s}$ obtained by combining G, K, and M stars from the wTTS, Pleiades, and Hyades sample. The slope of this exponential decay is $-2.0 \pm 0.1$ in agreement with earlier estimates for smaller samples of stars from the same region (see text).
Open with DEXTER

wTTS, Pleiades, and Hyades, each being split into G, K, and M type stars. The X-ray flux increases from cTTS to wTTS as mentioned by N95. (Only one cTTS has spectral type of G.) An exponential fit to the combined G + K + M sample from the wTTS to the Hyades age is overlaid, and provides a slope of $-2.01 \pm 0.09$. This compares well with the result by Walter & Barry (1991) who found a decrease of $F_{\rm s}$ with $-2.20 \pm
0.21$ for a sample composed of Einstein detected naked TTS, Pleiades and Hyades.

Acknowledgements

We made use of the Open Cluster Database, compiled by C. F. Prosser and J. R. Stauffer. R.N. wishes to acknowledge financial support from the Bundesministerium für Bildung und Forschung through the Deutsche Zentrum für Luft- und Raumfahrt e.V. (DLR) under grant number 50 OR 0003. The ROSAT project is supported by the Max-Planck-Gesellschaft and Germany's federal government (BMBF/DLR). We would like to thank the referee T. Montmerle for helpful comments and stimulating discussions.

References

 

Online Material


   
Table 2: X-ray data for TTS in Taurus-Auriga detected in PSPC observations.
Obs. No.  Designation Type/  SpT. X-ray position $\Delta$ Offax ML HR1 HR2 Expos $\log{L_{\rm X}}$
    Mult.   $\alpha_{2000}$ $\delta_{2000}$ [ $^{\prime\prime}$] [$^\prime$]       [s] [erg/s]
3 ${\rm CZTau +/c }$ WB M2 04 18 31.6 +28 16 59 1 11 139 >0.82 $ 0.24 \pm 0.16$ 4173 29.07 $\pm$0.15
  ${\rm DDTau +/c }$ CB M1 04 18 31.6 +28 16 59 29           $\pm$ 
3F ${\rm V410x-ray7 }$ W M1 04 18 42.0 +28 19 03 12 0 1616 >0.97 $ 0.84 \pm 0.05$ 4180 30.16 $\pm$0.13
3F ${\rm BPTau }$ C K7 04 19 16.4 +29 06 27 8 0 598 $ 0.92 \pm 0.12$ $ 0.27 \pm 0.14$ 3020 30.06 $\pm$0.06
3 ${\rm HD283572 }$ W G5 04 21 58.5 +28 18 28 19 46 1534 $ 0.92 \pm 0.03$ $ 0.26 \pm 0.04$ 2792 30.83 $\pm$0.02
4F ${\rm DDTau +/c }$ B M1 04 18 31.3 +28 16 35 6 10 1274 $ 0.88 \pm 0.06$ $ 0.43 \pm 0.06$ 22508 28.78 $\pm$0.00
  ${\rm CZTau +/c }$ WB M2     24           $\pm$ 
4 ${\rm V410x-ray7 }$ W M1 04 18 41.3 +28 19 14 26 8 2285 $ 0.98 \pm 0.02$ $ 0.72 \pm 0.03$ 25645 29.84 $\pm$0.02
4 ${\rm BPTau }$ C K7 04 19 15.7 +29 06 08 19 40 193 $ 0.78 \pm 0.10$ $ 0.27 \pm 0.08$ 16412 29.78 $\pm$0.05
4F ${\rm HD283572 }$ W G5 04 21 57.8 +28 19 44 96 0 2264 $ 0.90 \pm 0.01$ $ 0.31 \pm 0.02$ 13203 30.96 $\pm$0.12
11 ${\rm BD+23^\circ502 }$ W G5 03 44 18.3 +24 06 00 61 37 58 >0.75 $ 0.36 \pm 0.16$ 894 30.00 $\pm$0.17
19 ${\rm RXJ0453.1+3311 +B + C}$ WT G8 04 53 10.6 +33 12 54 57 48 17 $ 0.14 \pm 0.61$ $-0.01 \pm 0.57$ 5624 28.44 $\pm$0.56
21 ${\rm NTTS041559+1716 }$ W K7 04 18 52.0 +17 23 18 7 35 664 $ 0.15 \pm 0.05$ $ 0.08 \pm 0.06$ 13460 30.05 $\pm$0.02
21 ${\rm J2-157 }$ C M6 04 20 53.0 +17 46 40 6 15 128 $ 0.09 \pm 0.10$ $ 0.09 \pm 0.13$ 18121 29.18 $\pm$0.06
22 ${\rm RXJ0431.4+1800 +B}$ CB M5 04 31 22.9 +18 00 07 21 32 13 $ 0.54 \pm 0.39$ $-0.39 \pm 0.26$ 15229 28.61 $\pm$0.20
22F ${\rm L1551-51 }$ W K7 04 32 09.2 +17 57 26 3 0 2259 $ 0.92 \pm 0.03$ $ 0.07 \pm 0.04$ 12191 29.98 $\pm$0.29
22 ${\rm V827Tau }$ W K7 04 32 13.5 +18 20 14 13 48 713 $ 0.82 \pm 0.05$ $ 0.06 \pm 0.04$ 12033 30.29 $\pm$0.02
22 ${\rm V826Tau }$ WSB K7 04 32 16.0 +18 01 35 4 29 2592 $ 0.89 \pm 0.02$ $ 0.16 \pm 0.03$ 14170 30.13 $\pm$0.01
22 ${\rm GGTau +/c }$ CQ K7/M5/ 04 32 30.3 +17 31 45 3/13/ 2 342 >0.81 $ 0.16 \pm 0.09$ 19724 28.61 $\pm$0.13
  ${\rm +/c2 +/c3 }$   M1/M7     16/14           $\pm$ 
22 ${\rm L1551-55 }$ W K7 04 32 44.1 +18 02 57 4 31 140 $ 0.76 \pm 0.12$ $ 0.26 \pm 0.09$ 15357 29.54 $\pm$0.06
22 ${\rm LH0429+17 }$ C M9 04 32 50.4 +17 30 10 10 4 7 $-0.24 \pm 0.35$ $ 0.58 \pm 0.57$ 20190 28.18 $\pm$0.26
22 ${\rm RXJ0432.9+1735 }$ W M2 04 32 53.2 +17 35 37 3 6 1375 $ 0.95 \pm 0.03$ $ 0.13 \pm 0.05$ 19526 29.82 $\pm$0.02
22 ${\rm NTTS043230+1746 +B}$ WB M2 04 35 24.8 +17 51 58 20 45 345 $ 0.45 \pm 0.06$ $ 0.13 \pm 0.06$ 12828 29.80 $\pm$0.03
26 ${\rm RXJ0348.8+2359 }$ W G7 03 48 49.1 +23 58 35 17 29 167 $ 0.65 \pm 0.09$ $-0.09 \pm 0.09$ 14869 29.63 $\pm$0.04
26 ${\rm Melotte22-2147 }$ W G7 03 49 06.6 +23 46 46 12 37 2922 $ 0.51 \pm 0.02$ $ 0.20 \pm 0.03$ 16019 30.55 $\pm$0.01
26 ${\rm Melotte22-2881 }$ W G7 03 50 54.4 +23 50 07 11 33 501 $ 0.57 \pm 0.05$ $-0.03 \pm 0.06$ 15339 29.94 $\pm$0.03
26 ${\rm NTTS034903+2431 +B}$ WB K5 03 52 01.4 +24 39 48 11 32 1452 $ 0.57 \pm 0.03$ $ 0.04 \pm 0.04$ 16137 29.89 $\pm$0.02
27 ${\rm Mellote22Pels56 }$ W G2 03 43 26.7 +25 23 02 29 38 1164 $ 0.74 \pm 0.04$ $ 0.09 \pm 0.04$ 15442 30.16 $\pm$0.02
27 ${\rm Mellote22\,253 }$ W G0 03 44 03.4 +24 30 11 6 17 10288 $ 0.80 \pm 0.01$ $ 0.18 \pm 0.02$ 25915 30.50 $\pm$0.01
27 ${\rm BD+23^\circ501B }$ W K0 03 44 12.1 +24 02 15 15 44 54 $ 0.59 \pm 0.04$ $ 0.14 \pm 0.04$ 17258 30.19 $\pm$0.02
27 ${\rm BD+23^\circ502 }$ W G5 03 44 17.4 +24 05 48 56 41 2449 $ 0.90 \pm 0.02$ $ 0.15 \pm 0.03$ 18262 30.35 $\pm$0.01
27 ${\rm RXJ0344.3+2447 }$ W G0 03 44 20.0 +24 47 38 21 2 9163 $ 0.46 \pm 0.02$ $ 0.08 \pm 0.02$ 26570 30.31 $\pm$0.01
27 ${\rm Melotte22-345 }$ W G7 03 44 26.2 +24 35 16 8 11 5657 $ 0.46 \pm 0.02$ $ 0.09 \pm 0.03$ 25805 30.19 $\pm$0.01
27 ${\rm RXJ0345.6+2454 }$ W G5 03 45 41.9 +24 54 17 8 19 3756 $ 0.62 \pm 0.02$ $ 0.07 \pm 0.03$ 14062 30.41 $\pm$0.01
29 ${\rm CoKuHPTau/G2 +/G3}$ WT G0/K7 04 35 54.0 +22 54 21 7/13/ 2 297 >0.98 $ 0.40 \pm 0.12$ 740 29.83 $\pm$0.14
  ${\rm + HPTau }$   K2     16           $\pm$ 
31 ${\rm DNTau }$ C M0 04 35 27.7 +24 14 06 54 47 219 $ 0.81 \pm 0.11$ $ 0.19 \pm 0.10$ 2978 30.08 $\pm$0.06
39 ${\rm NTTS041529+1652 }$ W K5 04 18 18.1 +16 58 15 55 43 9 >-0.76 $ 0.25 \pm 0.15$ 15647 29.06 $\pm$0.20
40F ${\rm RXJ0437.5+1851B +B}$ WB M1 04 37 26.7 +18 51 20 5 0 7979 $ 0.02 \pm 0.02$ $ 0.10 \pm 0.03$ 15420 30.01 $\pm$0.13
45 ${\rm LkCa1 }$ W M4 04 13 14.3 +28 19 12 2 13 27 $ 0.76 \pm 0.31$ $ 0.01 \pm 0.26$ 5580 29.06 $\pm$0.15
45 ${\rm Anon1 }$ W M0 04 13 27.5 +28 16 23 5 10 1136 $ 0.98 \pm 0.02$ $ 0.39 \pm 0.06$ 5864 30.16 $\pm$0.03
45 ${\rm V773Tau +/c +/c1}$ WT K3 04 14 13.2 +28 12 13 4 2 6026 $ 0.96 \pm 0.01$ $ 0.31 \pm 0.03$ 6330 30.25 $\pm$0.01
  ${\rm FMTau }$ C M0     38           30.72 $\pm$0.01
45 ${\rm FNTau }$ C M5 04 14 14.7 +28 27 54 5 15 101 >0.62 $ 0.31 \pm 0.14$ 5381 29.37 $\pm$0.15
45 ${\rm MHO-2 + MHO-1 }$ CB M3 04 14 26.5 +28 06 01 2/5 7 185 >0.84 $ 0.61 \pm 0.11$ 6093 29.07 $\pm$0.14
45 ${\rm MHO-3 }$ C K7 04 14 30.6 +28 05 13 4 8 69 >0.65 $ 0.79 \pm 0.13$ 6122 29.00 $\pm$0.17
45 ${\rm LkCa3 +/c }$ W M1 04 14 48.2 +27 52 40 5 21 432 $ 0.67 \pm 0.06$ $ 0.15 \pm 0.08$ 4424 29.83 $\pm$0.04
45 ${\rm FOTau +/c }$ CB M2 04 14 49.0 +28 12 28 5/4 8 17 >0.33 $-0.32 \pm 0.31$ 5607 28.38 $\pm$0.25
45 ${\rm Briceno2 }$ W M5 04 15 04.7 +28 08 50 6 12 24 >0.28 $ 0.01 \pm 0.28$ 5945 28.85 $\pm$0.21
45 ${\rm LkCa4 }$ W K7 04 16 29.0 +28 07 44 14 31 198 $ 0.63 \pm 0.10$ $ 0.09 \pm 0.10$ 4481 29.99 $\pm$0.05
48 ${\rm NTTS041529+1652 }$ W K5 04 18 21.4 +16 59 17 31 24 45 $ 0.98 \pm 0.23$ $ 0.50 \pm 0.18$ 3697 29.43 $\pm$0.13
48 ${\rm NTTS041559+1716 }$ W K7 04 18 48.8 +17 23 35 44 45 42 $ 0.26 \pm 0.18$ $ 0.15 \pm 0.20$ 2335 29.83 $\pm$0.11
50 ${\rm V836Tau }$ W K7 05 03 06.6 +25 23 20 1 11 930 $ 0.99 \pm 0.02$ $ 0.22 \pm 0.07$ 6997 30.01 $\pm$0.03
50 ${\rm IRAS05023+2527 }$ C K7M0 05 05 20.5 +25 31 13 37 29 24 >-0.46 $ 0.52 \pm 0.19$ 5661 28.99 $\pm$0.25
53 ${\rm RXJ0446.7+2459 }$ C M4 04 46 42.8 +24 58 59 5 14 51 >0.29 $ 0.29 \pm 0.20$ 9011 28.92 $\pm$0.17
55 ${\rm HVTau A + B + C }$ WT M1 04 38 35.0 +26 10 40 3 21 792 $ 0.96 \pm 0.04$ $ 0.33 \pm 0.06$ 7083 29.57 $\pm$0.03
55 ${\rm Elias18 }$ C   04 39 55.6 +25 45 16 13 20 28 $ 0.54 \pm 0.35$ $ 0.89 \pm 0.25$ 5689 29.00 $\pm$0.19
55 ${\rm JH223 }$ W M2 04 40 49.7 +25 51 20 3 17 32 >-0.03 $ 0.51 \pm 0.24$ 8739 28.78 $\pm$0.20
55 ${\rm CoKuLkH\alpha332/G1/c}$ WTr   04 42 04.1 +25 23 17 43 49 185 $ 0.88 \pm 0.12$ $ 0.60 \pm 0.08$ 6083 29.48 $\pm$0.06
56 ${\rm IWTau +/c }$ WB K7 04 41 04.9 +24 51 11 6 37 933 $ 0.95 \pm 0.04$ $ 0.15 \pm 0.05$ 5966 30.05 $\pm$0.03
56 ${\rm CoKuLkH\alpha332/G1 +V955Tau~}$ WT M1/K7 04 42 05.8 +25 22 59 15/29 3 1563 >0.98 $ 0.46 \pm 0.05$ 8100 29.51 $\pm$0.12
  ${\rm CoKuLkH\alpha332/G2 }$ W K7     5           29.98 $\pm$0.12
56 ${\rm Briceno7 }$ C M3 04 42 21.3 +25 20 33 6 5 53 $ 0.82 \pm 0.25$ $ 0.32 \pm 0.21$ 7816 28.96 $\pm$0.13
56 ${\rm GOTau }$ C M0 04 43 03.4 +25 20 18 5 13 9 >-0.18 $-0.01 \pm 0.43$ 7565 28.43 $\pm$0.35
58 ${\rm CoKuTau/1 +B }$ CB M0 04 18 46.8 +28 20 04 66 43 309 $ 0.80 \pm 0.06$ $ 0.39 \pm 0.06$ 3263 30.10 $\pm$0.03
60 ${\rm LkCa19 }$ W K0 04 55 37.5 +30 17 55 7 15 787 $ 0.85 \pm 0.04$ $ 0.21 \pm 0.08$ 1249 30.63 $\pm$0.04
61F ${\rm LkCa19 }$ W K0 04 55 37.2 +30 17 56 2 0 5235 $ 0.87 \pm 0.02$ $ 0.27 \pm 0.03$ 3549 30.82 $\pm$0.02
64 ${\rm NTTS043230+1746 +/c}$ WB M2 04 35 20.9 +17 51 48 45 46 20 $ 0.53 \pm 0.27$ $ 0.10 \pm 0.20$ 2250 29.41 $\pm$0.17
70 ${\rm RXJ0416.5+2053A }$ WB M5 04 16 30.2 +20 53 07 38 23 9 >-0.24 $ 0.07 \pm 0.42$ 3112 28.76 $\pm$0.38
72 ${\rm RXJ0451.9+1758 +B}$ WB M2 04 51 53.1 +17 58 27 15 29 133 $ 0.98 \pm 0.07$ $ 0.17 \pm 0.14$ 1344 29.82 $\pm$0.07
72 ${\rm RXJ0452.5+1730 }$ W K4 04 52 31.0 +17 30 37 11 16 81 $ 0.64 \pm 0.15$ $-0.46 \pm 0.18$ 1577 29.75 $\pm$0.09
72 ${\rm St34 }$ C M3 04 54 21.5 +17 11 24 93 46 17 $ 0.83 \pm 0.31$ $ 0.31 \pm 0.24$ 995 29.75 $\pm$0.20
80 ${\rm RXJ0416.5+2053A +B}$ WB M5/M6 04 16 31.5 +20 53 36 51/61 42 20 >-0.69 $ 0.75 \pm 0.22$ 5075 28.69 $\pm$0.35
81 ${\rm Lick6 }$ W M0 04 30 01.4 +35 17 24 4 2 85 $ 0.67 \pm 0.17$ $ 0.79 \pm 0.12$ 5716 29.19 $\pm$0.10
81 ${\rm Lick3 }$ W K7 04 30 19.5 +35 17 47 5 3 598 >0.96 $ 0.71 \pm 0.06$ 5715 29.71 $\pm$0.13
82 ${\rm DKTau +/c }$ CB K7 04 30 43.6 +26 01 26 8 27 190 $ 0.88 \pm 0.09$ $ 0.25 \pm 0.10$ 8288 29.32 $\pm$0.06
82 ${\rm UZTauw +w/c +e }$ CT M3/-/M1 04 32 43.1 +25 52 33 3 2 254 $ 0.89 \pm 0.10$ $ 0.25 \pm 0.12$ 10320 28.85 $\pm$0.06
82 ${\rm ISTau +/c }$ CB K7 04 33 36.5 +26 10 03 13 21 57 >0.32 $ 0.39 \pm 0.17$ 5598 28.72 $\pm$0.19
82 ${\rm ITTau +/c }$ WB K2 04 33 54.5 +26 13 20 7/6 26 147 $ 0.96 \pm 0.13$ $ 0.49 \pm 0.11$ 6639 29.23 $\pm$0.07
83 ${\rm J4872 A + B }$ WB K7 04 25 19.5 +26 17 48 32/30 35 527 $ 0.96 \pm 0.06$ $ 0.42 \pm 0.06$ 7291 29.73 $\pm$0.04
83 ${\rm DFTau +/c }$ CB M3 04 27 03.3 +25 42 19 9 24 81 $ 0.70 \pm 0.14$ $ 0.17 \pm 0.15$ 5773 29.14 $\pm$0.08
85 ${\rm Hubble4 }$ W K7 04 18 48.0 +28 20 19 17 46 1436 $ 0.99 \pm 0.02$ $ 0.50 \pm 0.04$ 3408 30.73 $\pm$0.02
  ${\rm CoKuTau/1 +B }$ CB M0     47           30.43 $\pm$0.02
89 ${\rm Kim3-76 }$ W   04 17 51.0 +28 28 32 67 41 23 >-0.41 $ 0.89 \pm 0.14$ 3677 29.08 $\pm$0.35
96 ${\rm IRAS04187+1927 }$ C M0 04 21 43.8 +19 34 11 12 18 26 >0.41 $ 0.67 \pm 0.22$ 3433 28.95 $\pm$0.24
96F ${\rm TTau N + S }$ CB K0 04 22 00.0 +19 32 09 9 0 1614 $ 0.91 \pm 0.04$ $ 0.35 \pm 0.07$ 2420 29.71 $\pm$0.12
96F ${\rm RXJ0422.1+1934 +B}$ CB M5 04 22 05.1 +19 34 49 3 0 1881 $ 0.93 \pm 0.04$ $ 0.54 \pm 0.08$ 4162 29.98 $\pm$0.13
106 ${\rm RXJ0338.3+1020 }$ W G9 03 38 18.0 +10 20 14 4 22 22 $ 0.70 \pm 0.23$ $-0.12 \pm 0.28$ 913 29.74 $\pm$0.15
107 ${\rm RXJ0338.3+1020 }$ W G9 03 38 18.2 +10 20 19 2 22 57 $ 0.65 \pm 0.17$ $ 0.36 \pm 0.18$ 1457 29.85 $\pm$0.10
108 ${\rm RXJ0338.3+1020 }$ W G9 03 38 17.8 +10 20 14 7 22 66 $ 0.86 \pm 0.14$ $ 0.06 \pm 0.18$ 1949 29.77 $\pm$0.09
109 ${\rm RXJ0338.3+1020 }$ W G9 03 38 17.5 +10 20 16 10 22 92 $ 0.94 \pm 0.12$ $-0.01 \pm 0.13$ 6025 29.63 $\pm$0.07
110 ${\rm RXJ0304.6+1438 }$ W G5 03 04 45.1 +14 37 36 27 47 391 $ 0.66 \pm 0.06$ $ 0.17 \pm 0.06$ 3622 30.45 $\pm$0.03
112 ${\rm RXJ0255.4+2005 }$ W K6 02 55 26.6 +20 05 04 16 26 2250 $ 0.49 \pm 0.03$ $ 0.08 \pm 0.03$ 18182 29.61 $\pm$0.01
112 ${\rm LkHa262 }$ C M0 02 56 08.3 +20 03 28 6 18 768 $ 0.88 \pm 0.04$ $ 0.11 \pm 0.06$ 21135 29.02 $\pm$0.03
  ${\rm LkHa263 }$ C M4     11           $\pm$ 
112 ${\rm LkHa264 }$ C K5 02 56 37.8 +20 05 34 6 16 137 >0.31 $ 0.31 \pm 0.11$ 20567 28.34 $\pm$0.14
112 ${\rm 1E0255.3+2018 }$ WSB K3 02 58 09.3 +20 29 54 26 42 495 $ 0.83 \pm 0.06$ $ 0.19 \pm 0.05$ 16263 29.71 $\pm$0.03
112 ${\rm RXJ0258.3+1947 }$ C M5 02 58 15.9 +19 47 17 0 17 333 $ 0.99 \pm 0.06$ $ 0.17 \pm 0.08$ 22808 28.73 $\pm$0.04
116 ${\rm RXJ0459.8+1430 }$ W K4 04 59 47.4 +14 30 28 33 48 160 $ 0.61 \pm 0.11$ $ 0.17 \pm 0.10$ 2429 30.29 $\pm$0.05
3,4 ${\rm Briceno2 }$ W M5 04 15 06.9 +28 08 32 28 48 65 >-0.70 $ 0.14 \pm 0.09$ 17826 29.49 $\pm$0.15
3,4 ${\rm LkCa4 }$ W K7 04 16 28.2 +28 07 44 7 33 626 $ 0.73 \pm 0.06$ $ 0.18 \pm 0.05$ 21460 29.93 $\pm$0.03
3,4 ${\rm CYTau }$ C M1 04 17 33.8 +28 20 45 3 13 127 $ 0.87 \pm 0.16$ $ 0.07 \pm 0.12$ 25972 29.09 $\pm$0.06
3,4 ${\rm LkCa5 }$ W M2 04 17 39.2 +28 32 57 5 12 584 $ 0.65 \pm 0.06$ $ 0.05 \pm 0.07$ 30559 29.46 $\pm$0.03
3,4 ${\rm Kim3-76 }$ W   04 17 49.7 +28 29 34 2 9 538 $ 0.99 \pm 0.06$ $ 0.31 \pm 0.07$ 27114 29.42 $\pm$0.04
3,4 ${\rm V410x-ray3 }$ C M7 04 18 08.4 +28 26 00 7 4 74 >0.33 $ 0.02 \pm 0.16$ 28184 28.69 $\pm$0.15
3,4 ${\rm StromAnon13 }$ C M5 04 18 18.1 +28 28 41 12 3 13 >-0.41 $ 0.81 \pm 0.39$ 30759 27.86 $\pm$0.54
3,4 ${\rm V410Tau +/c }$ WB K3 04 18 31.3 +28 27 15 4 1 27166 $ 0.65 \pm 0.01$ $ 0.16 \pm 0.01$ 28147 30.59 $\pm$0.01
3,4 ${\rm V410x-ray2 }$   M0 04 18 34.6 +28 30 28 4 3 449 $ 0.99 \pm 0.09$ $ 0.73 \pm 0.07$ 31813 29.22 $\pm$0.04
3,4 ${\rm V410x-ray4 }$   M4 04 18 40.3 +28 24 27 1 3 82 >0.21 $ 0.79 \pm 0.15$ 36351 28.45 $\pm$0.17
3,4 ${\rm Hubble4 }$ W K7 04 18 47.1 +28 20 08 1 8 7424 $ 0.96 \pm 0.01$ $ 0.30 \pm 0.02$ 32312 30.21 $\pm$0.01
3,4 ${\rm Kim3-89 }$ W M5 04 19 01.5 +28 19 44 4 10 62 $ 0.92 \pm 0.26$ $ 0.23 \pm 0.17$ 27928 28.78 $\pm$0.10
3,4 ${\rm V410x-ray5a }$ C M5 04 19 01.7 +28 22 33 4 8 141 >0.46 $ 0.35 \pm 0.12$ 26268 28.89 $\pm$0.14
3,4 ${\rm FQTau +/c }$ CB M2 04 19 12.5 +28 29 35 3/2 9 45 >-0.04 $ 0.56 \pm 0.20$ 27097 28.19 $\pm$0.18
3,4 ${\rm V819Tau +/c }$ WB K7 04 19 26.3 +28 26 14 1/10 12 7058 $ 0.97 \pm 0.01$ $ 0.24 \pm 0.02$ 27198 30.01 $\pm$0.01
3,4 ${\rm LkCa7 +/c }$ WB K7 04 19 36.8 +27 50 12 63/62 39 1147 $ 0.60 \pm 0.04$ $ 0.18 \pm 0.04$ 21144 29.90 $\pm$0.02
3,4 ${\rm LkCa21 }$ W M3 04 21 56.9 +28 25 08 86 45 1543 $ 0.99 \pm 0.02$ $ 0.64 \pm 0.02$ 17254 30.46 $\pm$0.02
8,9 ${\rm BD+23^\circ501B }$ W K0 03 44 15.3 +24 01 50 45 36 31 $ 0.51 \pm 0.07$ $ 0.13 \pm 0.08$ 8562 29.96 $\pm$0.04
8,9 ${\rm Melotte22-345 }$ W G7 03 44 25.2 +24 34 57 31 43 24 $ 0.53 \pm 0.07$ $ 0.09 \pm 0.07$ 7179 30.14 $\pm$0.03
8,9 ${\rm RXJ0345.6+2454 }$ W G5 03 45 40.7 +24 53 54 36 48 738 $ 0.67 \pm 0.05$ $ 0.09 \pm 0.05$ 7642 30.37 $\pm$0.02
8,9 ${\rm RXJ0348.8+2359 }$ W G7 03 48 49.3 +23 58 32 16 28 112 $ 0.67 \pm 0.12$ $-0.07 \pm 0.11$ 9895 29.56 $\pm$0.06
8,9 ${\rm Melotte22-2147 }$ W G7 03 49 07.4 +23 47 14 28 37 3131 $ 0.50 \pm 0.02$ $ 0.19 \pm 0.03$ 7816 30.75 $\pm$0.01
11-13 ${\rm BD+23^\circ501B }$ W K0 03 44 12.1 +24 01 03 57 35 460 $ 0.30 \pm 0.04$ $ 0.07 \pm 0.04$ 28694 29.98 $\pm$0.02
11-13 ${\rm RXJ0348.8+2359 }$ W G7 03 48 49.4 +23 58 17 29 29 512 $ 0.57 \pm 0.05$ $ 0.16 \pm 0.05$ 22939 29.82 $\pm$0.03
11-13 ${\rm Melotte22-2147 }$ W G7 03 49 06.1 +23 46 45 8 33 5098 $ 0.54 \pm 0.02$ $ 0.12 \pm 0.02$ 30582 30.50 $\pm$0.01
30,31 ${\rm FXTau +/c }$ WB M1 04 30 30.8 +24 26 50 18/17 23 44 $ 0.58 \pm 0.22$ $-0.01 \pm 0.21$ 3966 29.02 $\pm$0.12
30,31 ${\rm V927Tau +/c }$ WB M6 04 31 23.6 +24 10 56 2 21 62 $ 0.61 \pm 0.19$ $-0.19 \pm 0.20$ 2640 29.21 $\pm$0.11
30,31 ${\rm Haro6-13 }$ C cont 04 32 15.7 +24 28 59 6 2 10 >0.23 $ 0.24 \pm 0.49$ 7461 28.14 $\pm$0.47
30,31 ${\rm V928Tau +/c }$ WB M1 04 32 19.1 +24 22 28 4 7 466 >0.94 $ 0.19 \pm 0.10$ 6900 29.24 $\pm$0.13
30,31 ${\rm FZTau }$ C M0 04 32 31.0 +24 20 03 8 10 418 >0.92 $ 0.53 \pm 0.09$ 6861 29.52 $\pm$0.13
  ${\rm FYTau }$ C K7     9           $\pm$ 
30,31 ${\rm V807Tau +/c }$ CB K7 04 33 06.8 +24 09 53 4 22 299 $ 0.96 \pm 0.08$ $ 0.14 \pm 0.10$ 5001 29.55 $\pm$0.05
  ${\rm GHTau }$ CB M2     20           $\pm$ 
30,31 ${\rm V830Tau }$ W K7 04 33 10.3 +24 33 49 5 14 1885 $ 0.81 \pm 0.03$ $ 0.17 \pm 0.05$ 6694 30.28 $\pm$0.02
30,31 ${\rm GKTau +/c }$ CT K7/-/ 04 33 34.7 +24 21 11 4/6/ 20 735 $ 0.98 \pm 0.03$ $ 0.49 \pm 0.06$ 5413 29.61 $\pm$0.03
  ${\rm + GITau }$   K6     11           $\pm$ 
30,31 ${\rm AATau }$ C K7 04 34 55.6 +24 29 06 13 37 55 >-0.25 $ 0.50 \pm 0.15$ 4846 29.34 $\pm$0.17
51,52 ${\rm V836Tau }$ W K7 05 03 06.2 +25 23 10 10 40 141 >-0.23 $ 0.31 \pm 0.09$ 6253 29.65 $\pm$0.14
51,52 ${\rm Briceno10 }$ W M4 05 06 18.3 +24 45 48 33 31 19 >-0.51 $-0.18 \pm 0.23$ 5706 28.96 $\pm$0.30
51,52 ${\rm RXJ057.2 }$ W K6 05 07 11.4 +24 37 05 14 44 142 >-0.28 $ 0.08 \pm 0.10$ 5750 29.83 $\pm$0.14
60,61 ${\rm GMAur }$ C K3 04 55 11.4 +30 21 58 7 13 504 >0.92 $ 0.06 \pm 0.09$ 4706 29.84 $\pm$0.13
60,61 ${\rm SUAur }$ C G2 04 55 59.5 +30 34 02 2 3 3405 $ 0.98 \pm 0.01$ $ 0.34 \pm 0.04$ 5222 30.53 $\pm$0.02
60,61 ${\rm NTTS045251+3016 }$ WSB K7 04 56 02.0 +30 21 05 2 12 1031 $ 0.73 \pm 0.05$ $ 0.04 \pm 0.07$ 4994 29.89 $\pm$0.03
67-69 ${\rm IRAS04187+1927 }$ C M0 04 21 43.4 +19 34 12 6 4 40 >0.72 $ 0.85 \pm 0.16$ 4261 28.86 $\pm$0.21
67-69 ${\rm TTau N + S }$ CB K0 04 21 59.3 +19 32 07 0 1 1986 $ 0.96 \pm 0.02$ $ 0.40 \pm 0.05$ 4283 30.10 $\pm$0.02
67-69 ${\rm RXJ0422.1+1934 +B}$ CB M5 04 22 05.0 +19 34 51 1 3 841 $ 0.92 \pm 0.04$ $ 0.23 \pm 0.08$ 4886 29.73 $\pm$0.04
75,76 ${\rm J2-157 }$ C M6 04 20 54.3 +17 46 06 42 40 13 $ 0.16 \pm 0.25$ $ 0.26 \pm 0.25$ 12648 29.14 $\pm$0.13
58,63 ${\rm V410Tau +/c }$ WB K3 04 18 31.4 +28 27 04 13 43 935 $ 0.66 \pm 0.04$ $ 0.27 \pm 0.05$ 5026 30.24 $\pm$0.02
58,63 ${\rm Hubble4 }$ W K7 04 18 45.6 +28 20 07 18 39 709 $ 0.91 \pm 0.05$ $ 0.42 \pm 0.05$ 5441 30.35 $\pm$0.03
58,63 ${\rm V819Tau +/c }$ WB K7 04 19 26.6 +28 26 14 5/11 31 492 $ 0.84 \pm 0.06$ $ 0.28 \pm 0.06$ 5545 29.87 $\pm$0.03
58,63 ${\rm LkCa7 +/c }$ WB K7 04 19 40.5 +27 50 00 14/13 39 394 $ 0.66 \pm 0.07$ $ 0.04 \pm 0.07$ 5099 29.94 $\pm$0.04
58,63 ${\rm HD283572 }$ W G5 04 21 58.7 +28 18 06 2 5 17128 $ 0.86 \pm 0.01$ $ 0.16 \pm 0.02$ 7746 31.07 $\pm$0.01
58,63 ${\rm LkCa21 }$ W M3 04 22 03.2 +28 25 38 2 10 595 $ 0.91 \pm 0.05$ $ 0.23 \pm 0.07$ 7403 29.89 $\pm$0.04
85-89 ${\rm LkCa5 }$ W M2 04 17 40.3 +28 32 35 32 39 259 $ 0.94 \pm 0.11$ $ 0.30 \pm 0.07$ 17880 29.59 $\pm$0.05
85-89 ${\rm V410Tau +/c }$ WB K3 04 18 32.2 +28 27 20 15 40 3496 $ 0.69 \pm 0.02$ $ 0.22 \pm 0.02$ 19880 30.23 $\pm$0.01
85-89 ${\rm V410x-ray4 }$   M4 04 18 37.7 +28 24 46 39 42 5210 $ 0.81 \pm 0.02$ $ 0.35 \pm 0.03$ 19109 30.33 $\pm$0.02
85-89 ${\rm BPTau }$ C K7 04 19 16.1 +29 06 29 4 2 4100 $ 0.91 \pm 0.02$ $ 0.14 \pm 0.03$ 29310 29.98 $\pm$0.01
85-89 ${\rm V819Tau +/c }$ WB K7 04 19 25.4 +28 26 16 10/15 40 1346 $ 0.87 \pm 0.04$ $ 0.26 \pm 0.04$ 16836 29.79 $\pm$0.02
64,115 ${\rm UXTau A + B + C }$ WT K2/M1/M6  04 30 03.9 +18 13 52 1/6/4 28 1820 $ 0.92 \pm 0.03$ $ 0.21 \pm 0.04$ 8244 29.92 $\pm$0.02
64,115 ${\rm RXJ0431.4+1800 +B}$ CB M5 04 31 24.2 +18 00 24 3 6 82 >0.66 $ 0.09 \pm 0.17$ 11520 28.62 $\pm$0.15
64,115 ${\rm XZTau N + S }$ CB -/M3 04 31 39.9 +18 13 57 0/1 16 532 $ 0.95 \pm 0.05$ $ 0.06 \pm 0.08$ 11097 29.43 $\pm$0.04
  ${\rm HLTau }$ C K7     21           29.73 $\pm$0.04
64,115 ${\rm L1551-51 }$ W K7 04 32 09.3 +17 57 25 2 8 2476 $ 0.90 \pm 0.02$ $ 0.10 \pm 0.04$ 11351 30.18 $\pm$0.02
64,115 ${\rm V827Tau }$ W K7 04 32 14.5 +18 20 18 2 23 1897 $ 0.92 \pm 0.02$ $ 0.21 \pm 0.04$ 8420 30.34 $\pm$0.02
64,115 ${\rm MHO-5 }$ C M6 04 32 15.1 +18 12 48 13 16 14 >-0.30 $-0.08 \pm 0.34$ 9895 28.48 $\pm$0.28
64,115 ${\rm V826Tau }$ WSB K7 04 32 15.8 +18 01 41 1 8 7153 $ 0.89 \pm 0.01$ $ 0.14 \pm 0.03$ 11141 30.29 $\pm$0.01
64,115 ${\rm GGTau +/c1 }$ CQ K7/M5/ 04 32 30.1 +17 31 57 15/25/ 29 80 >-0.21 $ 0.16 \pm 0.14$ 8918 28.64 $\pm$0.15
  ${\rm +/c2 +/c3 }$   M1 /M7     28/10           $\pm$ 
64,115 ${\rm RXJ0432.7+1809 }$ W M5 04 32 40.6 +18 09 23 5 17 25 $ 0.96 \pm 0.49$ >0.66 7114 28.89 $\pm$0.20
64,115 ${\rm L1551-55 }$ W K7 04 32 43.5 +18 02 59 4 15 740 $ 0.95 \pm 0.04$ $ 0.18 \pm 0.07$ 9089 29.89 $\pm$0.03
64,115 ${\rm RXJ0432.9+1735 }$ W M2 04 32 53.7 +17 35 35 6 29 131 $ 0.87 \pm 0.14$ $ 0.20 \pm 0.11$ 9113 29.59 $\pm$0.06
64,115 ${\rm NTTS043124+1824 }$ W G8 04 34 13.8 +18 29 45 65 47 23 >-0.80 $ 0.29 \pm 0.20$ 6623 28.70 $\pm$0.00


   
Table 3: X-ray data for Pleiads detected in PSPC observations.
Obs. No.  Designation Mult. SpT. X-ray position $\Delta$ Offax ML HR1 HR2 Expos $\log{L_{\rm X}}$
        $\alpha_{2000}$ $\delta_{2000}$ [ $^{\prime\prime}$] [$^\prime$]       [s] [erg/s]
5 ${\rm sk630 }$     03 43 32.6 +23 38 33 60 41 10 >-0.33 $-0.46 \pm 0.32$ 457 29.45 $\pm$0.58
5 ${\rm hii980 }$   B9 03 46 26.4 +23 57 16 97 48 12 $ 0.39 \pm 0.36$ <-0.70 385 29.97 $\pm$0.21
7 ${\rm hii1103 }$   M2 03 46 41.1 +23 25 11 86 45 48 >-0.34 $ 0.55 \pm 0.30$ 393 29.42 $\pm$0.56
8 ${\rm hii193 }$   G9 03 43 55.0 +24 15 24 45 42 39 >-0.47 $-0.06 \pm 0.17$ 3615 29.61 $\pm$0.15
  ${\rm hii263 }$ SB K1     40 40 63       29.31 $\pm$0.15
8 ${\rm hii357 +B }$ VB K6 03 44 24.9 +24 09 02 7 33 21 $ 0.68 \pm 0.09$ $ 0.24 \pm 0.09$ 3780 29.62 $\pm$0.05
  ${\rm hii338 }$   F6     21 34 195       29.92 $\pm$0.05
8 ${\rm hii625 }$   K5 03 45 21.0 +23 44 07 26 31 19 >-0.10 $ 0.23 \pm 0.22$ 3844 28.90 $\pm$0.27
8 ${\rm hii673 }$     03 45 30.7 +24 18 58 13 22 18 $ 0.60 \pm 0.17$ $ 0.27 \pm 0.17$ 3780 29.39 $\pm$0.09
8 ${\rm hii817 }$   B9 03 45 54.3 +24 33 26 7 30 27 >-0.16 $ 0.26 \pm 0.20$ 3990 29.16 $\pm$0.18
8 ${\rm hii916 }$ SB K1 03 46 11.9 +24 36 55 27 31 13 $ 0.29 \pm 0.27$ $-0.20 \pm 0.28$ 4657 28.81 $\pm$0.14
8 ${\rm hii1094 }$   M0 03 46 36.8 +23 58 04 13 10 25 $ 0.62 \pm 0.31$ $-0.20 \pm 0.27$ 5194 28.87 $\pm$0.15
8 ${\rm hcg246 }$     03 46 58.6 +24 27 42 2 21 100 $ 0.63 \pm 0.13$ $ 0.15 \pm 0.15$ 4849 29.40 $\pm$0.07
8 ${\rm hii1384 }$   A7 03 47 24.5 +24 35 25 9 29 507 $ 0.39 \pm 0.06$ $ 0.06 \pm 0.07$ 4553 30.07 $\pm$0.03
8 ${\rm hii2147 }$ SB2 G9 03 49 06.7 +23 46 59 11 36 339 $ 0.49 \pm 0.06$ $ 0.23 \pm 0.07$ 3046 29.91 $\pm$0.03
8 ${\rm hcg355 }$     03 49 08.9 +24 21 20 39 34 9 $ 0.77 \pm 0.54$ $ 0.02 \pm 0.35$ 4422 28.98 $\pm$0.28
8 ${\rm hii2193 +B }$ VB K9 03 49 09.1 +23 33 43 36 45 10 $ 0.95 \pm 0.56$ $-0.09 \pm 0.28$ 3594 28.98 $\pm$0.24
8 ${\rm hii2407 }$ SB1 K3 03 49 40.3 +24 28 28 46 44 8 $ 0.55 \pm 0.45$ $-0.88 \pm 0.39$ 3866 28.77 $\pm$0.29
8 ${\rm hii2462 }$   K1 03 49 52.1 +23 42 33 28 48 10 $ 0.36 \pm 0.30$ $-0.26 \pm 0.26$ 3232 29.30 $\pm$0.18
  ${\rm sk293 }$         84           $\pm$ 
8 ${\rm hii2602 }$   M5 03 50 18.5 +23 59 36 87 47 32 $ 0.00 \pm 0.23$ $ 0.35 \pm 0.30$ 3664 29.33 $\pm$0.14
9 ${\rm hii263 }$ SB K1 03 44 01.3 +24 16 22 47 40 129 $ 0.85 \pm 0.11$ $-0.02 \pm 0.11$ 4789 29.46 $\pm$0.06
9 ${\rm hii338 }$   F6 03 44 22.1 +24 08 02 18 34 95 >0.41 $-0.12 \pm 0.09$ 3967 29.80 $\pm$0.13
9 ${\rm hcg149 }$   M4 03 44 22.9 +24 47 02 59 50 303 $ 0.60 \pm 0.06$ $ 0.02 \pm 0.06$ 3849 30.34 $\pm$0.03
9 ${\rm hii625 }$   K5 03 45 21.0 +23 43 52 11 33 122 $ 0.95 \pm 0.11$ $ 0.28 \pm 0.11$ 4271 29.64 $\pm$0.07
9 ${\rm hii659 }$   K3 03 45 27.8 +23 26 21 41 47 47 $ 0.77 \pm 0.30$ $ 0.33 \pm 0.20$ 4303 29.34 $\pm$0.17
9 ${\rm hii799 }$   K7 03 45 49.7 +23 51 58 30 23 12 >-0.19 $-0.22 \pm 0.31$ 4535 28.71 $\pm$0.29
9 ${\rm hii996 }$   G2 03 46 21.9 +24 34 11 9 25 30 $ 0.42 \pm 0.18$ $ 0.06 \pm 0.20$ 5635 29.19 $\pm$0.10
9F ${\rm hii1384 }$   A7 03 47 24.2 +24 35 16 6 0 1118 $ 0.52 \pm 0.05$ $ 0.08 \pm 0.07$ 5439 30.05 $\pm$0.08
9F ${\rm hii2147a }$ SB2 G9 03 49 07.5 +23 47 20 33 0 2829 $ 0.47 \pm 0.05$ $ 0.11 \pm 0.06$ 4555 30.05 $\pm$0.06
9 ${\rm hcg355 }$     03 49 08.6 +24 21 34 53 32 14 $ 0.45 \pm 0.30$ $-0.06 \pm 0.26$ 4919 29.12 $\pm$0.16
9 ${\rm hii2193 +B }$ VB K9 03 49 13.9 +23 33 07 40 48 48 >-0.86 $ 0.61 \pm 0.51$ 4082 28.54 $\pm$0.72
9 ${\rm hii2548 }$   K7 03 50 06.6 +24 07 22 23 43 13 $-0.31 \pm 0.20$ $-0.53 \pm 0.35$ 4013 29.18 $\pm$0.14
9 ${\rm hii2601 +B }$ VB M4 03 50 10.8 +24 20 48 34 46 10 $-0.41 \pm 0.16$ $-0.62 \pm 0.34$ 3924 28.99 $\pm$0.11
11 ${\rm hii298 +B }$ VB K1 03 44 11.1 +24 02 19 32 37 10 $ 0.16 \pm 0.26$ $-0.40 \pm 0.36$ 897 29.31 $\pm$0.17
11 ${\rm hii303 +B }$ VB K1 03 44 18.3 +24 06 00 52 37 58 >0.75 $ 0.36 \pm 0.16$ 894 29.54 $\pm$0.17
11 ${\rm hii817 }$   B9 03 45 52.7 +24 32 48 37 45 32 >-0.42 $ 0.78 \pm 0.63$ 686 29.56 $\pm$0.26
11 ${\rm hii1827 }$   M3 03 48 24.8 +23 58 31 30 26 18 $ 0.65 \pm 0.36$ $ 0.79 \pm 0.30$ 614 29.53 $\pm$0.22
12 ${\rm hii164 }$ SB1 F7 03 43 46.1 +23 34 49 71 43 111 $ 0.76 \pm 0.14$ $ 0.08 \pm 0.11$ 7656 29.27 $\pm$0.07
12 ${\rm hii298 +B }$ VB K1 03 44 13.0 +24 01 40 15 34 29 $ 0.41 \pm 0.08$ $ 0.00 \pm 0.09$ 8888 29.37 $\pm$0.04
12 ${\rm hii303 +B }$ VB K1 03 44 17.4 +24 05 27 57 35 426 $ 0.85 \pm 0.05$ $ 0.17 \pm 0.06$ 8742 29.64 $\pm$0.03
12 ${\rm hii762 }$   M0 03 45 44.4 +24 04 32 7 17 17 $ 0.73 \pm 0.35$ $ 0.06 \pm 0.28$ 9664 28.65 $\pm$0.18
12 ${\rm hcg219 }$   K4 03 46 26.7 +24 09 31 20 17 20 $ 0.54 \pm 0.26$ $-0.41 \pm 0.24$ 10780 28.73 $\pm$0.14
12 ${\rm hii1061 +B }$ VB K9 03 46 31.8 +24 07 00 10 14 190 $ 0.72 \pm 0.10$ $ 0.08 \pm 0.11$ 11800 28.93 $\pm$0.05
12 ${\rm hii1094 }$   M0 03 46 36.4 +23 58 02 8 6 176 $ 0.71 \pm 0.11$ $ 0.22 \pm 0.13$ 12671 29.12 $\pm$0.06
12 ${\rm hii1100 +B }$ VB K5 03 46 37.2 +24 20 34 3 27 124 $ 0.72 \pm 0.11$ $ 0.14 \pm 0.11$ 8076 29.19 $\pm$0.06
12 ${\rm hii1332 }$   K4 03 47 13.5 +23 43 08 15 12 18 $ 0.45 \pm 0.12$ $ 0.15 \pm 0.13$ 11525 29.14 $\pm$0.06
12 ${\rm hii1338 }$ SB2 F6 03 47 17.2 +24 07 38 11 17 41 $ 0.41 \pm 0.20$ $-0.43 \pm 0.18$ 9570 28.60 $\pm$0.10
12 ${\rm hcg273 }$     03 47 32.6 +24 22 26 31 32 11 $ 0.42 \pm 0.16$ $ 0.04 \pm 0.16$ 8997 29.23 $\pm$0.08
12 ${\rm hcg307 }$     03 48 07.8 +23 44 11 12 22 15 $ 0.61 \pm 0.39$ $ 0.39 \pm 0.29$ 8641 28.76 $\pm$0.18
12 ${\rm hii1827 }$   M3 03 48 21.2 +23 58 37 24 23 39 >-0.02 $ 0.10 \pm 0.22$ 6068 28.92 $\pm$0.19
12 ${\rm hcg324 }$   M5 03 48 32.3 +24 17 13 26 35 11 >-0.61 $-0.11 \pm 0.23$ 9037 28.81 $\pm$0.24
12 ${\rm hii2345 }$   F5 03 49 30.6 +23 23 32 49 49 16 $ 0.48 \pm 0.42$ $-0.45 \pm 0.33$ 6425 29.15 $\pm$0.22
13 ${\rm hii164 }$ SB1 F7 03 43 44.2 +23 35 21 29 45 104 $ 0.97 \pm 0.10$ $ 0.21 \pm 0.07$ 17489 29.37 $\pm$0.04
13F ${\rm hii298 +B }$ VB K1 03 44 12.7 +24 01 17 37 0 552 $ 0.31 \pm 0.05$ $ 0.14 \pm 0.06$ 19693 29.62 $\pm$0.27
13F ${\rm hcg144 }$     03 44 16.8 +23 36 49 17 0 555 $ 0.70 \pm 0.16$ $ 0.19 \pm 0.13$ 20293 29.54 $\pm$0.96
13F ${\rm hii303 +B }$ VB K1 03 44 16.9 +24 05 21 57 0 2068 $ 0.94 \pm 0.03$ $ 0.29 \pm 0.04$ 19678 29.96 $\pm$0.17
13 ${\rm hcg194 }$     03 45 38.9 +24 37 34 97 46 108 $ 0.61 \pm 0.06$ $ 0.13 \pm 0.07$ 16011 29.80 $\pm$0.03
13 ${\rm hii762 }$   M0 03 45 43.9 +24 04 11 17 17 92 $ 0.96 \pm 0.12$ $ 0.05 \pm 0.11$ 23294 29.00 $\pm$0.06
13 ${\rm hcg219 }$   K4 03 46 25.5 +24 09 24 14 16 50 >1.00 $-0.19 \pm 0.14$ 23511 28.82 $\pm$0.08
13 ${\rm hii1061 +B }$ VB K9 03 46 31.7 +24 06 55 11 13 163 $ 0.55 \pm 0.09$ $ 0.18 \pm 0.10$ 25091 28.75 $\pm$0.05
13 ${\rm hii1094 }$   M0 03 46 36.4 +23 57 54 11 5 181 $ 0.87 \pm 0.09$ $-0.07 \pm 0.11$ 25292 28.99 $\pm$0.05
13F ${\rm hii1100 +B }$ VB K5 03 46 37.6 +24 20 33 7 0 443 $ 0.68 \pm 0.07$ $ 0.10 \pm 0.08$ 20380 29.26 $\pm$0.28
13 ${\rm sk465 }$     03 46 38.9 +23 04 48 50 48 11 $ 0.35 \pm 0.23$ $ 0.41 \pm 0.24$ 15611 29.14 $\pm$0.12
13 ${\rm hcg247 }$     03 46 57.9 +23 14 24 42 39 41 $ 0.30 \pm 0.13$ $ 0.13 \pm 0.14$ 17991 29.22 $\pm$0.07
13 ${\rm hii1234 }$   A1 03 46 58.2 +24 30 43 34 37 13 $ 0.64 \pm 0.24$ $ 0.29 \pm 0.20$ 18365 29.03 $\pm$0.12
13 ${\rm hii1332 }$   K4 03 47 13.3 +23 43 14 21 11 78 $-0.33 \pm 0.14$ $ 0.76 \pm 0.21$ 25997 28.54 $\pm$0.09
13 ${\rm hii1338 }$ SB2 F6 03 47 16.3 +24 07 36 7 15 97 $ 0.41 \pm 0.11$ $-0.13 \pm 0.12$ 24492 28.64 $\pm$0.06
13 ${\rm hii1514 }$   G4 03 47 39.3 +24 22 02 15 31 14 $ 0.44 \pm 0.09$ $-0.07 \pm 0.10$ 19344 29.36 $\pm$0.05
13F ${\rm hcg307 }$     03 48 08.8 +23 44 15 15 0 223 $ 0.65 \pm 0.25$ $ 0.08 \pm 0.21$ 11533 28.88 $\pm$0.00
13 ${\rm hii1762 }$   F2 03 48 14.4 +24 19 21 18 32 263 $ 0.69 \pm 0.06$ $ 0.07 \pm 0.07$ 19757 29.58 $\pm$0.03
13 ${\rm hii1883 }$   K4 03 48 30.3 +23 18 06 33 42 79 $ 0.61 \pm 0.10$ $ 0.17 \pm 0.09$ 17357 29.56 $\pm$0.05
26 ${\rm hii1032 }$   G8 03 46 29.3 +24 26 22 22 49 547 $ 0.95 \pm 0.06$ $ 0.31 \pm 0.05$ 13207 30.02 $\pm$0.03
26 ${\rm hii1355 +B }$ VB M0 03 47 15.5 +24 02 08 34 43 50 $ 0.76 \pm 0.12$ $ 0.25 \pm 0.11$ 14687 29.18 $\pm$0.06
26 ${\rm hii1384 }$   A7 03 47 24.3 +24 35 12 9 39 1564 $ 0.57 \pm 0.03$ $ 0.12 \pm 0.03$ 15268 30.21 $\pm$0.01
26 ${\rm hcg261 }$     03 47 30.0 +24 50 47 97 46 11 $ 0.73 \pm 0.13$ $ 0.13 \pm 0.08$ 13181 29.13 $\pm$0.12
26F ${\rm hii1516 }$   K7 03 47 40.6 +24 18 19 11 0 792 $ 0.64 \pm 0.06$ $ 0.19 \pm 0.06$ 17021 29.72 $\pm$0.49
26 ${\rm hii1653 }$   K6 03 47 58.9 +24 43 33 23 36 111 $ 0.63 \pm 0.09$ $ 0.11 \pm 0.08$ 15586 29.40 $\pm$0.05
26 ${\rm hii1726 +B }$ VB F9 03 48 07.0 +24 08 08 25 30 119 $ 0.84 \pm 0.11$ $-0.29 \pm 0.10$ 17223 29.00 $\pm$0.05
26 ${\rm hii1762 }$   F2 03 48 12.4 +24 18 47 25 26 405 $ 0.69 \pm 0.06$ $ 0.05 \pm 0.07$ 16644 29.58 $\pm$0.03
26 ${\rm hii1785 }$   M5 03 48 16.4 +24 29 53 26 26 23 $ 0.43 \pm 0.23$ $-0.13 \pm 0.21$ 18684 28.73 $\pm$0.12
26 ${\rm hii1794 }$   G2 03 48 18.1 +23 53 22 16 37 67 $ 0.77 \pm 0.12$ $ 0.20 \pm 0.10$ 15769 29.39 $\pm$0.06
26 ${\rm hii1856 }$   F9 03 48 27.1 +24 02 45 17 29 44 $ 0.39 \pm 0.15$ $-0.46 \pm 0.15$ 17939 29.05 $\pm$0.07
26 ${\rm hii1912 +B }$ VB F7 03 48 35.1 +24 10 53 6 23 277 $ 0.66 \pm 0.07$ $ 0.05 \pm 0.08$ 17218 29.12 $\pm$0.04
26 ${\rm hii2027 }$ SB1 K1 03 48 48.6 +24 15 58 7 18 279 $ 0.58 \pm 0.08$ $ 0.05 \pm 0.09$ 16812 29.03 $\pm$0.04
26 ${\rm hii2034 }$   K3 03 48 49.1 +23 58 35 5 29 167 $ 0.65 \pm 0.09$ $-0.09 \pm 0.09$ 14869 29.47 $\pm$0.04
26 ${\rm hcg349 }$     03 48 57.3 +24 19 32 13 16 150 $ 0.49 \pm 0.11$ $-0.10 \pm 0.12$ 20606 29.02 $\pm$0.05
26 ${\rm hcg351 }$     03 49 03.3 +24 53 49 40 35 9 >-0.77 $-0.40 \pm 0.32$ 15597 28.23 $\pm$0.86
26 ${\rm hii2147 }$ SB2 G9 03 49 06.6 +23 46 46 11 37 2922 $ 0.51 \pm 0.02$ $ 0.20 \pm 0.03$ 16019 30.08 $\pm$0.01
26 ${\rm hii2172 }$ SB1 G2 03 49 11.1 +24 38 14 7 21 134 $ 0.59 \pm 0.11$ $-0.04 \pm 0.11$ 15806 28.85 $\pm$0.06
26 ${\rm hcg355 }$     03 49 11.2 +24 20 45 7 12 58 $ 0.66 \pm 0.21$ $ 0.23 \pm 0.17$ 20470 28.68 $\pm$0.09
26 ${\rm hii2181 }$   B9 03 49 11.4 +24 08 08 7 18 613 $ 0.42 \pm 0.05$ $ 0.01 \pm 0.06$ 19361 29.54 $\pm$0.03
26 ${\rm hii2208 }$   K8 03 49 15.3 +24 33 56 7 17 250 $ 0.51 \pm 0.08$ $ 0.03 \pm 0.09$ 16667 29.24 $\pm$0.04
26F ${\rm hii2244 }$   K3 03 49 20.2 +24 46 25 12 0 1091 $ 0.00 \pm 0.00$ $ 0.13 \pm 0.06$ 15924 29.59 $\pm$0.26
26 ${\rm hii2289 }$   A6 03 49 26.4 +24 14 48 9 11 16 $ 0.51 \pm 0.31$ $-0.27 \pm 0.26$ 21013 28.35 $\pm$0.16
26 ${\rm hcg370 }$     03 49 27.4 +24 31 45 10 13 95 $ 0.64 \pm 0.15$ $ 0.01 \pm 0.14$ 19701 28.84 $\pm$0.07
26 ${\rm hii2278 +B }$ VB K1 03 49 29.5 +24 55 45 62 35 175 $ 0.57 \pm 0.09$ $ 0.05 \pm 0.09$ 11515 29.20 $\pm$0.05
26 ${\rm hcg372 }$   M3 03 49 31.1 +24 31 53 27 13 112 $ 0.34 \pm 0.14$ $-0.03 \pm 0.15$ 19679 28.83 $\pm$0.07

26

${\rm hii2366 }$   K0 03 49 36.6 +24 17 55 7 8 361 $ 0.30 \pm 0.08$ $ 0.03 \pm 0.09$ 21306 29.16 $\pm$0.04
  ${\rm hcg375 }$         16           $\pm$ 
26 ${\rm hii2407 }$ SB1 K3 03 49 42.2 +24 27 37 10 8 292 $ 0.59 \pm 0.09$ $ 0.07 \pm 0.10$ 21480 28.79 $\pm$0.04
26 ${\rm hcg380 }$   M2 03 49 55.7 +24 44 52 19 23 28 $ 0.20 \pm 0.29$ $-0.22 \pm 0.30$ 15733 28.53 $\pm$0.17
26 ${\rm hii2500 }$ SB   03 49 57.5 +23 50 44 6 30 2702 $ 0.51 \pm 0.02$ $ 0.06 \pm 0.03$ 17130 29.93 $\pm$0.01
26 ${\rm hii2548 }$   K7 03 50 05.3 +24 07 17 8 14 60 $ 0.54 \pm 0.16$ $ 0.09 \pm 0.16$ 20920 28.77 $\pm$0.08
26 ${\rm hii2588 }$   K5 03 50 12.1 +24 31 51 9 10 265 $ 0.57 \pm 0.09$ $ 0.21 \pm 0.10$ 21098 29.07 $\pm$0.05
26 ${\rm hii2602 }$   M5 03 50 12.4 +23 59 33 13 22 174 $ 0.57 \pm 0.09$ $-0.06 \pm 0.10$ 13043 29.36 $\pm$0.05
26 ${\rm hii2601 +B }$ VB M4 03 50 12.8 +24 20 59 9 2 450 $ 0.53 \pm 0.07$ $-0.03 \pm 0.08$ 23140 28.89 $\pm$0.04
26 ${\rm hcg394 }$   M9 03 50 15.5 +24 13 26 12 8 50 $ 0.37 \pm 0.19$ $ 0.09 \pm 0.19$ 22302 28.59 $\pm$0.09
26 ${\rm hii2644 }$   G9 03 50 20.6 +24 27 50 12 7 130 $ 0.43 \pm 0.13$ $ 0.14 \pm 0.14$ 21957 28.83 $\pm$0.06
26 ${\rm hii2741 }$   K4 03 50 34.1 +24 30 19 11 11 557 $ 0.79 \pm 0.06$ $ 0.07 \pm 0.08$ 20242 29.32 $\pm$0.04
26 ${\rm hii2866 }$   A3 03 50 50.7 +23 57 39 24 25 149 $ 0.69 \pm 0.10$ $-0.11 \pm 0.10$ 17670 29.23 $\pm$0.05
26 ${\rm hii2881 +B }$ VB K3 03 50 54.4 +23 50 07 3 33 501 $ 0.57 \pm 0.05$ $-0.03 \pm 0.06$ 15339 29.48 $\pm$0.03
26 ${\rm hii2880 }$   K1 03 50 54.7 +24 11 41 11 14 69 $ 0.35 \pm 0.15$ $-0.22 \pm 0.16$ 20262 28.76 $\pm$0.08
26 ${\rm hcg415 }$     03 50 57.0 +24 06 30 5 18 31 $ 0.49 \pm 0.23$ $-0.20 \pm 0.21$ 16583 28.66 $\pm$0.11
26 ${\rm hii2927 }$   K6 03 51 05.9 +24 44 04 11 26 107 $ 0.44 \pm 0.11$ $-0.16 \pm 0.11$ 14275 29.23 $\pm$0.06
26F ${\rm hcg422 }$     03 51 11.2 +24 23 05 9 0 267 $ 0.52 \pm 0.07$ $ 0.11 \pm 0.08$ 19673 28.73 $\pm$0.00
26 ${\rm hcg424 }$     03 51 18.8 +24 10 05 9 20 91 $ 0.52 \pm 0.14$ $-0.02 \pm 0.14$ 12620 29.10 $\pm$0.07
26 ${\rm hii3019 }$   K6 03 51 24.6 +24 05 03 14 24 97 $ 0.34 \pm 0.12$ $-0.10 \pm 0.13$ 15254 29.15 $\pm$0.06
26 ${\rm hcg428 }$     03 51 26.4 +24 47 32 11 31 99 $ 0.45 \pm 0.11$ $-0.02 \pm 0.11$ 13568 29.30 $\pm$0.06
26 ${\rm hii3063 }$   K5 03 51 28.8 +23 53 35 27 33 279 $ 0.59 \pm 0.07$ $ 0.09 \pm 0.07$ 16064 29.60 $\pm$0.03
26 ${\rm hii3097 }$ SB1 G8 03 51 37.9 +24 59 33 46 43 62 $ 0.48 \pm 0.14$ $ 0.01 \pm 0.12$ 11327 29.13 $\pm$0.07
26 ${\rm hii3096 }$   K2 03 51 39.3 +24 32 58 1 24 508 $ 0.62 \pm 0.06$ $-0.01 \pm 0.06$ 18235 29.56 $\pm$0.03
26 ${\rm hii3163 }$   K4 03 51 53.2 +24 23 04 10 24 602 $ 0.64 \pm 0.05$ $-0.03 \pm 0.06$ 15439 29.65 $\pm$0.03
26 ${\rm hcg441 }$     03 51 54.1 +24 03 07 14 30 70 $ 0.63 \pm 0.15$ $ 0.08 \pm 0.12$ 16166 29.18 $\pm$0.07
  ${\rm B201 }$   M6     40           $\pm$0
26 ${\rm hii3197 + B + C }$ T K4 03 52 01.4 +24 39 48 9 32 1452 $ 0.57 \pm 0.03$ $ 0.04 \pm 0.04$ 16137 29.55 $\pm$0.02
27F ${\rm sk702 }$     03 42 00.5 +25 01 40 11 0 94 $ 0.87 \pm 0.35$ $ 0.11 \pm 0.21$ 19055 29.32 $\pm$1.05
27 ${\rm hcg58 }$   M1 03 42 00.5 +25 18 23 85 45 153 $ 0.78 \pm 0.14$ $-0.04 \pm 0.10$ 16858 29.36 $\pm$0.07
27 ${\rm hcg65 }$   K8 03 42 03.6 +24 42 44 2 31 237 $ 0.68 \pm 0.08$ $ 0.12 \pm 0.08$ 19775 29.42 $\pm$0.04
27 ${\rm sk671 }$   M1 03 42 42.7 +24 11 43 21 42 56 $ 0.83 \pm 0.23$ $ 0.03 \pm 0.15$ 14662 29.14 $\pm$0.11
27F ${\rm hcg97 }$     03 43 05.6 +24 49 21 8 0 617 $ 0.75 \pm 0.07$ $ 0.23 \pm 0.08$ 20945 28.77 $\pm$0.00
27 ${\rm hcg100 }$   M5 03 43 09.0 +24 41 29 10 17 15 $ 0.42 \pm 0.13$ $-0.14 \pm 0.14$ 24149 28.83 $\pm$0.07
27 ${\rm AK1B121 }$   K0 03 43 26.7 +25 23 02 15 38 1164 $ 0.74 \pm 0.04$ $ 0.09 \pm 0.04$ 15442 30.00 $\pm$0.02
27 ${\rm hii97 +B }$ VB K4 03 43 26.8 +24 59 33 8 17 428 $ 0.58 \pm 0.07$ $ 0.05 \pm 0.08$ 19886 29.02 $\pm$0.04
27 ${\rm hcg109 }$     03 43 28.4 +24 53 21 11 13 71 $ 0.51 \pm 0.17$ $ 0.05 \pm 0.16$ 24894 28.67 $\pm$0.08
27 ${\rm hii134 +B }$ VB M1 03 43 34.6 +24 14 21 35 34 135 $ 0.88 \pm 0.12$ $ 0.20 \pm 0.09$ 20110 28.98 $\pm$0.06
27 ${\rm hii153 }$   A5 03 43 41.7 +25 04 50 19 20 446 $ 0.81 \pm 0.06$ $ 0.33 \pm 0.07$ 18916 29.37 $\pm$0.04
27 ${\rm hcg123 }$   M4 03 43 42.3 +24 34 21 5 15 276 $ 0.37 \pm 0.08$ $ 0.03 \pm 0.09$ 25263 29.13 $\pm$0.04
27 ${\rm hii173 }$ SB2 K1 03 43 47.6 +25 11 20 11 25 81 $ 0.75 \pm 0.16$ $-0.12 \pm 0.13$ 15627 28.76 $\pm$0.07
27F ${\rm hii174 }$   K1 03 43 48.1 +25 00 09 8 0 6083 $ 0.74 \pm 0.02$ $ 0.14 \pm 0.03$ 25495 29.87 $\pm$0.20
27 ${\rm sk609 }$     03 43 48.5 +25 02 40 33 17 63 $ 0.92 \pm 0.19$ $-0.03 \pm 0.16$ 20143 28.74 $\pm$0.09
27F ${\rm hii191 }$   K8 03 43 51.8 +24 50 22 9 0 759 $ 0.84 \pm 0.07$ $ 0.04 \pm 0.10$ 28138 28.91 $\pm$0.00
27 ${\rm hii193 }$   G9 03 43 54.2 +24 14 32 53 33 28 $ 0.47 \pm 0.08$ $-0.09 \pm 0.08$ 20594 29.41 $\pm$0.04
27F ${\rm hii212 }$   K9 03 43 55.5 +24 25 20 16 0 259 $ 0.28 \pm 0.11$ $-0.02 \pm 0.13$ 17776 28.90 $\pm$0.00
27 ${\rm hii232 }$ SB? A7 03 44 02.0 +24 33 25 24 14 33 $ 0.85 \pm 0.58$ $ 0.31 \pm 0.34$ 25174 27.77 $\pm$0.31
27 ${\rm hii263 }$ SB K1 03 44 02.3 +24 16 05 43 31 762 $ 0.87 \pm 0.05$ $ 0.10 \pm 0.05$ 20875 29.37 $\pm$0.03
27 ${\rm hcg134 }$   M3 03 44 02.3 +25 03 54 1 17 195 $ 0.58 \pm 0.09$ $ 0.11 \pm 0.10$ 20073 29.10 $\pm$0.05
27F ${\rm hii253 }$   G5 03 44 03.4 +24 30 11 6 0 10288 $ 0.80 \pm 0.01$ $ 0.16 \pm 0.02$ 25915 30.34 $\pm$0.12
27 ${\rm hii250 }$ SB? G4 03 44 04.2 +24 59 17 8 13 505 $ 0.30 \pm 0.07$ $-0.15 \pm 0.08$ 24161 28.93 $\pm$0.03
27 ${\rm sk586 }$     03 44 09.5 +24 35 20 3 12 205 $ 0.63 \pm 0.10$ $ 0.01 \pm 0.11$ 26410 28.92 $\pm$0.05
27 ${\rm hii298 +B }$ VB K1 03 44 12.1 +24 02 15 21 44 54 $ 0.59 \pm 0.04$ $ 0.14 \pm 0.04$ 17258 29.72 $\pm$0.02
27 ${\rm hii293 }$   G6 03 44 13.9 +24 46 39 8 2 379 $ 0.69 \pm 0.08$ $-0.19 \pm 0.09$ 27319 29.05 $\pm$0.04
27 ${\rm hii303 +B }$ VB K1 03 44 17.4 +24 05 48 44 41 2449 $ 0.90 \pm 0.02$ $ 0.15 \pm 0.03$ 18262 29.89 $\pm$0.01
27 ${\rm hcg145 }$     03 44 18.5 +24 26 44 12 20 59 $ 0.75 \pm 0.18$ $ 0.09 \pm 0.16$ 17056 28.82 $\pm$0.09
27 ${\rm hcg146 }$   M4 03 44 18.9 +24 35 13 6 12 136 $ 0.83 \pm 0.12$ $ 0.30 \pm 0.12$ 26152 28.77 $\pm$0.07
27 ${\rm hii314 }$ SB1 G3 03 44 20.0 +24 47 38 9 2 9163 $ 0.46 \pm 0.02$ $ 0.08 \pm 0.02$ 26570 29.85 $\pm$0.01
27 ${\rm hii324 }$   K4 03 44 21.0 +24 46 09 10 2 6750 $ 0.65 \pm 0.02$ $ 0.05 \pm 0.03$ 28738 30.06 $\pm$0.01
  ${\rm hii320 }$ SB K1     17           29.76 $\pm$0.01
27F ${\rm hcg143 }$   M5 03 44 23.3 +25 21 34 2 0 124 $ 0.59 \pm 0.38$ $-0.59 \pm 0.37$ 19404 29.31 $\pm$0.79
27 ${\rm hcg149 }$   M4 03 44 24.8 +24 45 42 25 2 43 $ 0.51 \pm 0.05$ $ 0.09 \pm 0.06$ 28318 29.37 $\pm$0.03
27 ${\rm hcg148 }$     03 44 24.9 +24 51 45 11 5 88 $ 0.48 \pm 0.16$ $ 0.17 \pm 0.16$ 27125 28.63 $\pm$0.08
27 ${\rm hcg150 }$   M3 03 44 25.4 +24 40 47 7 6 322 $ 0.42 \pm 0.08$ $-0.03 \pm 0.09$ 27645 29.02 $\pm$0.04
27F ${\rm hii345 }$   K1 03 44 26.2 +24 35 16 8 0 5657 $ 0.45 \pm 0.03$ $ 0.06 \pm 0.03$ 25805 29.98 $\pm$0.12
27 ${\rm hii347 +B }$ VB M0 03 44 27.1 +24 50 30 9 4 924 $ 0.50 \pm 0.05$ $-0.02 \pm 0.06$ 27685 29.04 $\pm$0.03
27 ${\rm hii380 }$   K6 03 44 36.7 +25 08 22 8 21 35 $ 0.54 \pm 0.21$ $-0.04 \pm 0.19$ 16093 28.80 $\pm$0.10
27 ${\rm hcg160 }$     03 44 38.6 +24 31 48 12 15 135 $ 0.61 \pm 0.11$ $ 0.10 \pm 0.12$ 26501 28.89 $\pm$0.06
27 ${\rm hii405 }$   F9 03 44 40.5 +24 48 57 11 5 1435 $ 0.50 \pm 0.04$ $-0.10 \pm 0.05$ 26678 29.51 $\pm$0.02
27 ${\rm hii451 }$   K6 03 44 49.8 +24 54 33 9 10 357 $ 0.44 \pm 0.08$ $-0.05 \pm 0.09$ 25141 29.11 $\pm$0.04
27 ${\rm hcg172 }$     03 45 00.7 +24 46 34 9 8 122 $ 0.61 \pm 0.14$ $-0.01 \pm 0.14$ 26449 28.73 $\pm$0.07
27 ${\rm hhj48 }$     03 45 05.9 +24 40 33 12 11 69 $ 0.23 \pm 0.16$ $ 0.14 \pm 0.17$ 26015 28.59 $\pm$0.08
27 ${\rm hii541 }$ SB? B9 03 45 08.2 +24 50 23 19 11 20 $-0.30 \pm 0.21$ $ 0.53 \pm 0.36$ 25514 27.84 $\pm$0.15
27 ${\rm hii531 }$   F2 03 45 09.2 +24 16 12 44 32 39 >-0.57 $ 0.32 \pm 0.21$ 18824 28.70 $\pm$0.20
27 ${\rm hii563 }$ SB1 B8 03 45 13.2 +24 27 55 14 22 882 $ 0.61 \pm 0.04$ $-0.07 \pm 0.05$ 19738 29.36 $\pm$0.02
27 ${\rm hii566 }$     03 45 15.4 +25 05 28 19 22 331 $ 0.57 \pm 0.06$ $-0.03 \pm 0.08$ 16139 29.47 $\pm$0.04
  ${\rm hii559 }$   K5     29           $\pm$ 
27F ${\rm hcg181 }$   M4 03 45 15.8 +24 34 34 10 0 471 $ 0.51 \pm 0.12$ $ 0.10 \pm 0.15$ 20582 29.20 $\pm$0.66
27 ${\rm hcg178 }$   M5 03 45 16.8 +25 16 31 42 32 146 $ 0.84 \pm 0.12$ $-0.14 \pm 0.11$ 18651 29.20 $\pm$0.06
  ${\rm hii571 }$ SB1 G9     56           28.90 $\pm$0.06
27 ${\rm hii605 }$ SB1 F5 03 45 20.8 +24 55 07 13 15 45 $ 0.17 \pm 0.17$ $-0.17 \pm 0.19$ 23690 28.30 $\pm$0.09
27 ${\rm hii624 }$   M4 03 45 23.2 +24 50 56 7 14 186 $ 0.60 \pm 0.10$ $-0.06 \pm 0.11$ 23213 29.01 $\pm$0.05
27 ${\rm hii627 }$ SB? F7 03 45 23.8 +24 53 04 6 15 660 $ 0.76 \pm 0.05$ $-0.17 \pm 0.06$ 24594 29.10 $\pm$0.03
27 ${\rm hii686 }$   M6 03 45 34.9 +24 17 55 34 33 539 $ 0.55 \pm 0.05$ $-0.06 \pm 0.06$ 20489 29.68 $\pm$0.03
27 ${\rm hii708 }$   G2 03 45 35.6 +24 05 05 5 45 96 $ 0.96 \pm 0.10$ $ 0.11 \pm 0.08$ 16939 29.58 $\pm$0.05
27 ${\rm hii727 }$   F9 03 45 39.3 +24 37 49 13 19 1279 $ 0.54 \pm 0.04$ $-0.12 \pm 0.05$ 16083 29.81 $\pm$0.02
27 ${\rm hii739 }$ PHB G2 03 45 41.9 +24 54 17 6 19 3756 $ 0.62 \pm 0.02$ $ 0.07 \pm 0.03$ 14062 29.95 $\pm$0.01
27 ${\rm hii761 }$ SB1 G4 03 45 44.3 +24 13 25 10 38 255 $ 0.30 \pm 0.07$ $-0.01 \pm 0.08$ 19067 29.26 $\pm$0.03
27 ${\rm hii890 +B }$ VB K7 03 46 06.7 +24 22 31 9 34 74 $ 0.78 \pm 0.27$ $-0.24 \pm 0.22$ 20115 28.58 $\pm$0.13
27 ${\rm hii885 +B }$ VB K4 03 46 08.3 +24 51 39 24 24 38 $ 0.62 \pm 0.17$ $-0.04 \pm 0.16$ 15159 28.66 $\pm$0.08
27 ${\rm hii956 +B }$ VB F1 03 46 15.6 +24 11 12 13 44 89 $ 0.65 \pm 0.11$ $ 0.12 \pm 0.10$ 17027 29.17 $\pm$0.05
27 ${\rm hii1032 }$   G8 03 46 27.0 +24 25 59 18 35 1603 $ 0.72 \pm 0.03$ $ 0.15 \pm 0.04$ 18548 30.00 $\pm$0.02
27 ${\rm hii1015 }$   G3 03 46 28.1 +25 07 48 24 35 84 $ 0.37 \pm 0.12$ $-0.09 \pm 0.12$ 18506 29.18 $\pm$0.06
27 ${\rm hii1100 +B }$ VB K5 03 46 36.4 +24 20 36 10 40 213 $ 0.74 \pm 0.15$ $-0.13 \pm 0.12$ 18095 29.00 $\pm$0.07
27 ${\rm hii1101 }$ SB2 G1 03 46 40.0 +24 57 04 36 32 139 $ 0.66 \pm 0.09$ $-0.09 \pm 0.09$ 15210 29.13 $\pm$0.04
27 ${\rm hcg241 }$   M5 03 46 49.6 +25 13 59 74 43 8 $-0.78 \pm 0.65$ <0.79 17002 27.85 $\pm$0.00
27 ${\rm hii1309 }$   F6 03 47 09.3 +24 17 04 27 48 115 $ 0.31 \pm 0.14$ $-0.14 \pm 0.16$ 15911 29.34 $\pm$0.07
27 ${\rm sk432 }$     03 47 13.4 +25 07 08 26 43 63 $ 0.84 \pm 0.18$ $ 0.10 \pm 0.12$ 16091 29.25 $\pm$0.08
27 ${\rm Teide1 }$     03 47 20.3 +24 21 36 63 47 561 $-0.42 \pm 0.65$ $-0.49 \pm 1.31$ 9911 28.53 $\pm$0.76
27 ${\rm hii1384 }$   A7 03 47 23.6 +24 35 27 7 42 1653 $ 0.49 \pm 0.03$ $ 0.07 \pm 0.03$ 16583 30.18 $\pm$0.01
27F ${\rm hii1653 }$   K6 03 47 57.6 +24 43 39 31 0 101 $ 0.36 \pm 0.20$ $ 0.08 \pm 0.21$ 14583 29.75 $\pm$0.36
8,9 ${\rm hii233 }$ SB F8 03 43 58.2 +23 54 03 63 42 24 >-0.80 >-0.32 7967 28.40 $\pm$0.47
8,9 ${\rm hii298 +B }$ VB K1 03 44 15.3 +24 01 50 37 36 31 $ 0.51 \pm 0.07$ $ 0.14 \pm 0.08$ 8709 29.50 $\pm$0.04
8,9 ${\rm hii345 }$   K1 03 44 25.2 +24 34 57 30 43 24 $ 0.53 \pm 0.07$ $ 0.09 \pm 0.07$ 7179 29.98 $\pm$0.03
8,9 ${\rm hii476 }$ SB G9 03 44 55.5 +23 55 30 27 30 30 $ 0.90 \pm 0.28$ $ 0.27 \pm 0.18$ 8940 28.78 $\pm$0.13
8,9 ${\rm hii531 }$   F2 03 45 07.3 +24 15 48 12 25 51 >-0.04 $-0.04 \pm 0.16$ 9597 29.01 $\pm$0.16
8,9 ${\rm hii563 }$ SB1 B8 03 45 13.1 +24 27 27 38 30 128 $ 0.56 \pm 0.10$ $ 0.05 \pm 0.11$ 7647 29.24 $\pm$0.05
8,9 ${\rm hcg181 }$   M4 03 45 13.6 +24 34 33 39 34 43 $ 0.50 \pm 0.18$ $ 0.23 \pm 0.16$ 8955 29.25 $\pm$0.09
  ${\rm hii554 }$   K7     45           $\pm$ 
8,9 ${\rm hii686 }$   M6 03 45 32.8 +24 18 25 12 21 177 $ 0.50 \pm 0.09$ $ 0.02 \pm 0.10$ 9015 29.50 $\pm$0.05
8,9 ${\rm hii708 }$   G2 03 45 35.8 +24 04 59 7 18 327 $ 0.87 \pm 0.06$ $-0.03 \pm 0.09$ 9127 29.55 $\pm$0.04
8,9 ${\rm hii738 +B }$ VB K5 03 45 38.9 +23 45 23 8 28 430 $ 0.99 \pm 0.05$ $ 0.28 \pm 0.06$ 7729 29.56 $\pm$0.03
8,9 ${\rm hii727 }$   F9 03 45 39.6 +24 37 43 6 33 311 $ 0.46 \pm 0.07$ $-0.04 \pm 0.07$ 8814 29.79 $\pm$0.03
8,9 ${\rm hii739 }$ PHB G2 03 45 40.7 +24 53 54 33 48 738 $ 0.67 \pm 0.05$ $ 0.09 \pm 0.05$ 7642 29.90 $\pm$0.02
8,9 ${\rm hii745 }$   F8 03 45 40.8 +24 17 17 6 19 62 $ 0.68 \pm 0.10$ $ 0.15 \pm 0.12$ 9568 29.32 $\pm$0.06
8,9 ${\rm hii746 }$ SB? G9 03 45 43.8 +24 25 35 34 23 15 $ 0.56 \pm 0.35$ $-0.31 \pm 0.29$ 7999 28.47 $\pm$0.18
8,9 ${\rm hii761 }$ SB1 G4 03 45 44.7 +24 13 11 6 16 418 $ 0.34 \pm 0.07$ $-0.03 \pm 0.08$ 10827 29.27 $\pm$0.04
8,9 ${\rm hii890 +B }$ VB K7 03 46 07.8 +24 22 22 8 17 21 >-0.04 $-0.16 \pm 0.27$ 9596 28.30 $\pm$0.20
8,9 ${\rm hii930 }$   K6 03 46 13.3 +24 03 15 7 11 83 $ 0.67 \pm 0.16$ $ 0.05 \pm 0.16$ 11799 28.92 $\pm$0.08
8,9 ${\rm hii956 +B }$ VB F1 03 46 16.3 +24 11 20 7 9 657 $ 0.63 \pm 0.06$ $-0.01 \pm 0.07$ 12492 29.25 $\pm$0.03
8,9 ${\rm hii974 }$   K7 03 46 18.6 +24 46 37 39 39 12 $ 0.69 \pm 0.43$ $-0.47 \pm 0.27$ 8465 29.01 $\pm$0.20
8,9 ${\rm hii980 }$   B9 03 46 19.9 +23 56 53 6 14 774 $ 0.88 \pm 0.04$ $-0.08 \pm 0.06$ 11632 29.70 $\pm$0.03
8,9 ${\rm hcg219 }$   K4 03 46 25.8 +24 09 31 9 7 91 $ 0.51 \pm 0.16$ $ 0.14 \pm 0.16$ 12387 28.92 $\pm$0.08
8,9 ${\rm hii1032 }$   G8 03 46 28.5 +24 25 59 5 18 1265 $ 0.78 \pm 0.04$ $ 0.01 \pm 0.05$ 9957 29.97 $\pm$0.02
8,9 ${\rm hii1039 }$   K7 03 46 28.5 +23 35 57 24 33 71 >-0.13 $ 0.32 \pm 0.11$ 9438 29.22 $\pm$0.14
8,9 ${\rm hii1061 +B }$ VB K9 03 46 31.4 +24 07 03 4 6 265 $ 0.74 \pm 0.09$ $ 0.17 \pm 0.11$ 12755 28.91 $\pm$0.05
8,9 ${\rm hii1100 +B }$ VB K5 03 46 37.6 +24 20 35 6 13 565 $ 0.73 \pm 0.06$ $ 0.04 \pm 0.08$ 12232 29.25 $\pm$0.03
8,9 ${\rm hii1117 }$ SB2 G8 03 46 39.2 +23 47 10 23 21 45 $ 0.28 \pm 0.16$ $-0.09 \pm 0.18$ 9470 28.77 $\pm$0.08
8,9 ${\rm hii1122 }$ SB2 F6 03 46 39.4 +24 06 10 4 5 383 $ 0.54 \pm 0.08$ $-0.14 \pm 0.09$ 12602 29.04 $\pm$0.04
8,9 ${\rm hii1124 }$   K3 03 46 39.7 +24 01 47 5 8 312 $ 0.66 \pm 0.08$ $ 0.08 \pm 0.10$ 12772 29.30 $\pm$0.04
8,9 ${\rm hii1136 }$   K3 03 46 39.7 +23 29 55 7 38 276 $ 0.88 \pm 0.07$ $ 0.37 \pm 0.06$ 8797 29.83 $\pm$0.04
8,9 ${\rm hii1101 }$ SB2 G1 03 46 45.7 +24 57 08 99 48 10 $ 0.70 \pm 0.32$ $-0.26 \pm 0.23$ 6640 29.00 $\pm$0.15
8,9 ${\rm hcg244 }$     03 46 53.9 +24 17 15 6 9 81 $ 0.64 \pm 0.17$ $-0.23 \pm 0.17$ 12466 28.91 $\pm$0.08
8,9 ${\rm hii1234 }$   A1 03 46 59.8 +24 31 17 7 23 71 $ 0.69 \pm 0.16$ $ 0.03 \pm 0.16$ 6490 29.26 $\pm$0.08
8,9 ${\rm hii1280 }$   K5 03 47 03.6 +24 09 33 3 4 216 $ 0.75 \pm 0.11$ $-0.07 \pm 0.12$ 12552 29.17 $\pm$0.06
8,9 ${\rm hii1266 +B }$ VB F2 03 47 03.9 +24 48 56 17 40 66 $ 0.68 \pm 0.14$ $-0.28 \pm 0.12$ 8396 29.19 $\pm$0.07
8,9 ${\rm hii1306 }$   K8 03 47 09.3 +23 43 03 25 25 145 $ 0.51 \pm 0.09$ $ 0.03 \pm 0.11$ 7293 29.56 $\pm$0.05
  ${\rm hii1298 +B }$ VB K3     37           29.26 $\pm$0.05
8,9 ${\rm hii1309 }$   F6 03 47 10.1 +24 16 32 6 9 416 $ 0.65 \pm 0.07$ $-0.22 \pm 0.09$ 12374 29.40 $\pm$0.04
8,9 ${\rm hcg258 }$   K8 03 47 13.4 +23 49 44 10 19 78 $ 0.17 \pm 0.14$ $ 0.02 \pm 0.16$ 8551 29.16 $\pm$0.07
8,9 ${\rm hii1338 }$ SB2 F6 03 47 16.5 +24 07 42 2 6 99 $ 0.47 \pm 0.15$ $-0.16 \pm 0.16$ 12550 28.64 $\pm$0.07
8,9 ${\rm hii1348 A + B }$ VB K5 03 47 18.1 +24 23 22 6 16 75 $ 0.33 \pm 0.16$ $ 0.12 \pm 0.17$ 10807 28.69 $\pm$0.08
8,9 ${\rm NPL22 }$ VB   03 47 18.1 +24 23 22 38 16 75 $ 0.33 \pm 0.16$ $ 0.12 \pm 0.17$ 10807 28.69 $\pm$0.08
8,9 ${\rm hii1355 +B }$ VB M0 03 47 18.3 +24 02 09 5 9 319 $ 0.45 \pm 0.08$ $-0.01 \pm 0.10$ 12513 29.02 $\pm$0.04
8,9 ${\rm hii1397 +B }$ VB A2 03 47 24.2 +23 54 53 1 15 174 $ 0.50 \pm 0.10$ $-0.10 \pm 0.11$ 11624 28.98 $\pm$0.05
  ${\rm hii1392 +B }$ VB       7           $\pm$ 
8,9 ${\rm hii1432 }$   B9 03 47 28.9 +24 06 26 5 8 9 $-0.14 \pm 0.36$ $ 0.04 \pm 0.48$ 11956 28.20 $\pm$0.25
8,9 ${\rm hcg273 }$     03 47 30.8 +24 22 13 3 16 34 $ 0.16 \pm 0.21$ $ 0.33 \pm 0.23$ 11418 28.72 $\pm$0.11
8,9 ${\rm hii1514 }$   G4 03 47 37.9 +24 21 35 38 16 97 $ 0.78 \pm 0.14$ $-0.14 \pm 0.16$ 11586 29.00 $\pm$0.08
8,9 ${\rm hii1516 }$   K7 03 47 40.5 +24 18 09 2 14 341 $ 0.53 \pm 0.07$ $ 0.05 \pm 0.09$ 11104 29.46 $\pm$0.04
8,9 ${\rm hii1532 }$   K6 03 47 40.8 +23 44 15 11 26 55 $ 0.47 \pm 0.14$ $-0.06 \pm 0.15$ 10237 29.16 $\pm$0.08
8,9 ${\rm hii1531 }$   K6 03 47 41.7 +23 58 17 5 15 287 $ 0.49 \pm 0.08$ $ 0.00 \pm 0.10$ 11481 29.41 $\pm$0.04
8,9 ${\rm ALR929 }$   M4 03 47 48.6 +24 30 08 16 25 16 $ 0.64 \pm 0.38$ $ 0.42 \pm 0.25$ 9100 28.76 $\pm$0.18
  ${\rm hcg295 }$         32           $\pm$ 
8,9 ${\rm hii1613 }$   F9 03 47 52.4 +23 56 27 3 18 62 $ 0.54 \pm 0.17$ $-0.37 \pm 0.16$ 9163 29.07 $\pm$0.08
8,9 ${\rm hii1653 }$   K6 03 47 59.9 +24 43 53 3 38 32 $ 0.30 \pm 0.17$ $-0.10 \pm 0.17$ 8662 29.27 $\pm$0.09
8,9 ${\rm hii1726 +B }$ VB F9 03 48 07.2 +24 08 33 1 17 291 $ 0.86 \pm 0.07$ $-0.18 \pm 0.09$ 10291 29.15 $\pm$0.04
8,9 ${\rm hcg310 }$     03 48 12.2 +23 39 16 43 33 16 $ 0.27 \pm 0.23$ $ 0.26 \pm 0.26$ 9213 28.87 $\pm$0.17
  ${\rm hcg315 }$         25 35 12       $\pm$ 
  ${\rm hii1797 }$   F9     21 35 12       $\pm$ 
8,9 ${\rm hii1762 }$   F2 03 48 14.0 +24 19 10 8 21 193 $ 0.66 \pm 0.09$ $-0.23 \pm 0.10$ 7859 29.51 $\pm$0.05
8,9 ${\rm hii1827 }$   M3 03 48 21.7 +23 58 24 13 22 10 $ 0.42 \pm 0.12$ $-0.09 \pm 0.14$ 8872 29.27 $\pm$0.07
8,9 ${\rm hii1856 }$   F9 03 48 26.2 +24 02 58 3 22 47 >0.08 $ 0.01 \pm 0.18$ 9047 28.86 $\pm$0.17
8,9 ${\rm hii1912 +B }$ VB F7 03 48 33.4 +24 10 55 17 23 23 $ 0.66 \pm 0.26$ $-0.18 \pm 0.24$ 6403 28.72 $\pm$0.13
8,9 ${\rm hii2034 }$   K3 03 48 49.3 +23 58 32 7 28 112 $ 0.67 \pm 0.12$ $-0.07 \pm 0.11$ 9895 29.40 $\pm$0.06
8,9 ${\rm hii2027 }$ SB1 K1 03 48 49.4 +24 16 08 8 27 66 $ 0.60 \pm 0.14$ $-0.10 \pm 0.14$ 9587 28.94 $\pm$0.07
8,9 ${\rm hii2181 }$   B9 03 49 10.6 +24 08 16 6 31 50 $ 0.37 \pm 0.15$ $ 0.14 \pm 0.15$ 8904 29.27 $\pm$0.08
8,9 ${\rm hii2208 }$   K8 03 49 15.4 +24 33 42 21 41 25 $ 0.24 \pm 0.16$ $ 0.26 \pm 0.20$ 8352 29.27 $\pm$0.09
8,9 ${\rm hii2500 }$ SB   03 49 57.4 +23 51 02 11 45 558 $ 0.54 \pm 0.05$ $ 0.01 \pm 0.06$ 7622 29.83 $\pm$0.03
11-13 ${\rm hii157 }$   F2 03 43 38.9 +23 39 17 39 44 8 $ 0.56 \pm 0.14$ $ 0.23 \pm 0.12$ 24716 29.26 $\pm$0.07
  ${\rm sk630 }$         50           $\pm$ 
11-13 ${\rm hii193 }$   G9 03 43 52.0 +24 14 37 24 44 55 $ 0.58 \pm 0.09$ $ 0.08 \pm 0.08$ 22771 29.53 $\pm$0.04
11-13 ${\rm hcg135 }$   K4 03 43 57.0 +23 57 42 34 38 22 $ 0.89 \pm 0.36$ $ 0.46 \pm 0.23$ 29214 28.76 $\pm$0.18
11-13 ${\rm hii296 }$ SB1 K1 03 44 12.5 +23 22 39 22 46 209 $ 0.56 \pm 0.08$ $ 0.14 \pm 0.07$ 24483 29.29 $\pm$0.04
11-13 ${\rm hii357 +B }$ VB K6 03 44 28.1 +24 09 56 23 35 61 $ 0.49 \pm 0.06$ $ 0.25 \pm 0.06$ 27954 29.33 $\pm$0.03
11-13 ${\rm hii370 }$   M1 03 44 31.2 +23 52 18 17 30 38 >-0.55 $-0.03 \pm 0.15$ 29912 28.56 $\pm$0.19
11-13 ${\rm hii476 }$ SB G9 03 44 55.2 +23 55 15 21 25 237 $ 0.92 \pm 0.08$ $-0.08 \pm 0.07$ 32084 28.91 $\pm$0.04
11-13 ${\rm hii513 }$   K7 03 45 01.4 +23 23 52 46 37 56 $ 0.82 \pm 0.21$ $ 0.09 \pm 0.13$ 26727 29.06 $\pm$0.09
11-13 ${\rm hii522 }$ SB1 K2 03 45 04.0 +23 50 18 12 23 12 $ 0.66 \pm 0.39$ $-0.52 \pm 0.23$ 30274 28.20 $\pm$0.16
11-13 ${\rm hii531 }$   F2 03 45 06.0 +24 15 40 11 31 14 $ 0.83 \pm 0.54$ $ 0.10 \pm 0.33$ 29064 28.60 $\pm$0.22
11-13 ${\rm hii563 }$ SB1 B8 03 45 11.1 +24 28 09 17 41 500 $ 0.36 \pm 0.05$ $-0.01 \pm 0.06$ 26434 29.40 $\pm$0.03
11-13 ${\rm hii625 }$   K5 03 45 21.2 +23 43 35 5 21 1240 $ 0.98 \pm 0.02$ $ 0.35 \pm 0.04$ 21754 29.72 $\pm$0.02
11-13 ${\rm hii659 }$   K3 03 45 23.3 +23 26 56 23 32 154 $ 0.91 \pm 0.12$ $ 0.17 \pm 0.09$ 26220 29.11 $\pm$0.07
  ${\rm hii636 }$   K4     35 31 34       $\pm$ 
11-13 ${\rm hii676 }$   K7 03 45 31.4 +23 45 38 26 18 36 >0.09 $ 0.14 \pm 0.12$ 32275 28.61 $\pm$0.14
11-13 ${\rm hii686 }$   M6 03 45 35.6 +24 18 03 40 29 615 $ 0.47 \pm 0.04$ $ 0.03 \pm 0.05$ 30959 29.63 $\pm$0.02
11-13 ${\rm hii708 }$   G2 03 45 36.1 +24 04 52 14 19 727 $ 0.92 \pm 0.04$ $ 0.00 \pm 0.06$ 21938 29.57 $\pm$0.03
11-13 ${\rm hii727 }$   F9 03 45 39.0 +24 37 23 21 46 278 $ 0.56 \pm 0.06$ $ 0.08 \pm 0.06$ 24003 29.78 $\pm$0.03
11-13 ${\rm hii738 +B }$ VB K5 03 45 39.6 +23 45 12 6 16 2868 $ 0.97 \pm 0.02$ $ 0.27 \pm 0.03$ 35081 29.50 $\pm$0.01
11-13 ${\rm hii746 }$ SB? G9 03 45 44.0 +24 25 29 40 35 81 $ 0.79 \pm 0.18$ $-0.15 \pm 0.13$ 27517 28.77 $\pm$0.08
11-13 ${\rm hii761 }$ SB1 G4 03 45 44.6 +24 13 10 6 24 1106 $ 0.44 \pm 0.03$ $-0.09 \pm 0.04$ 33918 29.37 $\pm$0.02
11-13 ${\rm hii801 +B }$ VB A2 03 45 47.6 +23 08 28 28 46 19 >-0.82 $-0.54 \pm 0.18$ 25127 28.49 $\pm$0.22
11-13 ${\rm hii793 }$   M1 03 45 49.5 +23 51 09 9 12 28 $ 0.63 \pm 0.30$ $-0.06 \pm 0.21$ 36741 28.36 $\pm$0.13
11-13 ${\rm hii799 }$   K7 03 45 50.9 +23 52 22 8 12 89 >0.34 $-0.08 \pm 0.13$ 37970 28.50 $\pm$0.14
11-13 ${\rm hii870 +B }$ VB K6 03 46 03.2 +23 44 15 7 13 109 $ 0.94 \pm 0.15$ $ 0.05 \pm 0.12$ 36638 28.42 $\pm$0.07
11-13 ${\rm hii890 +B }$ VB K7 03 46 05.5 +24 21 56 42 30 29 $ 0.41 \pm 0.21$ $ 0.17 \pm 0.19$ 29085 28.48 $\pm$0.11
11-13 ${\rm hii915 +B }$ VB K6 03 46 09.0 +23 20 53 9 33 483 $ 0.39 \pm 0.05$ $ 0.00 \pm 0.06$ 30194 29.25 $\pm$0.03
  ${\rm hii923 }$   G1     30           29.55 $\pm$0.03
11-13 ${\rm hii930 }$   K6 03 46 13.3 +24 03 08 11 12 354 $ 0.69 \pm 0.07$ $-0.01 \pm 0.08$ 37503 29.07 $\pm$0.04
11-13 ${\rm hii956 +B }$ VB F1 03 46 16.2 +24 11 17 9 19 1355 $ 0.63 \pm 0.03$ $-0.04 \pm 0.04$ 27733 29.41 $\pm$0.02
11-13 ${\rm hii975 }$ PHB K1 03 46 18.0 +23 29 09 5 24 149 >-0.05 $ 0.27 \pm 0.09$ 32869 28.58 $\pm$0.13
11-13 ${\rm hii980 }$   B9 03 46 19.8 +23 56 47 10 7 3636 $ 0.84 \pm 0.02$ $-0.04 \pm 0.03$ 38142 29.75 $\pm$0.01
11-13 ${\rm hii1039 }$   K7 03 46 27.9 +23 35 30 6 18 604 >0.62 $ 0.13 \pm 0.06$ 33638 29.18 $\pm$0.12
11-13 ${\rm hii1032 }$   G8 03 46 28.4 +24 26 02 2 33 2011 $ 0.80 \pm 0.02$ $ 0.17 \pm 0.03$ 30336 30.03 $\pm$0.01
11-13 ${\rm hii1081 }$   M0 03 46 34.2 +23 18 02 27 35 17 $ 0.22 \pm 0.25$ $ 0.00 \pm 0.25$ 28982 28.65 $\pm$0.15
11-13 ${\rm hii1084 }$   F2 03 46 34.5 +23 37 20 10 16 69 $ 0.90 \pm 0.18$ $ 0.13 \pm 0.14$ 36685 28.63 $\pm$0.09
11-13 ${\rm hii1103 }$   M2 03 46 36.3 +23 24 28 21 28 125 >-0.22 $ 0.29 \pm 0.10$ 34629 28.85 $\pm$0.14
11-13 ${\rm hii1117 }$ SB2 G8 03 46 38.4 +23 47 08 15 6 536 $ 0.32 \pm 0.06$ $-0.11 \pm 0.07$ 40018 28.82 $\pm$0.03
11-13 ${\rm hii1122 }$ SB2 F6 03 46 39.6 +24 06 06 9 13 897 $ 0.61 \pm 0.05$ $-0.10 \pm 0.06$ 37905 29.05 $\pm$0.02
11-13 ${\rm hii1124 }$   K3 03 46 39.7 +24 01 42 8 8 1189 $ 0.62 \pm 0.04$ $ 0.07 \pm 0.05$ 39961 29.38 $\pm$0.02
11-13 ${\rm hii1136 }$   K3 03 46 40.7 +23 29 47 9 23 2317 $ 0.95 \pm 0.02$ $ 0.17 \pm 0.03$ 32112 29.81 $\pm$0.02
11-13 ${\rm hii1215 }$   G2 03 46 54.0 +23 34 56 8 18 245 $ 0.64 \pm 0.07$ $-0.19 \pm 0.08$ 35106 29.08 $\pm$0.04
11-13 ${\rm hcg244 }$     03 46 54.2 +24 17 11 10 24 110 $ 0.84 \pm 0.12$ $ 0.16 \pm 0.10$ 34727 29.00 $\pm$0.06
11-13 ${\rm hii1275 }$   K0 03 47 01.0 +23 29 47 5 23 31 $ 0.30 \pm 0.18$ $-0.03 \pm 0.19$ 27335 28.66 $\pm$0.10
11-13 ${\rm hii1286 }$ SB2 M5 03 47 03.8 +23 36 55 5 17 230 >0.43 $ 0.08 \pm 0.09$ 35506 28.61 $\pm$0.13
11-13 ${\rm hii1280 }$   K5 03 47 03.9 +24 09 28 9 17 329 $ 0.56 \pm 0.07$ $ 0.07 \pm 0.08$ 34157 29.16 $\pm$0.04
11-13 ${\rm hii1284 }$   F0 03 47 06.6 +23 59 39 35 8 8 >-0.31 $-0.30 \pm 0.35$ 38557 27.83 $\pm$0.29
11-13 ${\rm hii1306 }$   K8 03 47 08.7 +23 42 37 4 12 1416 $ 0.67 \pm 0.03$ $ 0.05 \pm 0.05$ 41597 29.48 $\pm$0.02
  ${\rm hii1298 +B }$ VB K3     32           29.18 $\pm$0.02
11-13 ${\rm hii1309 }$   F6 03 47 08.9 +24 17 03 28 24 556 $ 0.65 \pm 0.05$ $-0.08 \pm 0.05$ 32639 29.51 $\pm$0.03
11-13 ${\rm hii1321 }$   M1 03 47 09.5 +23 44 28 6 10 472 $ 0.29 \pm 0.06$ $ 0.01 \pm 0.08$ 38922 29.10 $\pm$0.03
11-13 ${\rm hcg258 }$   K8 03 47 13.8 +23 49 50 6 7 368 $ 0.43 \pm 0.08$ $-0.06 \pm 0.08$ 39375 29.02 $\pm$0.04
11-13 ${\rm hii1355 +B }$ VB M0 03 47 18.3 +24 02 06 7 12 1113 $ 0.64 \pm 0.04$ $ 0.03 \pm 0.05$ 38946 29.10 $\pm$0.02
11-13 ${\rm hii1397 +B }$ VB A2 03 47 24.3 +23 54 48 6 9 1321 $ 0.60 \pm 0.04$ $-0.11 \pm 0.05$ 39501 29.13 $\pm$0.02
  ${\rm hii1392 +B }$ VB       11           $\pm$ 
29.13 0.02                      
11-13 ${\rm hii1384 }$   A7 03 47 24.6 +24 35 10 14 43 1076 $ 0.52 \pm 0.03$ $ 0.13 \pm 0.03$ 26187 30.14 $\pm$0.01
11-13 ${\rm hcg269 }$     03 47 26.5 +23 38 02 1 18 71 $ 0.77 \pm 0.15$ $ 0.24 \pm 0.13$ 35248 28.71 $\pm$0.07
11-13 ${\rm hii1432 }$   B9 03 47 29.6 +24 06 17 9 16 20 $ 0.12 \pm 0.23$ $ 0.16 \pm 0.25$ 32335 28.37 $\pm$0.13
11-13 ${\rm hcg277 }$   M1 03 47 33.7 +23 41 31 5 16 221 $ 0.38 \pm 0.08$ $-0.10 \pm 0.09$ 37837 29.00 $\pm$0.04
11-13 ${\rm hii1512 }$   K6 03 47 38.4 +23 27 39 27 28 33 $ 0.33 \pm 0.16$ $-0.11 \pm 0.16$ 32535 28.78 $\pm$0.09
11-13 ${\rm hii1532 }$   K6 03 47 41.2 +23 44 19 8 15 765 $ 0.36 \pm 0.05$ $ 0.08 \pm 0.06$ 34856 29.38 $\pm$0.02
11-13 ${\rm hii1531 }$   K6 03 47 41.6 +23 58 14 7 14 713 $ 0.48 \pm 0.05$ $ 0.07 \pm 0.06$ 36768 29.32 $\pm$0.03
11-13 ${\rm ALR929 }$   M4 03 47 48.3 +24 29 30 30 39 13 $ 0.45 \pm 0.26$ $-0.01 \pm 0.22$ 27751 28.86 $\pm$0.13
  ${\rm hcg295 }$         60           $\pm$ 
11-13 ${\rm hii1613 }$   F9 03 47 52.6 +23 56 23 7 16 390 $ 0.46 \pm 0.07$ $-0.04 \pm 0.07$ 33868 29.20 $\pm$0.03
11-13 ${\rm hii1726 +B }$ VB F9 03 48 07.8 +24 08 32 11 24 276 $ 0.58 \pm 0.07$ $-0.23 \pm 0.07$ 32533 28.99 $\pm$0.03
11-13 ${\rm hii1785 }$   M5 03 48 14.9 +24 29 52 40 42 8 $-0.26 \pm 0.30$ <0.70 22872 28.63 $\pm$0.20
11-13 ${\rm hcg315 }$     03 48 15.2 +23 37 56 21 25 384 $ 0.49 \pm 0.06$ $ 0.06 \pm 0.06$ 26959 29.49 $\pm$0.03
  ${\rm hii1797 }$   F9     28           $\pm$ 
11-13 ${\rm hii1794 }$   G2 03 48 19.3 +23 53 15 33 21 201 $ 0.54 \pm 0.08$ $ 0.08 \pm 0.09$ 21618 29.27 $\pm$0.04
11-13 ${\rm hii1856 }$   F9 03 48 27.4 +24 02 52 18 25 134 $ 0.36 \pm 0.09$ $-0.11 \pm 0.09$ 33401 29.13 $\pm$0.04
11-13 ${\rm hii1924 }$   G1 03 48 33.9 +23 25 43 24 37 60 $ 0.30 \pm 0.11$ $-0.22 \pm 0.12$ 28445 29.16 $\pm$0.06
11-13 ${\rm hii1912 +B }$ VB F7 03 48 36.4 +24 11 19 34 31 170 $ 0.59 \pm 0.08$ $ 0.03 \pm 0.08$ 30996 29.00 $\pm$0.04
11-13 ${\rm hii2034 }$   K3 03 48 49.4 +23 58 17 23 29 512 $ 0.57 \pm 0.05$ $ 0.16 \pm 0.05$ 22939 29.66 $\pm$0.03
11-13 ${\rm hcg349 }$     03 48 56.9 +24 19 29 17 40 8 $ 0.54 \pm 0.13$ $ 0.21 \pm 0.11$ 26891 29.24 $\pm$0.06
11-13 ${\rm hii2147 }$ SB2 G9 03 49 06.1 +23 46 45 8 33 5098 $ 0.54 \pm 0.02$ $ 0.12 \pm 0.02$ 30582 30.04 $\pm$0.01
11-13 ${\rm hii2181 }$   B9 03 49 11.2 +24 08 14 1 36 205 $ 0.59 \pm 0.06$ $ 0.15 \pm 0.06$ 28773 29.52 $\pm$0.03
11-13 ${\rm hii2368 }$   M3 03 49 32.8 +23 26 28 56 47 53 $ 0.54 \pm 0.16$ $-0.21 \pm 0.13$ 19648 29.29 $\pm$0.08
11-13 ${\rm hii2366 }$   K0 03 49 42.8 +24 17 53 87 47 371 $-0.03 \pm 0.03$ $ 0.12 \pm 0.04$ 23316 30.03 $\pm$0.02
  ${\rm hcg375 }$         88           $\pm$ 
11-13 ${\rm hii2500 }$ SB   03 49 57.2 +23 50 46 5 44 1747 $ 0.60 \pm 0.02$ $ 0.16 \pm 0.02$ 25260 29.98 $\pm$0.01
11-13 ${\rm hii2548 }$   K7 03 50 06.8 +24 08 29 69 48 32 >-0.59 $ 0.30 \pm 0.06$ 22238 29.19 $\pm$0.15


   
Table 4: X-ray data for Hyads detected in PSPC observations.
Obs. No.  Designation Mult. SpT. X-ray position $\Delta$ Offax ML HR1 HR2 Expos $\log{L_{\rm X}}$
        $\alpha_{2000}$ $\delta_{2000}$ [ $^{\prime\prime}$] [$^\prime$]       [s] [erg/s]
10 ${\rm VB40}$ SB F9 04 22 43.8 +15 03 30 10 30 6659 $-0.22 \pm 0.01$ $-0.10 \pm 0.02$ 20214 29.36 $\pm$0.01
10 ${\rm VA260}$   M5 04 23 02.1 +15 13 59 21 27 43 $-0.42 \pm 0.12$ $-0.01 \pm 0.25$ 31740 27.84 $\pm$0.08
10 ${\rm VA275}$   M5 04 23 24.4 +14 25 35 13 45 219 $-0.23 \pm 0.05$ $-0.33 \pm 0.08$ 24794 28.75 $\pm$0.03
10 ${\rm VB46}$   K1 04 23 32.5 +14 40 12 2 31 432 $-0.45 \pm 0.05$ $-0.24 \pm 0.10$ 23619 28.58 $\pm$0.03
10 ${\rm VA288}$ SB2 M4 04 23 50.4 +14 55 20 3 17 9143 $-0.23 \pm 0.02$ $-0.04 \pm 0.03$ 32137 28.99 $\pm$0.01
10 ${\rm VB50}$ SB? G1 04 24 12.3 +14 45 25 5 22 12852 $-0.15 \pm 0.01$ $ 0.00 \pm 0.02$ 29019 29.52 $\pm$0.01
10 ${\rm VA334}$   M0 04 24 50.2 +15 52 21 36 46 937 $-0.13 \pm 0.02$ $-0.11 \pm 0.04$ 22583 29.24 $\pm$0.01
10 ${\rm VA368}$   M4 04 25 50.4 +15 00 13 4 15 172 $-0.47 \pm 0.08$ $ 0.12 \pm 0.17$ 35439 27.89 $\pm$0.05
10 ${\rm VA383}$   M1 04 26 04.7 +15 02 33 5 18 1382 $-0.17 \pm 0.04$ $ 0.04 \pm 0.06$ 31263 28.70 $\pm$0.02
10 ${\rm VB59}$ SB F9 04 26 05.9 +15 32 09 41 32 3489 $-0.23 \pm 0.02$ $-0.01 \pm 0.03$ 24946 29.15 $\pm$0.01
10 ${\rm VB141}$ var A8 04 26 19.9 +15 37 09 12 38 10838 $-0.13 \pm 0.01$ $ 0.05 \pm 0.01$ 24307 30.22 $\pm$0.00
14 ${\rm VB93}$   K2 04 33 36.1 +16 45 33 27 36 36 $-0.22 \pm 0.18$ $ 0.73 \pm 0.22$ 1626 28.74 $\pm$0.12
14 ${\rm VB184}$ SB K6 04 35 59.6 +16 32 29 7 2 129 $-0.38 \pm 0.13$ $ 0.55 \pm 0.22$ 2321 28.28 $\pm$0.09
14 ${\rm VB101}$ SB1 F5 04 36 40.3 +15 52 11 6 40 128 $-0.20 \pm 0.10$ $ 0.04 \pm 0.16$ 1219 28.93 $\pm$0.06
14 ${\rm LP415-266}$     04 37 31.5 +16 45 48 17 27 33 $-0.52 \pm 0.18$ $ 0.52 \pm 0.37$ 1896 28.45 $\pm$0.13
14 ${\rm LP415-171}$     04 38 30.3 +17 02 32 17 48 12 $-0.41 \pm 0.23$ $ 0.36 \pm 0.57$ 1425 28.66 $\pm$0.16
16 ${\rm VA382}$   M3 04 26 04.5 +17 07 11 7 37 68 $ 0.01 \pm 0.12$ $-0.03 \pm 0.16$ 1845 29.07 $\pm$0.07
16 ${\rm VB63}$ SB G2 04 26 24.7 +16 51 14 2 31 441 $-0.22 \pm 0.06$ $-0.18 \pm 0.10$ 2029 29.11 $\pm$0.04
16 ${\rm VB64}$   G4 04 26 40.1 +16 44 50 1 30 187 $-0.43 \pm 0.08$ $-0.21 \pm 0.16$ 2133 29.06 $\pm$0.05
16 ${\rm RE240 A + B}$ VB   04 27 10.6 +16 26 01 62 37 9 $-0.49 \pm 0.29$ $-0.11 \pm 0.64$ 1960 27.97 $\pm$0.22
16 ${\rm VB189}$   K9 04 28 12.1 +16 28 26 23 30 8 $-0.58 \pm 0.45$ <0.03 1841 27.96 $\pm$0.45
16 ${\rm VA486 +B}$ VB M2 04 28 27.8 +17 41 33 16 43 297 $-0.26 \pm 0.07$ $ 0.27 \pm 0.11$ 1756 29.14 $\pm$0.04
16 ${\rm VA490}$   A3 04 28 39.5 +16 58 13 4 2 357 $-0.98 \pm 0.02$ <-0.42 2760 28.49 $\pm$0.05
16 ${\rm VB73}$   G1 04 28 48.5 +17 17 04 4 19 224 $-0.34 \pm 0.09$ $-0.42 \pm 0.16$ 2019 29.02 $\pm$0.06
16 ${\rm VB75}$ SB F8 04 28 59.3 +16 09 53 21 48 61 $-0.25 \pm 0.10$ $-0.06 \pm 0.17$ 1628 29.02 $\pm$0.06
16 ${\rm VB77}$ SB1 F7 04 29 21.0 +17 32 32 11 36 433 $-0.36 \pm 0.06$ $-0.05 \pm 0.11$ 1985 29.07 $\pm$0.04
16 ${\rm VA559}$   M2 04 29 55.8 +16 54 59 9 19 135 $ 0.06 \pm 0.12$ $-0.26 \pm 0.16$ 1863 28.98 $\pm$0.07
16 ${\rm VB180}$   K1 04 29 58.6 +16 40 29 14 26 120 $-0.47 \pm 0.10$ $-0.46 \pm 0.19$ 2193 28.71 $\pm$0.07
16 ${\rm VA575}$   M4 04 30 25.0 +17 30 21 27 41 24 $-0.35 \pm 0.21$ $-0.39 \pm 0.38$ 1905 28.70 $\pm$0.13
17 ${\rm V471Tau}$   K1 03 50 25.4 +17 14 41 16 40 14370 $-0.78 \pm 0.00$ $ 0.11 \pm 0.02$ 18824 30.38 $\pm$0.00
17 ${\rm VB6}$   F2 03 53 09.8 +17 19 50 11 19 1607 $-0.19 \pm 0.03$ $-0.25 \pm 0.05$ 20683 28.83 $\pm$0.02
18F ${\rm V471Tau}$   K1 03 50 24.4 +17 15 02 14 0 22707 $-0.70 \pm 0.01$ $ 0.03 \pm 0.04$ 3733 29.98 $\pm$0.04
18 ${\rm VB6}$   F2 03 53 09.0 +17 19 40 10 39 68 $-0.18 \pm 0.12$ $-0.09 \pm 0.18$ 2737 28.79 $\pm$0.07
20 ${\rm VA122}$   M5 04 17 58.3 +14 33 00 44 48 17 $ 0.04 \pm 0.21$ $ 0.05 \pm 0.24$ 5961 28.49 $\pm$0.13
20 ${\rm VB30}$ SB1 A9 04 19 58.1 +14 02 33 28 43 432 $-0.34 \pm 0.05$ $-0.05 \pm 0.09$ 7038 28.78 $\pm$0.03
20 ${\rm VA203}$   M5 04 20 56.3 +14 51 39 8 10 46 $-0.03 \pm 0.18$ $-0.35 \pm 0.23$ 10766 27.91 $\pm$0.10
20 ${\rm VB37}$   F4 04 21 34.8 +14 24 36 1 18 2134 $-0.17 \pm 0.04$ $-0.32 \pm 0.05$ 7608 29.37 $\pm$0.02
20 ${\rm VA216}$   K3 04 21 35.1 +14 41 46 4 5 120 $-0.33 \pm 0.12$ $-0.18 \pm 0.20$ 10651 28.07 $\pm$0.07
20 ${\rm VB38}$ SB1 F1 04 22 03.9 +14 04 38 8 39 185 $-0.52 \pm 0.07$ $-0.07 \pm 0.16$ 7192 28.44 $\pm$0.04
20 ${\rm VB40}$ SB F9 04 22 44.1 +15 03 23 1 30 3988 $-0.25 \pm 0.02$ $-0.03 \pm 0.04$ 7257 29.35 $\pm$0.01
20 ${\rm VA275}$   M5 04 23 23.8 +14 25 30 12 35 123 $-0.37 \pm 0.09$ $-0.05 \pm 0.17$ 7952 28.59 $\pm$0.06
20 ${\rm VB46}$   K1 04 23 31.4 +14 39 47 30 33 76 $-0.59 \pm 0.10$ $ 0.16 \pm 0.28$ 6714 28.43 $\pm$0.07
20 ${\rm VA288}$ SB2 M4 04 23 49.8 +14 55 21 6 39 1009 $-0.27 \pm 0.04$ $ 0.07 \pm 0.06$ 7704 29.02 $\pm$0.02
20F ${\rm VB50}$ SB? G1 04 24 12.3 +14 45 48 18 0 4852 $-0.23 \pm 0.02$ $-0.01 \pm 0.04$ 6550 29.51 $\pm$0.11
21 ${\rm VA135}$   K5 04 18 22.0 +17 25 02 17 41 1090 $-0.30 \pm 0.03$ $-0.06 \pm 0.05$ 11667 29.39 $\pm$0.02
21 ${\rm VB27}$   G7 04 19 07.3 +17 31 58 30 30 570 $-0.42 \pm 0.05$ $-0.25 \pm 0.10$ 9717 28.91 $\pm$0.03
21 ${\rm VA213}$   M4 04 21 37.5 +16 53 55 35 38 108 $-0.28 \pm 0.09$ $-0.06 \pm 0.15$ 12031 28.59 $\pm$0.05
21 ${\rm VB39}$ SB1 G5 04 22 45.7 +16 47 40 21 49 349 $-0.38 \pm 0.04$ $-0.11 \pm 0.09$ 11161 28.61 $\pm$0.03
21 ${\rm VB41}$ SB K3 04 22 56.9 +17 32 36 11 24 173 $-0.40 \pm 0.08$ $ 0.07 \pm 0.16$ 9432 28.27 $\pm$0.05
22 ${\rm VB77}$ SB1 F7 04 29 21.3 +17 32 52 14 45 1320 $-0.24 \pm 0.02$ $-0.15 \pm 0.04$ 11436 29.16 $\pm$0.01
22 ${\rm VB78}$   F5 04 29 28.9 +17 51 59 23 48 400 $-0.49 \pm 0.04$ $-0.12 \pm 0.09$ 11821 29.08 $\pm$0.02
22 ${\rm VA575}$   M4 04 30 24.1 +17 30 06 7 30 316 $-0.19 \pm 0.06$ $-0.13 \pm 0.09$ 14379 28.76 $\pm$0.03
22 ${\rm VA622}$   M1 04 31 28.6 +17 42 59 9 18 51 $-0.63 \pm 0.12$ $ 0.45 \pm 0.37$ 12939 27.81 $\pm$0.10
22 ${\rm VA627}$ SB1 K4 04 31 37.2 +17 42 37 4 16 1949 $-0.33 \pm 0.03$ $-0.01 \pm 0.06$ 15652 28.61 $\pm$0.02
22 ${\rm VA657}$   M4 04 32 07.9 +17 39 55 2 9 203 $-0.17 \pm 0.09$ $ 0.07 \pm 0.13$ 19352 28.18 $\pm$0.05
22 ${\rm VA673}$ SB F0 04 32 23.6 +17 45 06 2 13 1808 $-0.23 \pm 0.04$ $-0.05 \pm 0.06$ 18386 28.59 $\pm$0.02
22 ${\rm VA674}$   M4 04 32 29.0 +17 54 20 4 22 344 $-0.21 \pm 0.06$ $ 0.09 \pm 0.10$ 12205 28.67 $\pm$0.04
22 ${\rm LH992}$     04 32 50.4 +17 30 10 15 4 7 $-0.24 \pm 0.35$ $ 0.58 \pm 0.57$ 20190 27.22 $\pm$0.26
22 ${\rm VB93}$   K2 04 33 41.1 +16 47 02 89 48 16 $-0.05 \pm 0.13$ $ 0.17 \pm 0.17$ 10783 28.67 $\pm$0.07
23 ${\rm H495}$   M4 04 30 42.5 +14 39 18 24 27 13 $-0.86 \pm 0.22$ $ 0.76 \pm 1.97$ 11190 27.63 $\pm$0.23
23 ${\rm VB96}$ SB K1 04 33 58.9 +15 09 55 10 34 604 $-0.33 \pm 0.04$ $-0.15 \pm 0.08$ 10947 28.64 $\pm$0.03
25F ${\rm VA677}$ SB2 K5 04 32 25.6 +13 06 46 1 0 2690 $-0.11 \pm 0.02$ $ 0.05 \pm 0.04$ 7028 29.70 $\pm$0.10
26F ${\rm LP357-4}$   M5 03 49 43.1 +24 18 57 13 0 16804 $ 0.52 \pm 0.07$ $ 0.11 \pm 0.08$ 23027 29.64 $\pm$0.09
26 ${\rm VB170}$   K5 03 51 02.5 +23 54 10 8 30 178 $-0.37 \pm 0.08$ $-0.28 \pm 0.15$ 17806 28.30 $\pm$0.04
28 ${\rm L40}$   M2 04 25 13.1 +18 59 43 80 49 32 $ 0.23 \pm 0.19$ $-0.10 \pm 0.20$ 807 29.22 $\pm$0.10
28 ${\rm VB58}$ SB G5 04 25 52.7 +18 51 44 14 43 117 $-0.36 \pm 0.10$ $-0.43 \pm 0.19$ 922 28.93 $\pm$0.06
28 ${\rm LP415-108}$     04 27 36.2 +19 26 42 3 21 46 $-0.28 \pm 0.20$ $-0.45 \pm 0.31$ 1018 28.67 $\pm$0.13
28 ${\rm L57}$ SB1 K4 04 27 58.1 +18 30 18 20 41 38 $-0.28 \pm 0.17$ $-0.30 \pm 0.27$ 983 28.63 $\pm$0.11
28 ${\rm L72}$ SB? M4 04 27 59.7 +18 45 39 10 26 95 $-0.21 \pm 0.13$ $-0.06 \pm 0.22$ 1207 28.69 $\pm$0.08
28 ${\rm VB70}$   K4 04 28 37.2 +19 10 50 2 2 29 $-0.16 \pm 0.28$ $-0.44 \pm 0.41$ 1665 28.24 $\pm$0.18
28 ${\rm VB69}$ SB1 G8 04 28 37.8 +19 44 18 11 33 55 $ 0.03 \pm 0.16$ $-0.22 \pm 0.21$ 1030 28.82 $\pm$0.09
28 ${\rm L71}$ SB M3 04 29 03.1 +18 40 27 30 30 68 $ 0.12 \pm 0.16$ $-0.22 \pm 0.19$ 874 28.86 $\pm$0.08
28 ${\rm VB81}$   F6 04 30 17.8 +19 50 19 7 46 104 $-0.08 \pm 0.11$ $ 0.05 \pm 0.18$ 944 29.44 $\pm$0.06
29 ${\rm LP358-739}$     04 35 13.3 +22 59 30 11 10 18 $ 0.22 \pm 0.35$ $ 0.02 \pm 0.44$ 605 28.68 $\pm$0.20
29 ${\rm VB100}$   F3 04 36 26.8 +23 20 07 37 27 25 $-0.97 \pm 0.12$ >-0.53 487 28.45 $\pm$0.18
29 ${\rm VB105}$   G0 04 38 55.2 +23 09 40 72 44 18 $-0.70 \pm 0.21$ >-0.26 331 29.06 $\pm$0.17
32 ${\rm VB25}$   K3 04 18 17.5 +16 05 36 28 35 41 $-0.53 \pm 0.14$ $ 0.11 \pm 0.33$ 2971 28.56 $\pm$0.10
32 ${\rm VB28}$ SB1 K3 04 19 47.5 +15 37 41 5 2 8648 $ 0.13 \pm 0.03$ $-0.25 \pm 0.03$ 4163 29.63 $\pm$0.01
33 ${\rm VA115}$   M1 04 17 45.0 +13 40 25 56 46 20 $-0.09 \pm 0.16$ $-0.06 \pm 0.19$ 14857 28.29 $\pm$0.10
33 ${\rm VA146}$   M0 04 18 49.0 +13 22 01 31 42 16 $ 0.12 \pm 0.12$ $ 0.62 \pm 0.11$ 12793 28.54 $\pm$0.07
33 ${\rm VB30}$ SB1 A9 04 19 57.6 +14 02 33 26 16 5381 $-0.26 \pm 0.02$ $ 0.06 \pm 0.04$ 18728 28.92 $\pm$0.01
33 ${\rm VB34}$ SB2 F6 04 20 52.8 +13 51 50 4 2 8279 $-0.47 \pm 0.02$ $-0.31 \pm 0.04$ 23520 28.85 $\pm$0.01
33 ${\rm VB37}$   F4 04 21 34.7 +14 24 37 2 34 2748 $-0.18 \pm 0.02$ $-0.20 \pm 0.04$ 16278 29.44 $\pm$0.01
33 ${\rm VB38}$ SB1 F1 04 22 04.5 +14 04 48 20 22 549 $-0.45 \pm 0.05$ $-0.31 \pm 0.09$ 14273 28.35 $\pm$0.03
33 ${\rm VA294}$   K7 04 23 52.0 +14 03 36 42 45 32 $-0.56 \pm 0.11$ $ 0.27 \pm 0.28$ 13151 28.22 $\pm$0.09
34 ${\rm VA282}$   M5 04 23 42.1 +15 52 45 11 28 15 $-0.15 \pm 0.22$ $ 0.01 \pm 0.30$ 9876 28.01 $\pm$0.14
34 ${\rm VB49}$   G0 04 24 12.8 +16 23 01 16 33 1040 $-0.22 \pm 0.04$ $-0.11 \pm 0.06$ 11647 29.16 $\pm$0.02
34 ${\rm VA321}$   M4 04 24 29.1 +15 52 51 19 17 34 $-0.38 \pm 0.15$ $ 0.00 \pm 0.28$ 14596 27.81 $\pm$0.11
34F ${\rm VA334}$   M0 04 24 48.0 +15 52 27 3 0 9289 $-0.17 \pm 0.02$ $ 0.08 \pm 0.03$ 15105 29.31 $\pm$0.07
34 ${\rm VA352}$   M5 04 25 16.2 +16 18 12 2 21 107 $-0.18 \pm 0.10$ $-0.09 \pm 0.16$ 10450 28.39 $\pm$0.06
34 ${\rm VB57}$ SB F7 04 25 37.2 +15 56 28 2 2 14895 $-0.16 \pm 0.02$ $-0.22 \pm 0.03$ 17384 29.29 $\pm$0.01
34 ${\rm VB59}$ SB F9 04 26 05.8 +15 31 27 1 26 5027 $-0.18 \pm 0.02$ $-0.06 \pm 0.03$ 13005 29.23 $\pm$0.01
34F ${\rm VB141}$ var A8 04 26 20.6 +15 37 08 3 0 18333 $-0.09 \pm 0.01$ $ 0.01 \pm 0.02$ 11477 30.21 $\pm$0.03
34 ${\rm RE240 A + B}$ VB   04 27 02.8 +16 25 33 53 35 37 $ 0.28 \pm 0.25$ $ 0.00 \pm 0.20$ 9027 27.99 $\pm$0.13
34 ${\rm VB65}$   F9 04 27 37.5 +15 36 01 46 35 368 $-0.48 \pm 0.04$ $-0.17 \pm 0.09$ 10045 28.92 $\pm$0.03
34 ${\rm VB189}$   K9 04 28 13.9 +16 28 25 47 49 9 <0.41 $ 0.00 \pm 0.00$ 8655 28.34 $\pm$0.22
34 ${\rm VB71}$ SB K3 04 28 34.0 +15 57 30 17 42 10940 $ 0.05 \pm 0.01$ $-0.08 \pm 0.02$ 8792 30.04 $\pm$0.01
35 ${\rm VB190}$ SB K8 04 28 50.5 +16 17 23 2 43 158 $-0.14 \pm 0.09$ $-0.04 \pm 0.15$ 1226 29.06 $\pm$0.05
35 ${\rm VB85}$ var F5 04 30 46.7 +16 09 01 5 32 545 $-0.24 \pm 0.06$ $-0.12 \pm 0.11$ 1424 29.42 $\pm$0.04
36F ${\rm VA677}$ SB2 K5 04 32 25.4 +13 06 37 10 0 1782 $-0.14 \pm 0.03$ $-0.03 \pm 0.04$ 10820 29.62 $\pm$0.10
37 ${\rm VA677}$ SB2 K5 04 32 25.5 +13 06 48 0 45 2975 $-0.09 \pm 0.02$ $-0.06 \pm 0.04$ 8945 29.55 $\pm$0.01
40 ${\rm LP415-157}$     04 35 50.3 +19 47 18 35 47 95 $-0.22 \pm 0.08$ $ 0.04 \pm 0.13$ 15416 28.61 $\pm$0.05
40 ${\rm L86}$   M3 04 36 03.7 +18 53 16 5 34 1156 $-0.18 \pm 0.03$ $ 0.00 \pm 0.05$ 17699 29.06 $\pm$0.02
40 ${\rm RE355}$   M6 04 36 29.5 +19 05 23 17 23 135 $-0.15 \pm 0.09$ $ 0.02 \pm 0.14$ 12730 28.39 $\pm$0.05
40 ${\rm L87}$   M3 04 36 39.1 +18 36 43 14 40 20 $-0.50 \pm 0.19$ $-0.62 \pm 0.46$ 13712 27.93 $\pm$0.15
40 ${\rm LP415-292}$   M3 04 38 54.5 +19 10 56 2 11 2667 $-0.11 \pm 0.03$ $-0.10 \pm 0.05$ 23238 28.92 $\pm$0.02
40 ${\rm RE391}$   M8 04 39 52.9 +19 39 28 20 37 102 $-0.36 \pm 0.08$ $ 0.31 \pm 0.15$ 17756 28.38 $\pm$0.05
40 ${\rm J310}$   M1 04 40 13.9 +19 16 54 23 30 35 $-0.39 \pm 0.14$ $ 0.23 \pm 0.26$ 15839 28.01 $\pm$0.10
41 ${\rm BD22^\circ669}$   K3 04 18 10.6 +23 17 05 19 2 15615 $-0.09 \pm 0.02$ $-0.01 \pm 0.03$ 4193 30.10 $\pm$0.01
42 ${\rm L18}$   K2 04 08 38.6 +23 45 39 45 46 26 $-0.34 \pm 0.19$ $-0.97 \pm 0.39$ 1965 28.68 $\pm$0.12
42 ${\rm L20}$   K4 04 11 56.0 +23 38 12 3 2 12822 $-0.04 \pm 0.02$ $-0.04 \pm 0.03$ 3584 29.88 $\pm$0.01
43 ${\rm VA404}$ SB K8 04 26 41.7 +12 41 20 16 37 323 $-0.10 \pm 0.06$ $-0.03 \pm 0.08$ 5425 28.67 $\pm$0.03
43 ${\rm VA407}$   K5 04 26 55.4 +13 08 39 28 27 24 $-0.31 \pm 0.18$ $-0.70 \pm 0.27$ 5749 28.28 $\pm$0.12
43 ${\rm H430}$   M1 04 28 17.8 +13 49 49 71 47 28 $-0.35 \pm 0.22$ $-0.81 \pm 0.40$ 3657 28.54 $\pm$0.16
43 ${\rm VB84}$   A8 04 30 34.2 +13 43 44 44 48 140 $-0.08 \pm 0.08$ $ 0.19 \pm 0.11$ 3510 29.24 $\pm$0.04
44 ${\rm VB178}$ SB? K1 04 28 07.7 +13 51 29 59 36 11 $ 0.46 \pm 0.37$ $-0.33 \pm 0.27$ 3050 28.35 $\pm$0.19
44 ${\rm VB84}$   A8 04 30 37.3 +13 43 34 9 2 784 $-0.21 \pm 0.06$ $-0.11 \pm 0.09$ 4200 29.13 $\pm$0.03
44 ${\rm VB88}$   F9 04 31 29.5 +13 54 17 5 17 570 $-0.05 \pm 0.06$ $-0.23 \pm 0.09$ 3471 29.36 $\pm$0.03
44F ${\rm VA677}$ SB2 K5 04 32 24.9 +13 07 03 18 0 372 $-0.12 \pm 0.07$ $-0.12 \pm 0.11$ 2502 29.55 $\pm$0.07
46 ${\rm RE367}$   K9 04 37 14.9 +12 05 42 84 47 15 $ 0.60 \pm 0.64$ $-0.62 \pm 0.31$ 5156 28.24 $\pm$0.40
47 ${\rm RE367}$   K9 04 37 06.9 +12 06 14 43 48 35 $-0.13 \pm 0.16$ $-0.04 \pm 0.24$ 2439 28.74 $\pm$0.10
48 ${\rm VA83}$   M1 04 16 01.8 +16 59 00 8 14 705 $-0.01 \pm 0.07$ $ 0.17 \pm 0.09$ 4102 29.13 $\pm$0.04
48 ${\rm RE126}$   M9 04 16 13.1 +16 47 44 5 8 17 $-0.02 \pm 0.33$ $-0.11 \pm 0.40$ 4067 27.90 $\pm$0.20
48 ${\rm VA94}$   M3 04 16 43.2 +16 49 20 2 2 117 $-0.09 \pm 0.15$ $-0.08 \pm 0.21$ 4622 28.40 $\pm$0.08
48 ${\rm VA119}$   M3 04 17 55.0 +16 32 38 4 23 189 $-0.12 \pm 0.10$ $-0.22 \pm 0.14$ 2849 28.94 $\pm$0.05
48 ${\rm VB25}$   K3 04 18 18.8 +16 06 05 46 48 33 $-0.28 \pm 0.15$ $ 0.15 \pm 0.23$ 2595 28.80 $\pm$0.10
  ${\rm VA131}$   M5     87           28.74 $\pm$0.10
48 ${\rm VA135}$   K5 04 18 23.2 +17 25 15 21 42 293 $-0.21 \pm 0.07$ $ 0.12 \pm 0.12$ 3081 29.33 $\pm$0.04
48 ${\rm VB29}$ VB F9 04 19 54.5 +16 31 13 9 48 324 $-0.35 \pm 0.06$ $ 0.02 \pm 0.11$ 2731 28.98 $\pm$0.04
49 ${\rm VA407}$   K5 04 26 57.5 +13 08 40 52 46 9 $-0.09 \pm 0.27$ $ 0.07 \pm 0.31$ 4015 28.42 $\pm$0.17
49 ${\rm VA432}$   M4 04 27 23.5 +14 07 06 6 23 36 $-0.10 \pm 0.17$ $ 0.03 \pm 0.24$ 5420 28.29 $\pm$0.10
49 ${\rm VB177}$ SB K4 04 27 23.9 +14 15 47 20 30 101 $-0.17 \pm 0.10$ $-0.24 \pm 0.16$ 6201 28.32 $\pm$0.06
49 ${\rm VB179}$   K2 04 27 49.1 +14 25 01 32 36 59 $-0.51 \pm 0.11$ $-0.16 \pm 0.26$ 4871 28.72 $\pm$0.08
49 ${\rm VB178}$ SB? K1 04 28 04.5 +13 52 08 3 6 547 $-0.29 \pm 0.07$ $-0.46 \pm 0.11$ 7561 28.39 $\pm$0.04
49 ${\rm H430}$   M1 04 28 22.2 +13 49 21 1 2 201 $ 0.01 \pm 0.11$ $-0.04 \pm 0.15$ 8036 28.43 $\pm$0.06
49 ${\rm RE287}$   K3 04 30 27.3 +13 36 56 30 31 11 $ 0.75 \pm 0.54$ $ 0.78 \pm 0.25$ 4683 28.13 $\pm$0.27
49 ${\rm VB84}$   A8 04 30 36.7 +13 43 28 5 32 961 $-0.21 \pm 0.04$ $-0.03 \pm 0.07$ 5878 29.28 $\pm$0.02
49 ${\rm VB88}$   F9 04 31 29.1 +13 54 10 4 44 209 $-0.23 \pm 0.07$ $-0.11 \pm 0.11$ 4692 29.16 $\pm$0.04
53 ${\rm VB117}$ SB K4 04 49 13.4 +24 48 08 16 22 4743 $-0.12 \pm 0.03$ $ 0.03 \pm 0.04$ 6703 29.50 $\pm$0.01
54 ${\rm VB117}$ SB K4 04 49 12.4 +24 48 28 14 47 1392 $-0.12 \pm 0.03$ $-0.03 \pm 0.05$ 6032 29.46 $\pm$0.02
59F ${\rm VB169}$   A7 06 02 23.2 +09 38 52 4 0 5348 $-0.12 \pm 0.03$ $-0.10 \pm 0.05$ 10630 29.34 $\pm$0.11
64 ${\rm VB79}$   K0 04 29 31.5 +17 52 44 52 39 133 $-0.49 \pm 0.08$ $-0.16 \pm 0.18$ 2827 28.95 $\pm$0.05
64F ${\rm VA673}$ SB F0 04 32 23.5 +17 45 10 6 0 9268 $-0.13 \pm 0.04$ $ 0.09 \pm 0.06$ 3212 29.60 $\pm$0.03
65 ${\rm RE202}$   M8 04 24 32.1 +18 59 05 25 37 8 $-0.18 \pm 0.35$ $-0.02 \pm 0.51$ 1888 28.26 $\pm$0.26
70 ${\rm VB162}$ SB2 G7 04 15 41.8 +20 49 08 9 29 489 $-0.41 \pm 0.06$ $ 0.24 \pm 0.11$ 3227 28.92 $\pm$0.04
70 ${\rm VB26}$   G8 04 18 57.5 +19 54 39 16 44 47 $-0.37 \pm 0.13$ $ 0.04 \pm 0.25$ 2548 28.68 $\pm$0.09
71 ${\rm LP357-309}$     04 12 51.8 +22 24 21 79 46 12 $ 0.26 \pm 0.41$ $-0.88 \pm 0.38$ 1050 28.55 $\pm$0.27
72 ${\rm VB119}$ SB1 F9 04 50 24.0 +17 12 07 2 23 493 $-0.19 \pm 0.08$ $-0.14 \pm 0.13$ 716 29.23 $\pm$0.05
72 ${\rm LP416-94}$ SB K6 04 51 49.0 +17 16 41 18 14 13 $-0.57 \pm 0.29$ <-0.75 1796 27.62 $\pm$0.26
73F ${\rm VB190}$ SB K8 04 28 50.2 +16 17 11 11 0 918 $-0.09 \pm 0.03$ $ 0.07 \pm 0.04$ 10382 29.22 $\pm$0.20
73F ${\rm VB85}$ var F5 04 30 46.5 +16 08 55 4 0 3507 $-0.15 \pm 0.03$ $-0.08 \pm 0.04$ 11914 29.50 $\pm$0.06
74F ${\rm VB45}$ SB1 F0 04 23 26.1 +16 46 53 23 0 187 $ 0.04 \pm 0.17$ $-0.02 \pm 0.22$ 8337 28.59 $\pm$0.40
74 ${\rm VB47}$   A5 04 24 06.4 +17 25 18 81 48 30 $ 0.90 \pm 0.24$ $ 0.48 \pm 0.12$ 9152 28.57 $\pm$0.10
74 ${\rm VB49}$   G0 04 24 14.0 +16 23 13 33 42 883 $-0.21 \pm 0.04$ $-0.16 \pm 0.07$ 9553 29.17 $\pm$0.02
74 ${\rm VB51}$   F5 04 24 22.3 +17 04 40 4 33 505 $-0.45 \pm 0.05$ $-0.45 \pm 0.10$ 11405 28.92 $\pm$0.03
74 ${\rm VB52}$ SB? G1 04 24 28.1 +16 53 14 4 29 1902 $-0.21 \pm 0.03$ $-0.18 \pm 0.05$ 11501 28.94 $\pm$0.02
74 ${\rm VB175}$   K4 04 25 00.3 +16 59 01 7 22 127 $-0.23 \pm 0.10$ $-0.13 \pm 0.17$ 11438 28.29 $\pm$0.06
74 ${\rm VA351}$ SB3 M4 04 25 13.8 +17 16 11 7 30 3790 $-0.14 \pm 0.02$ $ 0.02 \pm 0.04$ 11683 29.00 $\pm$0.01
74 ${\rm VA352}$   M5 04 25 18.2 +16 17 27 51 37 45 $-0.20 \pm 0.17$ $ 0.12 \pm 0.25$ 9877 28.22 $\pm$0.10
74 ${\rm LH994}$     04 25 25.1 +17 34 04 74 45 15 $ 0.58 \pm 0.38$ $ 0.22 \pm 0.23$ 9549 28.23 $\pm$0.20
74 ${\rm VA382}$   M3 04 26 04.2 +17 07 11 5 17 628 $-0.09 \pm 0.06$ $ 0.11 \pm 0.09$ 12637 28.70 $\pm$0.03
74 ${\rm RE230}$   M9 04 26 18.4 +17 02 59 8 12 18 $-0.09 \pm 0.26$ $-0.20 \pm 0.34$ 14627 27.54 $\pm$0.16
74 ${\rm VB63}$ SB G2 04 26 24.5 +16 51 13 1 2 8156 $-0.15 \pm 0.02$ $-0.18 \pm 0.03$ 16104 29.04 $\pm$0.01
74 ${\rm VB64}$   G4 04 26 40.0 +16 44 50 1 6 4023 $-0.20 \pm 0.03$ $-0.12 \pm 0.05$ 14345 29.14 $\pm$0.02
74 ${\rm RE240 A + B}$ VB   04 27 07.5 +16 26 18 35 26 17 $-0.15 \pm 0.24$ $-0.33 \pm 0.33$ 11244 27.55 $\pm$0.15
74 ${\rm VA420}$   M2 04 27 16.7 +17 14 46 14 26 13 $-0.67 \pm 0.20$ $-0.27 \pm 0.64$ 11502 27.62 $\pm$0.17
74 ${\rm VB189}$   K9 04 28 10.3 +16 28 50 34 32 24 $-0.20 \pm 0.17$ $-0.42 \pm 0.25$ 11240 28.10 $\pm$0.11
74 ${\rm VA490}$   A3 04 28 40.0 +16 58 20 13 32 541 <-0.84 $ 0.00 \pm 0.00$ 8789 29.08 $\pm$0.12
74 ${\rm VB73}$   G1 04 28 48.5 +17 17 09 2 42 1373 $-0.15 \pm 0.03$ $ 0.01 \pm 0.05$ 10227 29.35 $\pm$0.02
74 ${\rm VB190}$ SB K8 04 28 52.3 +16 17 36 28 48 1244 $-0.16 \pm 0.03$ $ 0.00 \pm 0.05$ 9073 29.14 $\pm$0.02
74 ${\rm VA559}$   M2 04 29 54.5 +16 54 28 27 49 100 $-0.37 \pm 0.09$ $ 0.15 \pm 0.17$ 9274 28.71 $\pm$0.05
75 ${\rm VB23}$ SB2 G6 04 18 02.4 +18 14 50 35 49 164 $-0.45 \pm 0.08$ $-0.08 \pm 0.16$ 2597 28.89 $\pm$0.05
80 ${\rm VB24}$ SB A9 04 18 23.6 +21 34 52 14 29 1335 $-0.23 \pm 0.04$ $-0.17 \pm 0.07$ 5613 29.15 $\pm$0.02
80 ${\rm L44}$   M3 04 19 32.6 +21 45 45 46 37 1411 $-0.07 \pm 0.04$ $ 0.06 \pm 0.06$ 5252 29.49 $\pm$0.02
80 ${\rm LP414-167}$   M6 04 20 31.4 +21 22 55 27 21 51 $-0.03 \pm 0.17$ $-0.24 \pm 0.22$ 4053 28.42 $\pm$0.09
80 ${\rm VB35}$   F5 04 21 31.8 +21 02 19 4 31 882 $-0.27 \pm 0.05$ $-0.28 \pm 0.08$ 5563 29.26 $\pm$0.03
82 ${\rm LP358-352}$     04 30 17.0 +26 23 36 70 44 74 $-0.57 \pm 0.27$ $ 0.20 \pm 0.66$ 4157 28.04 $\pm$0.24
84 ${\rm LP358-134}$     04 21 48.6 +24 13 57 68 47 13 $-0.54 \pm 0.20$ $ 0.19 \pm 0.42$ 3555 28.37 $\pm$0.14
84 ${\rm LP358-534}$   M4 04 21 56.0 +23 25 00 6 15 212 $ 0.01 \pm 0.11$ $-0.13 \pm 0.15$ 5452 28.60 $\pm$0.06
84 ${\rm LP358-724}$   M4 04 25 19.2 +23 03 57 24 40 12 $-0.35 \pm 0.23$ $-0.68 \pm 0.52$ 4063 28.26 $\pm$0.16
90 ${\rm VA638 + LP415-175}$ VB M1 04 31 46.8 +15 38 01 35 40 35 $-0.15 \pm 0.14$ $-0.32 \pm 0.20$ 13356 27.98 $\pm$0.08
90 ${\rm VB89}$ SB1 F2 04 31 52.1 +15 51 59 53 44 193 $-0.70 \pm 0.06$ $-0.65 \pm 0.26$ 12334 28.16 $\pm$0.05
90 ${\rm VB91 +B}$ VB K1 04 32 51.7 +16 00 54 40 38 279 $-0.46 \pm 0.05$ $-0.25 \pm 0.12$ 13142 28.39 $\pm$0.04
90 ${\rm VB92}$   G8 04 32 59.4 +15 49 05 3 29 505 $-0.40 \pm 0.05$ $-0.35 \pm 0.09$ 15171 28.71 $\pm$0.03
90 ${\rm VB95}$ SB A8 04 33 54.0 +14 50 59 55 40 25 $-0.25 \pm 0.13$ $ 0.51 \pm 0.17$ 12852 27.96 $\pm$0.09
90 ${\rm VB96}$ SB K1 04 33 59.2 +15 09 50 11 22 1249 $-0.28 \pm 0.04$ $-0.14 \pm 0.07$ 11092 28.60 $\pm$0.02
90 ${\rm VB183}$   K2 04 34 33.1 +15 49 50 16 19 428 $-0.31 \pm 0.06$ $-0.13 \pm 0.11$ 13466 28.55 $\pm$0.04
90 ${\rm VB97}$   G2 04 34 35.7 +15 30 15 6 2 3491 $-0.25 \pm 0.03$ $-0.28 \pm 0.05$ 19540 28.89 $\pm$0.02
90 ${\rm VA763}$   M5 04 35 28.5 +15 23 51 7 15 243 $-0.20 \pm 0.08$ $ 0.05 \pm 0.13$ 17162 28.25 $\pm$0.05
90 ${\rm VB99}$   K1 04 36 05.2 +15 41 03 1 25 455 $-0.27 \pm 0.05$ $-0.10 \pm 0.09$ 15732 28.63 $\pm$0.03
90 ${\rm VB101}$ SB1 F5 04 36 41.3 +15 52 02 10 38 1794 $-0.23 \pm 0.03$ $-0.21 \pm 0.05$ 12180 28.95 $\pm$0.02
90 ${\rm VB102}$ SB G2 04 37 31.6 +15 08 55 10 48 1151 $-0.18 \pm 0.03$ $-0.13 \pm 0.05$ 10582 28.98 $\pm$0.02
91 ${\rm VB18}$   G3 04 14 27.6 +12 26 10 5 2 3897 $-0.16 \pm 0.03$ $-0.34 \pm 0.04$ 17523 29.02 $\pm$0.02
91 ${\rm VA68}$   K6 04 14 51.1 +13 03 24 11 37 102 $-0.29 \pm 0.09$ $ 0.02 \pm 0.15$ 12057 28.43 $\pm$0.05
95 ${\rm LP301-63}$     03 53 37.4 +31 12 53 32 24 94 $-0.19 \pm 0.11$ $-0.29 \pm 0.17$ 5958 28.55 $\pm$0.06
96 ${\rm VB26}$   G8 04 19 00.5 +19 54 59 49 47 39 $-0.40 \pm 0.13$ $ 0.27 \pm 0.28$ 2458 28.73 $\pm$0.09
96 ${\rm VB31}$   F9 04 20 14.0 +19 13 59 15 47 592 $-0.11 \pm 0.06$ $ 0.09 \pm 0.09$ 2618 29.43 $\pm$0.03
96 ${\rm RE162}$   M7 04 21 39.2 +20 18 13 14 28 26 $ 0.01 \pm 0.20$ $ 0.04 \pm 0.27$ 3674 28.39 $\pm$0.12
96 ${\rm LP415-30}$   M5 04 22 40.2 +20 33 57 39 43 19 $-0.49 \pm 0.21$ $ 0.04 \pm 0.57$ 2866 28.38 $\pm$0.16
96 ${\rm VB43}$ SB1 K2 04 23 22.9 +19 39 37 7 18 163 $-0.32 \pm 0.10$ $-0.39 \pm 0.17$ 3509 28.66 $\pm$0.06
97 ${\rm VB90}$   F4 04 32 05.3 +05 24 34 8 16 303 $-0.40 \pm 0.08$ $-0.21 \pm 0.16$ 1669 29.08 $\pm$0.05
100 ${\rm VB90}$   F4 04 32 04.8 +05 24 37 1 15 416 $-0.10 \pm 0.09$ $-0.30 \pm 0.12$ 1849 29.13 $\pm$0.05
101 ${\rm VB90}$   F4 04 32 04.8 +05 24 44 7 15 614 $-0.29 \pm 0.07$ $-0.22 \pm 0.11$ 2800 29.06 $\pm$0.04
102 ${\rm VB90}$   F4 04 32 04.7 +05 24 37 2 16 352 $-0.38 \pm 0.08$ $-0.69 \pm 0.13$ 1767 29.02 $\pm$0.05
103 ${\rm VB90}$   F4 04 32 05.1 +05 24 38 4 17 416 $-0.13 \pm 0.08$ $-0.48 \pm 0.12$ 1842 29.17 $\pm$0.05
111 ${\rm VB19 +B}$ VB F8 04 14 34.9 +10 42 16 14 22 6772 $-0.18 \pm 0.02$ $-0.17 \pm 0.03$ 17520 29.16 $\pm$0.01
111 ${\rm RE131}$   M5 04 16 35.0 +10 22 57 18 47 42 $ 0.07 \pm 0.15$ $ 0.01 \pm 0.16$ 11934 28.48 $\pm$0.08
115 ${\rm VA622}$   M1 04 31 29.0 +17 43 06 2 14 30 $-0.29 \pm 0.16$ $ 0.05 \pm 0.27$ 7132 28.07 $\pm$0.10
115 ${\rm VA673}$ SB F0 04 32 23.7 +17 45 01 3 18 438 $-0.24 \pm 0.07$ $ 0.17 \pm 0.12$ 5865 28.48 $\pm$0.04
8,9 ${\rm LP357-4}$   M5 03 49 42.6 +24 19 13 10 40 386 $-0.27 \pm 0.05$ $-0.06 \pm 0.10$ 8223 29.02 $\pm$0.03
11-13 ${\rm LP357-4}$   M5 03 49 42.8 +24 17 53 70 47 371 $-0.03 \pm 0.03$ $ 0.12 \pm 0.04$ 23316 29.23 $\pm$0.02
30,31 ${\rm LP358-371}$     04 30 55.8 +24 50 07 11 27 23 $-0.30 \pm 0.19$ $-0.91 \pm 0.30$ 5801 28.10 $\pm$0.13
30,31 ${\rm L74}$ SB M3 04 33 23.8 +23 59 38 12 33 845 $-0.17 \pm 0.05$ $-0.12 \pm 0.07$ 5237 28.98 $\pm$0.03
38,39 ${\rm VA83}$   M1 04 16 01.3 +16 58 54 6 20 195 $-0.25 \pm 0.08$ $-0.04 \pm 0.13$ 15173 28.34 $\pm$0.05
38,39 ${\rm RE126}$   M9 04 16 13.3 +16 47 49 2 12 117 $-0.20 \pm 0.11$ $-0.30 \pm 0.16$ 23838 27.94 $\pm$0.07
38,39 ${\rm VA94}$   M3 04 16 43.1 +16 49 20 1 19 224 $-0.41 \pm 0.07$ $-0.17 \pm 0.14$ 16985 28.29 $\pm$0.05
38,39 ${\rm VA96}$   M4 04 16 53.5 +16 21 04 24 27 10 $-0.96 \pm 0.17$ $-0.93 \pm 4.19$ 19755 27.28 $\pm$0.22
38,39 ${\rm VA119}$   M3 04 17 55.6 +16 32 44 12 35 896 $-0.17 \pm 0.04$ $-0.09 \pm 0.06$ 18599 28.97 $\pm$0.02
46,47 ${\rm LP475-141}$     04 37 14.8 +11 19 24 5 7 292 $ 0.11 \pm 0.09$ $ 0.02 \pm 0.11$ 13838 28.39 $\pm$0.05
46,47 ${\rm LP475-214}$     04 38 09.2 +11 19 03 4 6 169 $-0.36 \pm 0.10$ $-0.05 \pm 0.18$ 13868 28.11 $\pm$0.06
25,36,37 ${\rm VA537}$   M5 04 29 16.2 +12 21 30 7 31 249 $-0.34 \pm 0.06$ $-0.05 \pm 0.10$ 26712 28.48 $\pm$0.04
25,36,37 ${\rm LH81}$     04 30 10.0 +13 00 30 55 40 8 $-0.07 \pm 0.29$ $-0.11 \pm 0.32$ 27933 27.85 $\pm$0.19
25,36,37 ${\rm VA607}$   M3 04 30 57.5 +12 18 15 3 8 7029 $-0.14 \pm 0.02$ $-0.01 \pm 0.03$ 40932 29.05 $\pm$0.01
25,36,37 ${\rm RE297}$   K6 04 31 12.8 +12 28 42 5 5 130 $ 0.05 \pm 0.11$ $-0.14 \pm 0.13$ 42338 27.86 $\pm$0.06
25,36,37 ${\rm VA683}$   M8 04 32 45.7 +12 04 04 6 28 222 $-0.05 \pm 0.07$ $-0.17 \pm 0.09$ 25937 28.50 $\pm$0.04
25,36,37 ${\rm VA709}$   M4 04 33 26.2 +13 02 41 10 49 123 $-0.28 \pm 0.06$ $-0.27 \pm 0.11$ 22782 28.74 $\pm$0.04
25,36,37 ${\rm VA722}$   A3 04 33 46.0 +12 42 46 17 39 21 <0.34 >-0.99 28694 28.13 $\pm$0.17
65,66 ${\rm VB53}$   F3 04 24 56.6 +19 02 34 7 34 324 $-0.32 \pm 0.07$ $-0.30 \pm 0.12$ 2918 29.21 $\pm$0.04
65,66 ${\rm L40}$   M2 04 25 14.5 +18 58 20 5 28 128 $-0.15 \pm 0.11$ $-0.16 \pm 0.16$ 3261 28.81 $\pm$0.06
65,66 ${\rm VB176}$   K3 04 25 42.1 +18 00 03 96 51 44 $ 0.10 \pm 0.12$ $-0.26 \pm 0.17$ 2355 29.08 $\pm$0.07
65,66 ${\rm VB58}$ SB G5 04 25 51.6 +18 51 54 4 18 1106 $-0.25 \pm 0.05$ $-0.34 \pm 0.08$ 2940 28.98 $\pm$0.03
65,66 ${\rm LP415-875}$     04 26 23.6 +18 01 34 97 46 11 $ 0.34 \pm 0.25$ $ 0.05 \pm 0.25$ 2495 28.72 $\pm$0.13
65,66 ${\rm LP415-108}$     04 27 37.3 +19 27 25 42 41 23 $-0.20 \pm 0.18$ $-0.11 \pm 0.28$ 2667 28.60 $\pm$0.11
65,66 ${\rm L57}$ SB1 K4 04 27 58.5 +18 29 58 5 21 273 $-0.15 \pm 0.09$ $-0.14 \pm 0.14$ 2903 28.65 $\pm$0.05
65,66 ${\rm L72}$ SB? M4 04 27 59.5 +18 45 38 8 12 431 $-0.16 \pm 0.08$ $ 0.14 \pm 0.13$ 3583 28.60 $\pm$0.05
65,66 ${\rm VB70}$   K4 04 28 37.3 +19 10 56 5 32 29 $-0.19 \pm 0.18$ $-0.13 \pm 0.27$ 2705 28.52 $\pm$0.12
65,66 ${\rm L71}$ SB M3 04 29 01.5 +18 40 24 9 28 616 $-0.23 \pm 0.06$ $ 0.08 \pm 0.10$ 3204 28.95 $\pm$0.03
67-69 ${\rm VB26}$   G8 04 18 59.2 +19 54 36 21 48 28 $-0.22 \pm 0.18$ $-0.91 \pm 0.29$ 2515 28.60 $\pm$0.11
67-69 ${\rm GH7-163}$     04 19 04.7 +19 33 02 27 41 8 $-0.02 \pm 0.20$ $-0.11 \pm 0.26$ 2831 28.57 $\pm$0.12
67-69 ${\rm VB31}$   F9 04 20 13.0 +19 14 05 5 31 667 $-0.18 \pm 0.06$ $-0.14 \pm 0.09$ 3292 29.29 $\pm$0.03
67-69 ${\rm Bry262}$     04 21 48.2 +19 28 37 35 4 10 <-0.85 $ 0.00 \pm 0.00$ 4428 27.46 $\pm$0.47
67-69 ${\rm VB43}$ SB1 K2 04 23 22.6 +19 39 30 1 20 81 $-0.20 \pm 0.15$ $ 0.07 \pm 0.24$ 2430 28.57 $\pm$0.09
75,76 ${\rm VB32}$   F3 04 20 24.9 +18 44 30 4 25 2276 $-0.27 \pm 0.03$ $-0.13 \pm 0.05$ 13940 29.19 $\pm$0.02
75,76 ${\rm LP415-543}$     04 20 27.3 +18 54 10 20 33 50 $-0.15 \pm 0.13$ $ 0.36 \pm 0.18$ 13764 28.26 $\pm$0.07
75,76 ${\rm VB36}$   F5 04 21 32.1 +18 25 06 3 2 3026 $-0.25 \pm 0.03$ $-0.42 \pm 0.05$ 19404 29.02 $\pm$0.02
75,76 ${\rm VA242}$   M3 04 22 39.4 +18 16 14 5 17 17 $-0.65 \pm 0.20$ $ 0.03 \pm 0.62$ 13427 27.53 $\pm$0.17
75,76 ${\rm VB174}$   K4 04 24 16.7 +18 00 55 43 45 40 $-0.42 \pm 0.13$ $ 0.13 \pm 0.26$ 11467 28.43 $\pm$0.09
92,93 ${\rm VB10}$   G1 04 06 16.4 +15 41 54 4 1 573 $-0.09 \pm 0.08$ $-0.20 \pm 0.12$ 2348 29.13 $\pm$0.04
92,93 ${\rm L15}$   K5 04 07 03.6 +15 20 10 37 24 11 $-0.21 \pm 0.30$ $ 0.11 \pm 0.43$ 1915 28.11 $\pm$0.21
92,93 ${\rm VB11 +B}$ VB F4 04 07 42.0 +15 09 44 1 38 113 $-0.40 \pm 0.10$ $-0.49 \pm 0.19$ 1681 28.74 $\pm$0.07
35,73 ${\rm VB65}$   F9 04 27 35.9 +15 35 22 1 36 669 $-0.33 \pm 0.04$ $-0.35 \pm 0.07$ 13261 29.05 $\pm$0.02
35,73 ${\rm VB71}$ SB K3 04 28 34.1 +15 57 44 6 29 12304 $ 0.04 \pm 0.01$ $-0.15 \pm 0.01$ 14275 29.90 $\pm$0.01
35,73 ${\rm VB72}$ SB1 A6 04 28 39.3 +15 52 32 17 25 141 $-0.28 \pm 0.08$ $ 0.00 \pm 0.14$ 12270 28.19 $\pm$0.05
35,73 ${\rm VB75}$ SB F8 04 28 59.1 +16 09 38 10 35 1436 $-0.23 \pm 0.03$ $-0.11 \pm 0.05$ 12815 29.06 $\pm$0.02
35,73 ${\rm VB181}$   K5 04 29 31.0 +16 14 54 12 37 70 $-0.25 \pm 0.11$ $-0.17 \pm 0.17$ 10270 28.58 $\pm$0.06
35,73 ${\rm RE281}$   M9 04 30 02.5 +16 03 54 27 25 14 <0.13 $ 0.00 \pm 0.00$ 15026 27.96 $\pm$0.19
35,73 ${\rm VB182}$ SB K1 04 30 34.6 +15 44 02 3 9 1336 $-0.27 \pm 0.04$ $-0.27 \pm 0.07$ 17040 28.50 $\pm$0.02
35,73 ${\rm VA610}$   M4 04 31 07.4 +16 23 23 55 47 48 $-0.33 \pm 0.10$ $-0.17 \pm 0.18$ 11016 28.67 $\pm$0.06
35,73 ${\rm VA638 + LP415-175}$ VB M1 04 31 46.0 +15 37 50 20 24 66 $-0.12 \pm 0.12$ $-0.26 \pm 0.16$ 13406 28.00 $\pm$0.07
35,73 ${\rm VB89}$ SB1 F2 04 31 51.6 +15 51 11 5 28 219 $-0.32 \pm 0.06$ $-0.08 \pm 0.11$ 13632 28.32 $\pm$0.04
35,73 ${\rm VB191}$   K7 04 31 52.3 +15 29 50 8 27 27 $-0.31 \pm 0.16$ $-0.49 \pm 0.26$ 15351 28.34 $\pm$0.10
35,73 ${\rm VB91 +B}$ VB K1 04 32 50.3 +16 00 11 10 45 78 $-0.45 \pm 0.08$ $ 0.00 \pm 0.17$ 10714 28.39 $\pm$0.06
35,73 ${\rm VB92}$   G8 04 32 59.5 +15 49 10 2 43 71 $-0.49 \pm 0.10$ $ 0.40 \pm 0.22$ 8477 28.64 $\pm$0.07
98,99 ${\rm L14}$   K7 04 08 26.7 +12 11 32 2 15 94 $-0.45 \pm 0.11$ $ 0.03 \pm 0.22$ 14852 27.88 $\pm$0.07
64,115 ${\rm VA486 +B}$ VB M2 04 28 30.2 +17 41 48 24 49 1521 $-0.15 \pm 0.03$ $-0.01 \pm 0.05$ 5706 29.30 $\pm$0.02
64,115 ${\rm VB77}$ SB1 F7 04 29 20.6 +17 32 45 3 42 1916 $-0.20 \pm 0.03$ $-0.17 \pm 0.05$ 7427 29.19 $\pm$0.02
64,115 ${\rm VB78}$   F5 04 29 30.3 +17 52 29 42 32 531 $-0.43 \pm 0.05$ $-0.14 \pm 0.10$ 7159 29.00 $\pm$0.03
64,115 ${\rm VA575}$   M4 04 30 24.1 +17 30 02 4 34 332 $-0.06 \pm 0.06$ $-0.17 \pm 0.09$ 7347 29.02 $\pm$0.03
64,115 ${\rm VA627}$ SB1 K4 04 31 37.1 +17 42 35 3 17 1214 $-0.17 \pm 0.05$ $-0.09 \pm 0.07$ 9238 28.65 $\pm$0.03
64,115 ${\rm VA657}$   M4 04 32 09.9 +17 40 02 31 20 39 $-0.03 \pm 0.19$ $ 0.10 \pm 0.24$ 7467 28.16 $\pm$0.10
64,115 ${\rm VA674}$   M4 04 32 29.1 +17 54 18 3 12 237 $-0.15 \pm 0.09$ $ 0.01 \pm 0.13$ 10814 28.40 $\pm$0.05
116,117 ${\rm L104}$   K8 05 01 36.2 +13 55 58 3 6 102 $-0.15 \pm 0.14$ $ 0.35 \pm 0.19$ 11236 28.05 $\pm$0.08
116,117 ${\rm VB187}$   G9 05 03 08.0 +13 43 50 5 18 318 $-0.27 \pm 0.07$ $-0.46 \pm 0.12$ 8551 28.75 $\pm$0.04


 
Table 5: X-ray data for TTS in Taurus-Auriga below the detection limit of the ROSAT PSPC.
Obs. No. Designation Type/ SpT X-ray position Offax Cts Expos $\log{L_{\rm X}}$
    Mult   $\alpha_{2000}$ $\delta_{2000}$ [arcmin]   [s] [erg/s]
2 ${\rm FPTau }$ C M4 04 14 47.2 +26 46 28 35.0 22.6 1105 <29.70
2 ${\rm CXTau }$ C M3 04 14 47.8 +26 48 12 36.6 25.9 1063 <29.77
5 ${\rm Mellote22\,253 }$ W G0 03 44 03.8 +24 30 13 15.6 2.9 663 <29.03
5 ${\rm BD+23^\circ501B }$ W K0 03 44 12.1 +24 02 00 22.1 5.5 457 <29.47
5 ${\rm BD+23^\circ502 }$ W G5 03 44 14.1 +24 06 23 18.9 0.2 520 <27.94
5 ${\rm RXJ0344.3+2447 }$ W G0 03 44 20.7 +24 47 19 31.2 19.0 515 <29.95
5 ${\rm Melotte22-345 }$ W G7 03 44 26.3 +24 35 25 22.5 1.4 358 <28.96
5 ${\rm RXJ0345.6+2454 }$ W G5 03 45 42.4 +24 54 21 47.8 60.0 422 <30.54
6 ${\rm Mellote22\,253 }$ W G0 03 44 03.8 +24 30 13 43.4 7.3 79 <30.35
6 ${\rm BD+23^\circ501B }$ W K0 03 44 12.1 +24 02 00 20.4 0.6 90 <29.19
6 ${\rm BD+23^\circ502 }$ W G5 03 44 14.1 +24 06 23 22.8 1.0 93 <29.40
6 ${\rm Melotte22-345 }$ W G7 03 44 26.3 +24 35 25 46.3 1.3 75 <29.64
6 ${\rm RXJ0348.8+2359 }$ W G7 03 48 50.1 +23 58 45 47.4 1.6 64 <26.82
7 ${\rm HHJ339 }$ C M5 03 48 26.5 +23 11 30 22.7 2.8 360 <29.27
7 ${\rm RXJ0348.8+2359 }$ W G7 03 48 50.1 +23 58 45 42.7 0.6 478 <28.48
7 ${\rm Melotte22-2147 }$ W G7 03 49 05.9 +23 46 54 30.4 7.7 480 <29.59
7 ${\rm Melotte22-2881 }$ W G7 03 50 55.0 +23 50 16 34.8 2.9 522 <29.14
10 ${\rm LH0419+15 }$ C M7 04 22 30.7 +15 26 31 39.4 21.4 25551 <28.31
10 ${\rm HD285751 }$ W K2 04 23 42.0 +15 37 36 35.9 3149.9 28110 <30.43
12 ${\rm BD+23^\circ502 }$ W G5 03 44 14.1 +24 06 23 36.1 348.0 8147 <30.01
13 ${\rm BD+23^\circ502 }$ W G5 03 44 14.1 +24 06 23 37.1 1448.6 19614 <30.25
14 ${\rm 2MWJ0438 }$ C M8 04 38 35.2 +16 34 35 38.4 67.9 1658 <30.00
20 ${\rm LH0416+14 }$ C M8 04 19 36.9 +14 33 33 25.2 75.1 8867 <29.31
20 ${\rm LH0418+15 }$ C M7 04 21 17.5 +15 30 03 48.0 26.8 5068 <29.11
20 ${\rm LH0419+15 }$ C M7 04 22 30.7 +15 26 31 48.2 3.1 6607 <28.06
22 ${\rm CoKuTau/2 }$ C M6 04 31 35.0 +18 13 42 43.8 852.4 10545 <30.29
22 ${\rm HLTau }$ C K7 04 31 38.4 +18 13 59 43.8 732.0 9969 <30.25
22 ${\rm XZTau N + S }$ CB -/M3 04 31 40.0 +18 13 58 43.7 640.2 9709 <29.90
22 ${\rm MHO-5 }$ C M6 04 32 16.0 +18 12 46 40.9 41.9 13097 <28.89
22 ${\rm RXJ0432.7+1809 }$ W M5 04 32 41.0 +18 09 24 37.4 12.3 14308 <28.32
22 ${\rm HNTau +/c }$ CB M4 04 33 39.4 +17 51 50 25.4 6.0 14385 <27.71
22 ${\rm DMTau }$ C M0 04 33 48.6 +18 10 11 42.2 135.9 11769 <29.45
23 ${\rm LH0429+15 }$ C M7 04 32 38.1 +15 08 55 26.6 138.9 8887 <29.58
24 ${\rm RXJ0453.1+3311 +B + C}$ WT G8 04 53 08.7 +33 12 02 48.0 93.4 17248 <28.64
29 ${\rm JH112 }$ C K6 04 32 48.9 +22 53 03 42.4 44.9 392 <30.44
29 ${\rm IRAS04303+2240 }$ C   04 33 18.7 +22 46 34 36.4 26.8 402 <30.21
29 ${\rm CITau }$ C K7 04 33 51.9 +22 50 31 28.2 14.3 500 <29.84
29 ${\rm JH108 }$ W M1 04 34 10.9 +22 51 45 23.7 3.1 460 <29.21
29 ${\rm HOTau }$ C M0 04 35 20.2 +22 32 14 23.1 5.3 412 <29.49
29 ${\rm FFTau +/c }$ WB K7 04 35 20.8 +22 54 25 7.5 5.0 593 <29.01
29 ${\rm Haro6-28 +/c }$ CB M5 04 35 56.7 +22 54 37 2.6 7.2 680 <29.11
29 ${\rm RXJ0438.3+2302 +/c}$ WB M1 04 38 15.6 +23 02 28 33.9 16.6 378 <29.73
29 ${\rm VYTau +/c }$ WB M0 04 39 17.3 +22 47 54 47.4 4.6 397 <29.15
30 ${\rm CoKuTau3 +/c }$ WB M1 04 35 41.1 +24 11 08 49.4 23.9 1147 <29.40
32 ${\rm LH0418+15 }$ C M7 04 21 17.5 +15 30 03 22.2 9.6 2023 <29.06
32 ${\rm LH0419+15 }$ C M7 04 22 30.7 +15 26 31 40.1 86.6 2683 <29.89
33 ${\rm LH0416+14 }$ C M8 04 19 36.9 +14 33 33 45.4 15.0 14010 <28.41
34 ${\rm HD285751 }$ W K2 04 23 42.0 +15 37 36 33.9 1643.2 12054 <30.52
38 ${\rm NTTS041529+1652 }$ W K5 04 18 21.4 +16 58 46 45.9 2.3 941 <28.77
45 ${\rm CWTau }$ C K3 04 14 16.9 +28 10 59 2.8 7.2 6221 <28.45
45 ${\rm Briceno1 }$ C cont 04 14 17.5 +28 06 11 6.8 3.7 5870 <28.19
45 ${\rm CYTau }$ C M1 04 17 33.7 +28 20 48 45.7 3.4 2794 <28.47
48 ${\rm 2MWJ0417 }$ W M8 04 17 24.8 +16 34 36 17.1 0.9 3391 <27.80
50 ${\rm Briceno8 }$ C M4 05 04 41.4 +25 09 57 32.0 108.2 5396 <29.69
52 ${\rm IRAS05023+2527 }$ C K7M0 05 05 22.7 +25 31 34 49.9 251.2 2743 <30.35
53 ${\rm IRAS04414+2506 }$ C   04 44 27.3 +25 11 31 47.5 450.2 5601 <30.29
54 ${\rm RXJ0446.7+2459 }$ C M4 04 46 42.7 +24 59 04 44.4 533.0 6283 <30.31
55 ${\rm GMTau }$ C cont 04 38 21.2 +26 09 14 24.5 60.0 7561 <29.28
55 ${\rm DOTau }$ C M0 04 38 28.5 +26 10 50 23.2 78.5 7047 <29.43
55 ${\rm GNTau +/c }$ CB cont 04 39 20.8 +25 45 03 23.4 10.5 6953 <28.26
55 ${\rm Kim1-44 }$ C   04 40 04.3 +26 04 49 2.7 7.0 10073 <28.23
55 ${\rm IRAS04385+2550 }$ C   04 41 34.1 +25 55 43 21.5 38.8 7219 <29.11
56 ${\rm GNTau +/c }$ CB cont 04 39 20.8 +25 45 03 42.6 18.9 5161 <28.65
56 ${\rm Elias18 }$ C   04 39 55.6 +25 45 02 35.9 146.1 5737 <29.79
56 ${\rm Kim1-44 }$ C   04 40 04.3 +26 04 49 48.4 324.4 4858 <30.21
56 ${\rm JH223 }$ W M2 04 40 49.4 +25 51 20 31.5 4.3 6059 <28.24
56 ${\rm IRAS04385+2550 }$ C   04 41 34.1 +25 55 43 31.4 97.1 6474 <29.56
56 ${\rm CoKuLkH\alpha332/G1/c}$ WTr   04 42 06.8 +25 23 40 2.8 31.4 7930 <28.98
56 ${\rm DPTau }$ C M1 04 42 37.6 +25 15 38 11.7 8.2 7723 <28.41
56 ${\rm IRAS04414+2506 }$ C   04 44 27.3 +25 11 31 34.3 4.6 6267 <28.25
62 ${\rm LkH\alpha329 }$ C K3 03 45 36.8 +32 25 59 21.5 61.8 9967 <29.18
62 ${\rm LkH\alpha330 }$ C G3 03 45 48.2 +32 24 13 21.9 12.1 11775 <28.40
63 ${\rm CYTau }$ C M1 04 17 33.7 +28 20 48 46.1 268.6 1747 <30.57
63 ${\rm LkCa5 }$ W M2 04 17 38.9 +28 33 01 47.5 268.0 1661 <30.59
63 ${\rm Kim3-76 }$ W   04 17 49.6 +28 29 37 44.2 14.6 1765 <29.30
63 ${\rm CoKuTau/1 +B }$ CB M0 04 18 51.5 +28 20 28 29.0 113.4 2248 <29.79
64 ${\rm J2-2041 }$ W M4 04 33 55.4 +18 38 39 44.3 274.1 2507 <30.42
64 ${\rm NTTS043220+1815 }$ W F8 04 35 14.0 +18 21 37 47.6 1.2 2225 <28.10
70 ${\rm RXJ0416.5+2053B }$ WB M6 04 16 27.2 +20 53 28 24.1 5.7 3095 <28.65
77 ${\rm LkH\alpha329 }$ C K3 03 45 36.8 +32 25 59 34.1 24.2 4982 <29.07
77 ${\rm LkH\alpha330 }$ C G3 03 45 48.2 +32 24 13 33.8 13.3 4697 <28.84
82 ${\rm FWTau +/c }$ CB M4 04 29 29.6 +26 16 54 48.8 14.7 5935 <28.48
82 ${\rm IQTau }$ C M1 04 29 51.4 +26 06 47 40.1 221.0 7129 <29.88
82 ${\rm J665 }$ W M5 04 31 58.4 +25 43 30 13.2 9.2 9516 <28.37
82 ${\rm IRAS04301+2608 }$ C   04 33 10.1 +26 14 17 22.8 29.1 7338 <28.98
82 ${\rm DLTau }$   K7 04 33 39.0 +25 20 39 34.9 16.0 7259 <28.73
83 ${\rm IRAS04216+2603 }$ C M1 04 24 39.5 +26 09 51 28.4 71.8 8045 <29.34
83 ${\rm FVTau +/c }$ CQ K5/M4/ 04 26 53.5 +26 06 55 33.0 16.1 6434 <28.18
  ${\rm +/c1 +/c2 }$   -/- 04 26 54.4 +26 06 52 33.1 16.5 6433 <28.19
83 ${\rm FVTau/c }$ CQu M4 04 26 54.4 +26 06 52 33.1 16.5 6433 <28.19
83 ${\rm DGTauB }$ C   04 27 02.6 +26 05 31 33.4 11.9 6505 <28.65
83 ${\rm DGTau }$ C K7M0 04 27 04.6 +26 06 17 34.3 11.4 6411 <28.63
84 ${\rm RXJ0423.0+2310 }$ W K1 04 23 01.2 +23 10 47 18.7 3.4 5498 <28.17
85 ${\rm Kim3-76 }$ W   04 17 49.6 +28 29 37 41.4 16.2 3843 <29.01
86 ${\rm Kim3-76 }$ W   04 17 49.6 +28 29 37 41.3 12.8 4207 <28.87
86 ${\rm Hubble4 }$ W K7 04 18 47.0 +28 20 08 47.1 199.3 3720 <30.11
86 ${\rm CoKuTau/1 +B }$ CB M0 04 18 51.5 +28 20 28 46.6 182.5 3750 <29.77
87 ${\rm Kim3-76 }$ W   04 17 49.6 +28 29 37 41.0 203.2 3487 <30.15
87 ${\rm Hubble4 }$ W K7 04 18 47.0 +28 20 08 46.7 227.1 3516 <30.19
87 ${\rm CoKuTau/1 +B }$ CB M0 04 18 51.5 +28 20 28 46.3 207.6 3514 <29.85
88 ${\rm Kim3-76 }$ W   04 17 49.6 +28 29 37 41.0 28.9 3720 <29.27
88 ${\rm Hubble4 }$ W K7 04 18 47.0 +28 20 08 46.7 168.3 3490 <30.07
88 ${\rm CoKuTau/1 +B }$ CB M0 04 18 51.5 +28 20 28 46.3 157.5 3574 <29.73
89 ${\rm Hubble4 }$ W K7 04 18 47.0 +28 20 08 46.7 207.7 3351 <30.18
89 ${\rm CoKuTau/1 +B }$ CB M0 04 18 51.5 +28 20 28 46.2 178.1 3414 <29.80
90 ${\rm LH0429+15 }$ C M7 04 32 38.1 +15 08 55 34.8 9.2 11779 <28.28
94 ${\rm V836Tau }$ W K7 05 03 06.5 +25 23 20 36.3 1.4 476 <28.84
94 ${\rm Briceno8 }$ C M4 05 04 41.4 +25 09 57 11.7 0.5 674 <28.28
94 ${\rm IRAS05023+2527 }$ C K7M0 05 05 22.7 +25 31 34 31.4 0.4 404 <28.36
94 ${\rm Briceno10 }$ W M4 05 06 16.6 +24 46 13 20.6 0.9 393 <28.73
94 ${\rm Briceno11 }$ C M4 05 06 23.2 +24 32 24 32.4 6.4 500 <29.49
94 ${\rm RXJ057.2 }$ W K6 05 07 12.1 +24 37 16 35.9 1.4 481 <28.84
94 ${\rm Briceno12 }$ C M4 05 07 55.9 +25 00 19 37.5 6.4 344 <29.65
3,4 ${\rm IRAS04154+2823 }$ C   04 18 31.5 +28 31 12 4.2 8.6 27679 <27.88
3,4 ${\rm V410x-ray7 }$ W M1 04 18 42.4 +28 18 52 8.9 604.9 30389 <29.68
3,4 ${\rm CoKuTau/1 +B }$ CB M0 04 18 51.5 +28 20 28 8.4 27.3 28863 <28.06
3,4 ${\rm V410x-ray8d }$ W K0 04 19 21.6 +28 14 04 17.5 33.8 25224 <28.51
3,4 ${\rm V410x-ray8b }$ W K-M 04 19 27.3 +28 12 48 19.3 1.6 17289 <27.35
3,4 ${\rm IRAS04171+2756 }$ C   04 20 11.8 +28 03 09 33.0 34.6 22202 <28.58
8,9 ${\rm Mellote22\,253 }$ W G0 03 44 03.8 +24 30 13 44.5 402.5 7922 <30.09
8,9 ${\rm BD+23^\circ502 }$ W G5 03 44 14.1 +24 06 23 36.6 287.9 6854 <30.01
11-13 ${\rm HHJ339 }$ C M5 03 48 26.5 +23 11 30 47.8 105.1 23764 <29.03
30,31 ${\rm GVTau N + S }$ CB K4/K3 04 29 23.6 +24 33 02 38.8 4.7 5046 <28.05
30,31 ${\rm IRAS04264+2433 }$ C M5 04 29 29.9 +24 39 55 38.6 16.1 5062 <26.96
30,31 ${\rm ZZTauA +/c }$ CB M3 04 30 51.3 +24 42 23 22.8 4.4 2483 <28.33
30,31 ${\rm HKTau +/c }$ CB M1 04 31 50.5 +24 24 18 7.6 0.8 6960 <27.16
30,31 ${\rm MHO-8 }$ C M6 04 33 01.1 +24 21 11 13.6 7.9 6760 <28.45
38,39 ${\rm 2MWJ0417 }$ W M8 04 17 24.8 +16 34 36 27.8 26.5 20730 <28.49
51,52 ${\rm Briceno8 }$ C M4 05 04 41.4 +25 09 57 26.7 82.7 7410 <29.43
51,52 ${\rm Briceno11 }$ C M4 05 06 23.2 +24 32 24 34.8 196.5 6636 <29.86
58,63 ${\rm V410x-ray3 }$ C M7 04 18 08.0 +28 26 05 48.1 38.2 4526 <29.31
58,63 ${\rm StromAnon13 }$ C M5 04 18 17.2 +28 28 43 46.7 179.4 4860 <29.95
58,63 ${\rm DDTau +/c }$ CB M1 04 18 31.1 +28 16 30 42.4 36.4 5143 <28.93
58,63 ${\rm CZTau +/c }$ WB M2 04 18 31.5 +28 16 59 42.3 46.7 5140 <29.04
58,63 ${\rm IRAS04154+2823 }$ C   04 18 31.5 +28 31 12 44.3 151.8 4973 <29.87
58,63 ${\rm V410x-ray2 }$   M0 04 18 34.5 +28 30 32 43.5 215.9 5006 <30.02
58,63 ${\rm V410x-ray4 }$   M4 04 18 40.2 +28 24 26 40.9 208.7 5278 <29.98
58,63 ${\rm V410x-ray7 }$ W M1 04 18 42.4 +28 18 52 39.9 307.9 5302 <30.15
58,63 ${\rm Kim3-89 }$ W M5 04 19 01.2 +28 19 43 35.8 42.2 5779 <29.25
58,63 ${\rm V410x-ray5a }$ C M5 04 19 02.0 +28 22 34 35.8 16.0 5708 <28.83
58,63 ${\rm FQTau +/c }$ CB M2 04 19 12.7 +28 29 34 35.2 208.0 5447 <29.66
58,63 ${\rm V410x-ray8d }$ W K0 04 19 21.6 +28 14 04 31.5 144.7 5230 <29.83
58,63 ${\rm V410x-ray8b }$ W K-M 04 19 27.3 +28 12 48 30.5 127.0 5259 <29.77
58,63 ${\rm IRAS04171+2756 }$ C   04 20 11.8 +28 03 09 25.4 93.1 6372 <29.55
58,63 ${\rm DETau }$ C M2 04 21 55.6 +27 55 07 24.0 74.5 6603 <29.44
58,63 ${\rm IRAS04200+2759 }$ C   04 23 06.0 +28 05 57 22.2 51.8 6269 <29.30
85-89 ${\rm V410x-ray3 }$ C M7 04 18 08.0 +28 26 05 42.9 99.1 19432 <29.09
85-89 ${\rm StromAnon13 }$ C M5 04 18 17.2 +28 28 43 39.8 821.3 20085 <30.00
85-89 ${\rm IRAS04154+2823 }$ C   04 18 31.5 +28 31 12 36.6 332.7 20779 <29.59
85-89 ${\rm V410x-ray2 }$   M0 04 18 34.5 +28 30 32 37.0 709.0 20452 <29.92
85-89 ${\rm V410x-ray7 }$ W M1 04 18 42.4 +28 18 52 48.2 1306.6 17253 <30.26
85-89 ${\rm Kim3-89 }$ W M5 04 19 01.2 +28 19 43 47.0 894.5 17422 <30.09
85-89 ${\rm V410x-ray5a }$ C M5 04 19 02.0 +28 22 34 44.2 484.4 18220 <29.81
85-89 ${\rm FQTau +/c }$ CB M2 04 19 12.7 +28 29 34 37.1 61.6 18584 <28.60
35,73 ${\rm LH0429+15 }$ C M7 04 32 38.1 +15 08 55 47.2 1462.9 10872 <30.51
64,115 ${\rm MHO-9 }$ W M4 04 31 15.7 +18 20 08 23.0 14.7 5449 <28.81
64,115 ${\rm CoKuTau/2 }$ C M6 04 31 35.0 +18 13 42 16.0 21.2 10780 <28.68
64,115 ${\rm V710Tau N }$ CB M1 04 31 57.7 +18 21 37 23.6 187.3 8900 <29.41
  ${\rm V710Tau S }$   M3 04 31 57.7 +18 21 34 23.6 186.4 8900 <29.40
64,115 ${\rm MHO-6 }$ C M5 04 32 22.0 +18 27 42 30.7 3.3 8088 <28.00
64,115 ${\rm MHO-7 }$ W M5 04 32 26.2 +18 27 52 31.1 6.5 8238 <28.28
64,115 ${\rm LH0429+17 }$ C M9 04 32 51.1 +17 30 11 33.3 11.0 8366 <28.50
64,115 ${\rm HNTau +/c }$ CB M4 04 33 39.4 +17 51 50 28.7 19.1 8632 <28.43
64,115 ${\rm DMTau }$ C M1 04 33 48.6 +18 10 11 32.0 38.2 8875 <29.02


 
Table 6: X-ray data for Pleiads below the detection limit of the ROSAT PSPC.
Obs. No. Designation Mult SpT X-ray position Offax Cts Expos $\log{L_{\rm X}}$
        $\alpha_{2000}$ $\delta_{2000}$ [arcmin]   [s] [erg/s]
5 ${\rm hcg27 }$     03 40 03.6 +24 30 03 45.4 4.8 389 <29.31
5 ${\rm hcg34 }$     03 40 24.1 +24 35 05 42.3 0.6 422 <28.38
5 ${\rm sk778 }$     03 40 26.3 +24 05 25 42.1 1.3 404 <28.74
5 ${\rm AK1B031 }$     03 40 30.5 +24 29 16 39.2 31.3 418 <30.09
5 ${\rm hcg40 }$     03 40 39.9 +24 44 10 43.2 45.1 445 <30.23
5 ${\rm hcg45 }$     03 41 02.9 +23 43 23 48.3 16.2 382 <29.85
5 ${\rm sk729 }$     03 41 26.8 +24 01 04 32.2 16.1 497 <29.73
5 ${\rm AK1B055 }$   G9 03 41 27.6 +23 42 32 45.6 39.3 403 <30.21
5 ${\rm sk724 }$     03 41 39.5 +23 45 48 41.4 5.3 447 <29.29
5 ${\rm sk709 }$   M2 03 41 58.6 +23 42 28 42.1 36.8 433 <30.15
5 ${\rm sk702 }$     03 41 59.9 +25 01 49 45.3 8.0 450 <29.47
5 ${\rm hcg64 }$     03 42 02.8 +23 55 55 30.2 0.6 517 <28.28
5 ${\rm hcg63 }$     03 42 02.8 +24 12 38 19.4 4.1 519 <29.12
5 ${\rm sk701 }$     03 42 03.2 +24 32 14 20.8 2.7 552 <28.91
5 ${\rm hcg65 }$   K8 03 42 03.7 +24 42 46 28.2 1.4 448 <28.72
5 ${\rm sk699 }$     03 42 08.7 +23 35 18 47.8 2.3 351 <29.04
5 ${\rm hcg68 }$   M3 03 42 10.8 +24 05 10 22.1 5.2 438 <29.30
5 ${\rm hcg71 }$   M0 03 42 21.5 +24 39 54 23.6 7.5 436 <29.46
5 ${\rm hcg73 }$     03 42 26.2 +24 14 09 14.2 0.1 598 <27.39
5 ${\rm AK1B078 }$   K4 03 42 27.5 +25 02 51 44.3 48.1 461 <30.24
5 ${\rm sk676 }$     03 42 28.5 +25 01 02 42.5 43.0 460 <30.19
5 ${\rm hcg80 }$   K8 03 42 40.1 +23 59 23 23.1 5.9 434 <29.36
5 ${\rm hcg82 }$     03 42 41.1 +24 01 44 20.9 4.0 363 <29.26
5 ${\rm sk671 }$   M1 03 42 41.8 +24 11 59 12.8 1.9 620 <28.70
5 ${\rm sk663 }$     03 42 49.0 +24 10 17 13.1 1.9 597 <28.73
5 ${\rm hii25 }$   F7 03 42 55.0 +24 29 36 11.1 2.3 591 <28.81
5 ${\rm hcg93 }$     03 42 56.4 +24 05 00 16.7 3.0 553 <28.95
5 ${\rm hii34 }$   K2 03 43 02.8 +24 40 12 20.6 6.2 606 <29.23
5 ${\rm hcg97 }$     03 43 05.4 +24 49 30 29.7 3.4 547 <29.01
5 ${\rm hcg100 }$   M5 03 43 09.6 +24 41 34 21.8 6.8 555 <29.31
5 ${\rm hcg103 }$     03 43 13.0 +24 39 21 19.6 2.8 579 <28.91
5 ${\rm hii97 +B }$ VB K4 03 43 26.5 +24 59 41 39.8 5.9 463 <29.03
5 ${\rm sk638 }$     03 43 26.8 +24 27 11 8.8 1.3 675 <28.49
5 ${\rm hcg109 }$     03 43 28.1 +24 53 33 33.8 24.7 458 <29.95
5 ${\rm hii120 }$ SB1 G6 03 43 31.8 +23 40 28 40.0 4.9 460 <28.95
5 ${\rm hii129 }$   K1 03 43 34.3 +23 45 44 34.8 0.5 510 <28.25
5 ${\rm hii134 +B }$ VB M1 03 43 36.5 +24 13 58 8.2 1.1 651 <28.15
5 ${\rm hii133 }$   K8 03 43 36.8 +24 23 40 7.7 1.1 716 <28.42
5 ${\rm hii152 }$   G6 03 43 37.6 +23 32 11 48.3 3.3 405 <29.13
5 ${\rm hcg124 }$     03 43 38.9 +23 44 07 36.6 1.7 493 <28.76
5 ${\rm hii157 }$   F2 03 43 41.4 +23 38 58 41.7 7.6 450 <29.45
5 ${\rm hcg123 }$   M4 03 43 42.0 +24 34 25 16.1 3.1 540 <28.97
5 ${\rm hii164 }$ SB1 F7 03 43 42.8 +23 35 42 45.0 3.8 432 <28.87
5 ${\rm hii153 }$   A5 03 43 43.1 +25 04 52 45.3 5.2 390 <29.34
5 ${\rm hii158 }$   A8 03 43 43.1 +24 22 30 8.2 1.2 642 <28.48
5 ${\rm sk609 }$     03 43 47.8 +25 03 13 43.8 4.0 398 <29.22
5 ${\rm hii174 }$   K1 03 43 48.2 +25 00 17 41.0 7.0 421 <29.45
5 ${\rm hii189 }$   K9 03 43 48.5 +23 32 23 48.4 3.2 408 <29.11
5 ${\rm hii193 }$   G9 03 43 50.6 +24 14 52 9.5 0.3 611 <27.92
5 ${\rm hii191 }$   K8 03 43 52.0 +24 50 31 31.7 1.1 491 <28.58
5 ${\rm hii212 }$   K9 03 43 55.6 +24 25 36 11.6 1.6 676 <28.59
5 ${\rm hcg135 }$   K4 03 43 56.9 +23 57 07 24.9 0.9 490 <28.50
5 ${\rm hii233 }$ SB F8 03 43 58.7 +23 52 59 28.9 14.3 503 <29.37
5 ${\rm hii232 }$ SB? A7 03 44 00.2 +24 33 26 17.3 0.5 583 <27.83
5 ${\rm hii248 }$   G9 03 44 00.5 +23 32 39 48.6 2.2 401 <28.95
5 ${\rm JRS26 }$   M9 03 44 02.0 +23 51 47 30.3 17.2 531 <29.73
5 ${\rm hcg134 }$   M3 03 44 02.2 +25 03 55 45.2 52.9 396 <30.35
5 ${\rm hii253 }$   G5 03 44 03.4 +24 30 17 15.5 2.9 663 <28.86
5 ${\rm hii250 }$ SB? G4 03 44 04.1 +24 59 25 41.0 1.5 428 <28.47
5 ${\rm hii263 }$ SB K1 03 44 04.7 +24 16 33 11.8 0.3 627 <27.55
5 ${\rm sk586 }$     03 44 09.5 +24 35 23 20.0 4.0 452 <29.17
5 ${\rm hii298 +B }$ VB K1 03 44 12.6 +24 01 54 22.2 5.6 457 <29.01
5 ${\rm hii293 }$   G6 03 44 13.8 +24 46 47 30.0 0.3 538 <27.96
5 ${\rm hii303 +B }$ VB K1 03 44 14.5 +24 06 08 19.1 4.2 514 <28.83
5 ${\rm hcg144 }$     03 44 16.3 +23 37 06 45.2 52.7 428 <30.31
5 ${\rm hcg145 }$     03 44 17.6 +24 26 48 16.1 3.1 654 <28.90
5 ${\rm hcg146 }$   M4 03 44 18.9 +24 35 20 21.4 1.2 335 <28.78
5 ${\rm hii314 }$ SB1 G3 03 44 20.0 +24 47 48 31.5 19.6 513 <29.50
5 ${\rm hii320 }$ SB K1 03 44 20.4 +24 46 24 30.4 17.5 524 <29.44
5 ${\rm hcg155 }$     03 44 20.8 +23 33 41 48.7 63.4 386 <30.44
5 ${\rm hii324 }$   K4 03 44 21.8 +24 46 07 30.3 17.3 522 <29.74
5 ${\rm hii335 }$   K6 03 44 23.0 +24 04 07 21.9 1.7 545 <28.71
5 ${\rm hii338 }$   F6 03 44 23.4 +24 07 59 19.4 3.0 504 <28.99
5 ${\rm hcg148 }$     03 44 24.6 +24 51 55 35.6 27.5 497 <29.96
5 ${\rm hcg149 }$   M4 03 44 24.7 +24 46 07 30.6 17.7 510 <29.76
5 ${\rm hcg150 }$   M3 03 44 25.5 +24 40 54 26.5 11.5 557 <29.54
5 ${\rm hii344 }$   A9 03 44 25.6 +24 23 43 16.6 2.9 560 <28.94
5 ${\rm hii345 }$   K1 03 44 26.1 +24 35 25 22.5 1.5 358 <28.83
5 ${\rm hcg156 }$   M5 03 44 26.8 +24 24 33 17.1 3.2 566 <28.98
5 ${\rm hii347 +B }$ VB M0 03 44 27.2 +24 50 39 34.8 25.4 497 <29.63
5 ${\rm hii357 +B }$ VB K6 03 44 27.9 +24 10 19 18.9 3.9 532 <28.79
5 ${\rm sk564 }$     03 44 31.6 +23 35 28 47.9 63.1 416 <30.40
5 ${\rm hii370 }$   M1 03 44 31.9 +23 52 32 32.5 13.9 314 <29.87
5 ${\rm PPl14 }$     03 44 34.0 +23 51 25 33.7 16.0 310 <29.93
5 ${\rm hii390 }$   K9 03 44 35.3 +24 00 06 26.8 9.9 509 <29.51
5 ${\rm hcg160 }$     03 44 39.5 +24 31 44 22.6 4.4 459 <29.20
5 ${\rm hii405 }$   F9 03 44 40.6 +24 49 08 35.0 26.0 524 <29.92
5 ${\rm hii430 }$   K0 03 44 43.8 +24 13 54 20.8 5.2 561 <29.18
5 ${\rm hii447 }$   B9 03 44 48.1 +24 17 24 21.1 1.3 409 <28.73
5 ${\rm hii451 }$   K6 03 44 50.1 +24 54 41 40.8 40.6 483 <30.14
5 ${\rm hii468 }$ SB1 B8 03 44 52.4 +24 06 50 25.4 2.7 507 <28.64
5 ${\rm hii476 }$ SB G9 03 44 53.7 +23 55 18 33.2 18.4 493 <29.49
5 ${\rm hii489 }$   G2 03 44 56.3 +24 25 59 23.7 7.4 510 <29.38
5 ${\rm hcg172 }$     03 45 01.0 +24 46 43 35.9 5.8 503 <29.28
5 ${\rm hii522 }$ SB1 K2 03 45 03.2 +23 50 23 38.3 27.3 449 <29.70
5 ${\rm hii530 }$   F3 03 45 05.1 +23 42 11 45.2 42.2 299 <30.37
5 ${\rm hhj48 }$     03 45 06.4 +24 40 43 32.7 1.8 478 <28.79
5 ${\rm hii531 }$   F2 03 45 06.4 +24 15 50 25.4 7.6 430 <29.47
5 ${\rm hcg176 }$     03 45 06.6 +23 36 51 50.0 59.1 277 <30.55
5 ${\rm hii541 }$ SB? B9 03 45 09.6 +24 50 23 39.9 1.8 482 <28.50
5 ${\rm hii554 }$   K7 03 45 11.8 +24 35 11 30.5 17.1 528 <29.73
5 ${\rm hcg177 }$     03 45 11.9 +24 30 19 28.4 1.4 516 <28.64
5 ${\rm hii563 }$ SB1 B8 03 45 12.4 +24 28 04 27.8 12.9 535 <29.30
5 ${\rm hhj14 }$     03 45 12.5 +23 53 45 37.2 2.3 485 <28.90
5 ${\rm hcg183 }$     03 45 16.0 +24 07 18 30.0 14.1 492 <29.68
5 ${\rm hcg181 }$   M4 03 45 16.5 +24 34 34 31.1 18.0 523 <29.76
5 ${\rm hii605 }$ SB1 F5 03 45 20.8 +24 55 21 45.3 0.6 446 <28.06
5 ${\rm hii625 }$   K5 03 45 21.1 +23 43 40 46.1 1.7 399 <28.84
5 ${\rm hii624 }$   M4 03 45 23.4 +24 51 03 42.5 42.8 459 <30.19
5 ${\rm hii627 }$ SB? F7 03 45 24.0 +24 53 11 44.1 47.9 453 <29.94
5 ${\rm hii652 }$   A7 03 45 26.0 +24 02 08 34.4 21.8 502 <29.86
5 ${\rm hii676 }$   K7 03 45 29.5 +23 45 39 45.8 2.3 414 <28.96
5 ${\rm hii673 }$     03 45 30.1 +24 18 47 30.5 1.0 549 <28.48
5 ${\rm hii686 }$   M6 03 45 32.8 +24 18 13 31.1 2.9 515 <28.97
5 ${\rm hii697 }$   F2 03 45 34.3 +24 27 50 32.4 2.1 500 <28.84
5 ${\rm hii708 }$   G2 03 45 35.3 +24 05 01 34.9 22.9 491 <29.89
5 ${\rm hcg194 }$     03 45 36.7 +24 39 07 37.3 30.5 479 <30.02
5 ${\rm hii717 }$ SB? A5 03 45 37.7 +24 20 10 32.2 2.1 517 <28.53
5 ${\rm hii738 +B }$ VB K5 03 45 39.3 +23 45 17 47.6 1.3 406 <28.42
5 ${\rm hii727 }$   F9 03 45 40.0 +24 37 40 37.2 30.5 469 <30.03
5 ${\rm hii745 }$   F8 03 45 41.2 +24 17 21 33.1 2.3 480 <28.90
5 ${\rm hii746 }$ SB? G9 03 45 41.7 +24 25 55 33.6 25.6 532 <29.60
5 ${\rm hii739 }$ PHB G2 03 45 42.0 +24 54 23 47.7 59.8 422 <30.07
5 ${\rm hii762 }$   M0 03 45 43.9 +24 04 28 36.9 1.9 488 <28.82
5 ${\rm hii761 }$ SB1 G4 03 45 44.3 +24 13 15 34.3 3.0 404 <28.79
5 ${\rm hii793 }$   M1 03 45 48.8 +23 51 11 45.1 4.1 422 <29.21
5 ${\rm hii785 }$   B9 03 45 49.5 +24 22 06 34.9 2.1 526 <28.82
5 ${\rm hii799 }$   K7 03 45 50.4 +23 52 27 44.5 5.5 421 <29.34
5 ${\rm hii804 }$   A7 03 45 51.5 +24 02 22 39.4 1.1 466 <28.60
5 ${\rm hii813 }$   M5 03 45 53.6 +24 28 10 36.7 33.4 499 <30.05
5 ${\rm hii817 }$   B9 03 45 54.3 +24 33 18 38.4 35.1 469 <30.09
5 ${\rm hii859 }$   A0 03 46 02.8 +24 31 42 39.6 2.7 459 <29.00
5 ${\rm sk488 }$     03 46 05.5 +24 36 46 42.0 3.1 440 <29.07
5 ${\rm hii879 }$   K4 03 46 06.4 +24 34 04 41.2 2.0 431 <28.89
5 ${\rm hii883 }$   K4 03 46 06.8 +24 33 47 41.2 2.6 430 <29.01
5 ${\rm hii890 +B }$ VB K7 03 46 07.4 +24 22 29 39.0 2.4 477 <28.62
5 ${\rm hii906 }$   M3 03 46 09.8 +24 40 26 44.4 51.3 414 <30.31
5 ${\rm hii916 }$ SB K1 03 46 11.6 +24 37 22 43.5 4.7 437 <28.95
5 ${\rm hii930 }$   K6 03 46 12.8 +24 03 17 43.4 0.1 434 <27.71
5 ${\rm hii956 +B }$ VB F1 03 46 15.9 +24 11 25 41.7 4.7 374 <29.02
5 ${\rm hii974 }$   K7 03 46 20.4 +24 47 09 49.9 3.8 385 <29.22
5 ${\rm hii996 }$   G2 03 46 22.5 +24 34 14 44.7 6.9 432 <29.43
5 ${\rm hcg219 }$   K4 03 46 25.3 +24 09 38 44.2 45.2 386 <30.29
5 ${\rm hii1028 }$ SB? A4 03 46 27.1 +24 15 20 43.6 51.1 416 <30.01
5 ${\rm hii1032 }$   G8 03 46 28.3 +24 26 04 44.1 59.2 441 <30.35
5 ${\rm hii1061 +B }$ VB K9 03 46 31.1 +24 07 04 46.1 50.5 361 <30.07
5 ${\rm hii1100 +B }$ VB K5 03 46 37.2 +24 20 38 45.6 7.0 426 <29.13
5 ${\rm hii1110 }$   K5 03 46 38.8 +24 31 14 47.4 71.2 429 <30.44
5 ${\rm hii1122 }$ SB2 F6 03 46 39.2 +24 06 13 48.1 55.8 355 <30.12
5 ${\rm hii1124 }$   K3 03 46 39.3 +24 01 48 49.6 57.1 368 <30.41
5 ${\rm hcg244 }$     03 46 53.5 +24 17 16 49.4 1.8 391 <28.89
6 ${\rm sk709 }$   M2 03 41 58.6 +23 42 28 48.3 5.3 56 <30.20
6 ${\rm hcg64 }$     03 42 02.8 +23 55 55 46.5 4.0 65 <30.01
6 ${\rm sk699 }$     03 42 08.7 +23 35 18 48.1 4.8 42 <30.28
6 ${\rm hcg68 }$   M3 03 42 10.8 +24 05 10 46.5 10.5 63 <30.44
6 ${\rm hcg73 }$     03 42 26.2 +24 14 09 46.8 9.0 61 <30.39
6 ${\rm hcg79 }$   M5 03 42 36.1 +23 22 06 49.2 0.9 60 <29.40
6 ${\rm hcg80 }$   K8 03 42 40.1 +23 59 23 38.6 0.6 77 <29.09
6 ${\rm hcg82 }$     03 42 41.1 +24 01 44 38.9 6.2 78 <30.12
6 ${\rm sk671 }$   M1 03 42 41.8 +24 11 59 42.6 1.0 70 <29.36
6 ${\rm hcg85 }$     03 42 42.3 +23 30 12 43.4 6.8 76 <30.17
6 ${\rm hcg86 }$     03 42 42.3 +23 20 23 49.2 0.8 61 <29.35
6 ${\rm sk663 }$     03 42 49.0 +24 10 17 40.4 6.3 74 <30.15
6 ${\rm hcg93 }$     03 42 56.4 +24 05 00 36.6 4.9 79 <30.01
6 ${\rm hii102 +B }$ VB G7 03 43 24.4 +23 13 35 47.9 6.9 66 <29.94
6 ${\rm sk638 }$     03 43 26.8 +24 27 11 45.0 7.2 77 <30.19
6 ${\rm hii120 }$ SB1 G6 03 43 31.8 +23 40 28 28.7 2.2 75 <29.39
6 ${\rm hii129 }$   K1 03 43 34.3 +23 45 44 26.3 0.5 89 <28.94
6 ${\rm hii134 +B }$ VB M1 03 43 36.5 +24 13 58 33.8 3.6 87 <29.53
6 ${\rm hii146 }$   M0 03 43 36.5 +23 27 15 35.7 4.0 85 <29.90
6 ${\rm hii133 }$   K8 03 43 36.8 +24 23 40 40.9 0.4 82 <28.88
6 ${\rm sk630 }$     03 43 37.0 +23 38 34 28.5 1.9 76 <29.63
6 ${\rm hii152 }$   G6 03 43 37.6 +23 32 11 32.1 3.4 84 <29.83
6 ${\rm hcg124 }$     03 43 38.9 +23 44 07 25.8 1.4 83 <29.44
6 ${\rm hii157 }$   F2 03 43 41.4 +23 38 58 27.5 1.7 75 <29.58
6 ${\rm hcg123 }$   M4 03 43 42.0 +24 34 25 49.2 0.5 70 <29.09
6 ${\rm hii164 }$ SB1 F7 03 43 42.8 +23 35 42 29.1 2.5 91 <29.36
6 ${\rm hii158 }$   A8 03 43 43.1 +24 22 30 39.2 0.4 84 <28.93
6 ${\rm hii186 }$ PHB G9 03 43 47.4 +23 12 44 45.8 4.9 69 <29.77
6 ${\rm hii189 }$   K9 03 43 48.5 +23 32 23 30.2 2.6 88 <29.68
6 ${\rm hii193 }$   G9 03 43 50.6 +24 14 52 32.3 0.2 90 <28.63
6 ${\rm hii212 }$   K9 03 43 55.6 +24 25 36 40.2 2.5 82 <29.71
6 ${\rm hcg135 }$   K4 03 43 56.9 +23 57 07 21.2 0.8 105 <29.11
6 ${\rm hii233 }$ SB F8 03 43 58.7 +23 52 59 20.0 0.1 103 <28.04
6 ${\rm hii232 }$ SB? A7 03 44 00.2 +24 33 26 46.6 3.8 76 <29.62
6 ${\rm hii248 }$   G9 03 44 00.5 +23 32 39 28.2 2.0 88 <29.58
6 ${\rm JRS26 }$   M9 03 44 02.0 +23 51 47 19.2 0.6 107 <28.98
6 ${\rm hii253 }$   G5 03 44 03.4 +24 30 17 43.4 7.4 79 <30.19
6 ${\rm hii263 }$ SB K1 03 44 04.7 +24 16 33 31.7 2.6 87 <29.40
6 ${\rm sk586 }$     03 44 09.5 +24 35 23 47.5 1.7 76 <29.56
6 ${\rm hii296 }$ SB1 K1 03 44 11.0 +23 22 47 34.7 0.3 86 <28.52
6 ${\rm hii298 +B }$ VB K1 03 44 12.6 +24 01 54 20.3 0.6 90 <28.78
6 ${\rm hii303 +B }$ VB K1 03 44 14.5 +24 06 08 22.6 0.2 94 <28.28
6 ${\rm hcg144 }$     03 44 16.3 +23 37 06 22.7 1.0 94 <29.25
6 ${\rm hcg145 }$     03 44 17.6 +24 26 48 39.1 2.4 86 <29.66
6 ${\rm hcg146 }$   M4 03 44 18.9 +24 35 20 46.8 2.2 76 <29.68
6 ${\rm hcg155 }$     03 44 20.8 +23 33 41 24.6 1.2 89 <29.35
6 ${\rm hii335 }$   K6 03 44 23.0 +24 04 07 20.0 0.7 96 <29.08
6 ${\rm hii338 }$   F6 03 44 23.4 +24 07 59 22.6 0.9 98 <29.20
6 ${\rm hii344 }$   A9 03 44 25.6 +24 23 43 35.6 1.0 90 <29.27
6 ${\rm hii345 }$   K1 03 44 26.1 +24 35 25 46.3 1.4 75 <29.48
6 ${\rm hcg156 }$   M5 03 44 26.8 +24 24 33 36.3 0.5 90 <28.99
6 ${\rm hii357 +B }$ VB K6 03 44 27.9 +24 10 19 23.9 0.9 89 <28.92
6 ${\rm sk564 }$     03 44 31.6 +23 35 28 22.0 0.8 93 <29.18
6 ${\rm hii370 }$   M1 03 44 31.9 +23 52 32 13.2 0.9 105 <29.14
6 ${\rm PPl14 }$     03 44 34.0 +23 51 25 12.8 0.2 108 <28.56
6 ${\rm hii390 }$   K9 03 44 35.3 +24 00 06 15.6 0.3 97 <28.69
6 ${\rm hcg161 }$   M4 03 44 36.2 +23 30 13 25.8 0.2 88 <28.59
6 ${\rm hcg160 }$     03 44 39.5 +24 31 44 42.1 5.9 78 <30.09
6 ${\rm hii430 }$   K0 03 44 43.8 +24 13 54 25.4 1.1 87 <29.34
6 ${\rm hii447 }$   B9 03 44 48.1 +24 17 24 28.2 1.6 96 <29.44
6 ${\rm hii470 }$   F3 03 44 51.1 +23 16 09 37.7 3.8 78 <29.91
6 ${\rm hii468 }$ SB1 B8 03 44 52.4 +24 06 50 18.7 0.5 100 <28.62
6 ${\rm hii476 }$ SB G9 03 44 53.7 +23 55 18 10.8 0.2 116 <28.13
6 ${\rm hii489 }$   G2 03 44 56.3 +24 25 59 35.8 3.3 87 <29.80
6 ${\rm hii513 }$   K7 03 44 58.9 +23 23 22 30.5 0.3 88 <28.79
6 ${\rm hii522 }$ SB1 K2 03 45 03.2 +23 50 23 9.7 0.2 113 <28.10
6 ${\rm hii530 }$   F3 03 45 05.1 +23 42 11 13.9 0.3 114 <28.65
6 ${\rm hii531 }$   F2 03 45 06.4 +24 15 50 25.8 1.1 83 <29.34
6 ${\rm hhj48 }$     03 45 06.4 +24 40 43 49.8 0.5 74 <29.03
6 ${\rm hcg176 }$     03 45 06.6 +23 36 51 18.0 0.5 91 <28.96
6 ${\rm hii554 }$   K7 03 45 11.8 +24 35 11 44.3 6.2 76 <30.13
6 ${\rm hcg177 }$     03 45 11.9 +24 30 19 39.5 0.4 77 <28.97
6 ${\rm hii563 }$ SB1 B8 03 45 12.4 +24 28 04 37.4 1.0 78 <29.02
6 ${\rm hhj14 }$     03 45 12.5 +23 53 45 9.0 0.2 120 <28.33
6 ${\rm hcg184 }$   M9 03 45 13.3 +23 31 02 22.9 0.8 87 <29.20
6 ${\rm hcg183 }$     03 45 16.0 +24 07 18 17.8 0.5 96 <28.89
6 ${\rm hcg181 }$   M4 03 45 16.5 +24 34 34 43.6 5.6 78 <30.08
6 ${\rm hii625 }$   K5 03 45 21.1 +23 43 40 12.2 0.2 117 <28.44
6 ${\rm hii636 }$   K4 03 45 22.1 +23 28 20 25.3 0.7 82 <29.18
6 ${\rm hii659 }$   K3 03 45 25.8 +23 25 50 27.6 1.9 89 <29.55
6 ${\rm hii652 }$   A7 03 45 26.0 +24 02 08 13.4 0.2 114 <28.50
6 ${\rm sk520 }$     03 45 27.6 +23 10 14 42.6 7.7 80 <30.20
6 ${\rm hii676 }$   K7 03 45 29.5 +23 45 39 10.8 0.2 117 <28.42
6 ${\rm hii673 }$     03 45 30.1 +24 18 47 28.3 1.3 78 <29.45
6 ${\rm hii686 }$   M6 03 45 32.8 +24 18 13 27.8 1.6 80 <29.52
6 ${\rm hii697 }$   F2 03 45 34.3 +24 27 50 37.1 0.7 86 <29.15
6 ${\rm hii708 }$   G2 03 45 35.3 +24 05 01 15.8 0.9 111 <29.11
6 ${\rm hcg194 }$     03 45 36.7 +24 39 07 48.1 7.7 75 <30.23
6 ${\rm hii717 }$ SB? A5 03 45 37.7 +24 20 10 29.7 0.6 86 <28.79
6 ${\rm hii738 +B }$ VB K5 03 45 39.3 +23 45 17 11.1 0.2 119 <28.13
6 ${\rm hii727 }$   F9 03 45 40.0 +24 37 40 46.7 7.0 76 <30.18
6 ${\rm hii745 }$   F8 03 45 41.2 +24 17 21 27.1 0.2 96 <28.52
6 ${\rm hii746 }$ SB? G9 03 45 41.7 +24 25 55 35.3 3.3 83 <29.52
6 ${\rm hii762 }$   M0 03 45 43.9 +24 04 28 15.6 0.2 109 <28.57
6 ${\rm hii761 }$ SB1 G4 03 45 44.3 +24 13 15 23.4 0.8 79 <28.91
6 ${\rm hii801 +B }$ VB A2 03 45 48.7 +23 08 51 44.3 7.5 75 <29.91
6 ${\rm hii793 }$   M1 03 45 48.8 +23 51 11 8.6 0.9 119 <29.09
6 ${\rm hii785 }$   B9 03 45 49.5 +24 22 06 31.9 2.8 93 <29.70
6 ${\rm hii799 }$   K7 03 45 50.4 +23 52 27 8.6 0.1 118 <28.23
6 ${\rm hii804 }$   A7 03 45 51.5 +24 02 22 14.3 0.2 107 <28.55
6 ${\rm hii813 }$   M5 03 45 53.6 +24 28 10 37.9 4.0 83 <29.91
6 ${\rm hii817 }$   B9 03 45 54.3 +24 33 18 42.8 5.4 77 <30.07
6 ${\rm hii870 +B }$ VB K6 03 46 02.7 +23 44 16 13.3 0.7 106 <28.73
6 ${\rm hii859 }$   A0 03 46 02.8 +24 31 42 41.6 5.4 79 <30.05
6 ${\rm hii882 }$   K4 03 46 04.0 +23 24 21 30.2 0.1 89 <28.36
6 ${\rm sk488 }$     03 46 05.5 +24 36 46 46.6 6.8 75 <30.18
6 ${\rm hii879 }$   K4 03 46 06.4 +24 34 04 44.1 5.9 77 <30.11
6 ${\rm hii883 }$   K4 03 46 06.8 +24 33 47 43.8 5.8 78 <30.09
6 ${\rm hii890 +B }$ VB K7 03 46 07.4 +24 22 29 33.1 3.7 93 <29.52
6 ${\rm hii915 +B }$ VB K6 03 46 08.3 +23 20 52 33.7 2.8 87 <29.43
6 ${\rm hii923 }$   G1 03 46 09.9 +23 20 25 34.2 3.0 86 <29.76
6 ${\rm hii916 }$ SB K1 03 46 11.6 +24 37 22 47.5 7.4 74 <29.92
6 ${\rm hii930 }$   K6 03 46 12.8 +24 03 17 17.1 0.3 101 <28.73
6 ${\rm hii956 +B }$ VB F1 03 46 15.9 +24 11 25 24.0 0.1 71 <28.09
6 ${\rm hii975 }$ PHB K1 03 46 17.8 +23 29 13 26.9 0.5 78 <28.70
6 ${\rm hii980 }$   B9 03 46 19.4 +23 56 56 14.2 0.2 112 <28.47
6 ${\rm hii996 }$   G2 03 46 22.5 +24 34 14 45.1 2.0 80 <29.62
6 ${\rm hcg219 }$   K4 03 46 25.3 +24 09 38 23.5 1.2 95 <29.32
6 ${\rm hii1028 }$ SB? A4 03 46 27.1 +24 15 20 28.4 2.8 93 <29.40
6 ${\rm hii1039 }$   K7 03 46 27.7 +23 35 35 22.8 1.1 93 <29.28
6 ${\rm hii1032 }$   G8 03 46 28.3 +24 26 04 38.0 1.7 87 <29.51
6 ${\rm hii1061 +B }$ VB K9 03 46 31.1 +24 07 04 22.4 0.7 102 <28.76
6 ${\rm hii1081 }$   M0 03 46 32.8 +23 18 20 37.9 4.2 81 <29.93
6 ${\rm hii1084 }$   F2 03 46 34.1 +23 37 28 22.3 0.9 96 <29.19
6 ${\rm hii1103 }$   M2 03 46 35.2 +23 24 44 32.5 2.5 81 <29.70
6 ${\rm hii1094 }$   M0 03 46 35.8 +23 58 02 17.8 0.4 110 <28.74
6 ${\rm hii1100 +B }$ VB K5 03 46 37.2 +24 20 38 34.0 0.5 90 <28.69
6 ${\rm hii1117 }$ SB2 G8 03 46 37.5 +23 47 18 17.4 0.3 106 <28.31
6 ${\rm hii1110 }$   K5 03 46 38.8 +24 31 14 43.5 0.9 80 <29.26
6 ${\rm hii1122 }$ SB2 F6 03 46 39.2 +24 06 13 23.0 0.8 96 <28.86
6 ${\rm hii1124 }$   K3 03 46 39.3 +24 01 48 20.3 0.5 100 <28.93
6 ${\rm hii1139 }$   F7 03 46 39.9 +23 06 39 49.1 0.2 69 <28.74
6 ${\rm hii1136 }$   K3 03 46 40.1 +23 29 53 28.8 1.7 75 <29.57
6 ${\rm hii1173 }$   M4 03 46 49.1 +24 36 01 48.8 8.3 71 <30.29
6 ${\rm hii1200 }$   F9 03 46 50.4 +23 14 22 43.1 0.9 71 <29.30
6 ${\rm hcg244 }$     03 46 53.5 +24 17 16 33.2 3.9 91 <29.86
6 ${\rm hii1215 }$   G2 03 46 53.6 +23 35 02 27.0 1.3 93 <29.36
6 ${\rm PPl13 }$     03 46 54.8 +24 27 59 42.2 6.9 80 <30.16
6 ${\rm hcg247 }$     03 46 57.0 +23 15 04 43.1 4.4 68 <30.04
6 ${\rm hcg246 }$     03 46 58.4 +24 27 41 42.3 6.9 78 <30.17
6 ${\rm hii1234 }$   A1 03 46 59.3 +24 31 14 45.5 7.5 76 <30.22
6 ${\rm hii1275 }$   K0 03 47 01.3 +23 29 43 31.9 2.8 93 <29.70
6 ${\rm hii1280 }$   K5 03 47 03.5 +24 09 36 29.2 1.9 87 <29.56
6 ${\rm hii1286 }$ SB2 M5 03 47 03.7 +23 37 00 27.5 1.0 81 <29.03
6 ${\rm hii1284 }$   F0 03 47 04.1 +23 59 45 24.2 0.4 99 <28.80
6 ${\rm hii1298 +B }$ VB K3 03 47 06.7 +23 42 56 25.1 0.8 78 <28.95
6 ${\rm hii1305 }$   K5 03 47 07.2 +23 13 36 45.5 0.1 67 <28.17
6 ${\rm NPL26 }$     03 47 07.8 +24 23 37 40.1 6.6 80 <30.13
6 ${\rm hii1306 }$   K8 03 47 08.4 +23 42 40 25.6 0.9 77 <29.28
6 ${\rm hii1321 }$   M1 03 47 09.3 +23 44 33 25.1 1.1 88 <29.33
6 ${\rm hii1309 }$   F6 03 47 09.9 +24 16 38 35.0 4.8 85 <29.97
6 ${\rm hii1332 }$   K4 03 47 13.4 +23 42 53 26.6 1.2 70 <29.46
6 ${\rm hcg258 }$   K8 03 47 13.5 +23 49 55 24.9 0.9 97 <29.19
6 ${\rm NPL22 }$ VB   03 47 15.4 +24 23 31 41.0 7.0 78 <29.87
6 ${\rm hii1338 }$ SB2 F6 03 47 16.4 +24 07 44 30.4 2.0 81 <29.32
6 ${\rm hii1348 +B }$ VB K5 03 47 17.9 +24 23 28 41.3 0.3 77 <28.51
6 ${\rm hii1355 +B }$ VB M0 03 47 18.0 +24 02 13 28.0 1.5 81 <29.19
6 ${\rm Teide1 }$     03 47 18.0 +24 22 31 40.6 0.6 78 <29.09
6 ${\rm hii1362 }$   A8 03 47 19.2 +24 08 23 31.2 2.4 85 <29.67
6 ${\rm hii1380 +B }$ VB A6 03 47 20.8 +23 48 14 26.8 1.1 93 <28.99
6 ${\rm hii1375 }$   A1 03 47 20.9 +24 07 00 30.8 2.2 82 <29.65
6 ${\rm hii1392 +B }$ VB   03 47 23.7 +23 54 57 27.4 0.4 91 <28.52
6 ${\rm hii1397 +B }$ VB A2 03 47 24.2 +23 54 54 27.5 0.3 90 <28.45
6 ${\rm hcg269 }$     03 47 26.6 +23 38 02 31.3 2.9 80 <29.78
6 ${\rm hii1425 }$   A5 03 47 26.7 +23 40 44 30.2 1.7 63 <29.66
6 ${\rm sk417 }$     03 47 28.0 +23 26 55 38.1 1.1 84 <29.35
6 ${\rm hii1432 }$   B9 03 47 28.9 +24 06 21 32.1 0.7 84 <29.17
6 ${\rm hii1431 }$ SB2 A2 03 47 29.3 +24 17 20 38.6 0.8 90 <28.89
6 ${\rm hcg273 }$     03 47 30.5 +24 22 14 42.2 7.8 81 <30.20
6 ${\rm hcg277 }$   M1 03 47 33.3 +23 41 34 31.3 2.0 58 <29.76
6 ${\rm hii1512 }$   K6 03 47 37.9 +23 28 06 39.0 1.4 83 <29.43
6 ${\rm hii1516 }$   K7 03 47 40.3 +24 18 08 40.9 7.7 85 <30.18
6 ${\rm hii1514 }$   G4 03 47 40.3 +24 21 54 43.5 8.1 81 <30.22
6 ${\rm hii1532 }$   K6 03 47 41.1 +23 44 26 32.1 1.9 80 <29.59
6 ${\rm hii1531 }$   K6 03 47 41.3 +23 58 20 31.9 2.2 77 <29.68
6 ${\rm hcg292 }$     03 47 49.7 +24 25 45 47.7 9.0 70 <30.33
6 ${\rm hii1613 }$   F9 03 47 52.4 +23 56 30 34.0 2.9 90 <29.73
6 ${\rm hii1645 }$   G7 03 47 55.5 +23 27 56 42.3 6.6 78 <30.14
6 ${\rm hii1695 }$   M1 03 48 04.0 +24 03 59 38.4 4.5 77 <29.98
6 ${\rm PPl15 }$ VB   03 48 04.4 +23 39 33 38.6 4.0 70 <29.68
6 ${\rm hii1726 +B }$ VB F9 03 48 07.0 +24 08 33 40.8 5.5 80 <29.76
6 ${\rm hcg307 }$     03 48 07.8 +23 44 24 38.0 4.0 86 <29.89
6 ${\rm PPl12 }$     03 48 10.3 +23 59 25 38.6 4.5 78 <29.98
6 ${\rm hii1756 }$   K9 03 48 10.9 +23 30 27 43.8 3.2 71 <29.88
6 ${\rm hcg310 }$     03 48 11.1 +23 39 45 40.0 4.6 75 <30.00
6 ${\rm hii1762 }$   F2 03 48 13.4 +24 19 08 47.4 2.6 69 <29.80
6 ${\rm hcg315 }$     03 48 13.6 +23 38 01 41.1 4.7 60 <30.11
6 ${\rm hii1797 }$   F9 03 48 16.8 +23 38 14 41.7 4.7 64 <30.08
6 ${\rm hii1794 }$   G2 03 48 17.0 +23 53 27 39.4 2.7 86 <29.71
6 ${\rm hii1823 }$   B9 03 48 20.7 +23 25 19 48.5 2.3 60 <29.81
6 ${\rm hii1827 }$   M3 03 48 22.6 +23 58 22 41.1 5.4 81 <30.05
6 ${\rm hcg322 }$     03 48 25.2 +24 14 27 47.1 7.7 64 <30.30
6 ${\rm hii1856 }$   F9 03 48 26.0 +24 02 56 42.9 5.6 70 <30.12
6 ${\rm hcg328 }$     03 48 29.7 +23 58 06 42.7 5.7 78 <30.09
6 ${\rm hcg324 }$   M5 03 48 31.0 +24 16 53 49.5 2.0 57 <29.77
6 ${\rm hii1912 +B }$ VB F7 03 48 34.7 +24 10 54 47.4 7.4 61 <30.01
6 ${\rm hcg335 }$     03 48 34.9 +24 12 05 48.0 1.1 59 <29.48
6 ${\rm hcg337 }$     03 48 39.8 +24 12 43 49.3 2.5 55 <29.88
6 ${\rm hii2034 }$   K3 03 48 49.2 +23 58 39 47.2 1.6 65 <26.94
7 ${\rm hii1081 }$   M0 03 46 32.8 +23 18 20 46.9 22.4 368 <30.01
7 ${\rm hii1084 }$   F2 03 46 34.1 +23 37 28 49.9 29.5 320 <30.18
7 ${\rm sk465 }$     03 46 36.0 +23 04 18 48.6 38.5 405 <30.20
7 ${\rm hii1139 }$   F7 03 46 39.9 +23 06 39 47.0 33.4 406 <30.14
7 ${\rm hii1136 }$   K3 03 46 40.1 +23 29 53 46.3 3.8 399 <29.20
7 ${\rm hii1200 }$   F9 03 46 50.4 +23 14 22 43.1 2.9 367 <29.13
7 ${\rm hii1220 }$   K1 03 46 53.2 +22 52 52 49.8 1.8 379 <28.90
7 ${\rm hii1215 }$   G2 03 46 53.6 +23 35 02 44.9 0.3 427 <28.08
7 ${\rm hcg247 }$     03 46 57.0 +23 15 04 41.6 5.8 383 <29.40
7 ${\rm hii1275 }$   K0 03 47 01.3 +23 29 43 41.6 0.9 430 <28.52
7 ${\rm hii1286 }$ SB2 M5 03 47 03.7 +23 37 00 43.5 23.8 430 <29.66
7 ${\rm hii1298 +B }$ VB K3 03 47 06.7 +23 42 56 45.6 27.5 422 <29.73
7 ${\rm hii1305 }$   K5 03 47 07.2 +23 13 36 39.5 2.4 381 <29.03
7 ${\rm hii1306 }$   K8 03 47 08.4 +23 42 40 45.2 27.3 434 <30.02
7 ${\rm hii1321 }$   M1 03 47 09.3 +23 44 33 46.0 28.4 420 <30.05
7 ${\rm hii1332 }$   K4 03 47 13.4 +23 42 53 44.3 26.5 444 <30.00
7 ${\rm hcg258 }$   K8 03 47 13.5 +23 49 55 48.4 22.2 270 <30.13
7 ${\rm hii1380 +B }$ VB A2 03 47 20.8 +23 48 14 46.1 1.7 308 <28.66
7 ${\rm hii1407 }$   A8 03 47 22.8 +22 55 21 42.8 2.3 440 <28.95
7 ${\rm hcg270 }$     03 47 23.7 +23 08 59 36.8 1.8 469 <28.80
7 ${\rm hcg269 }$     03 47 26.6 +23 38 02 39.2 3.4 457 <29.09
7 ${\rm hii1425 }$   A5 03 47 26.7 +23 40 44 40.6 0.7 449 <28.41
7 ${\rm sk417 }$     03 47 28.0 +23 26 55 35.0 6.4 489 <29.34
7 ${\rm hcg277 }$   M1 03 47 33.3 +23 41 34 39.8 18.8 470 <29.82
7 ${\rm hii1512 }$   K6 03 47 37.9 +23 28 06 33.1 11.0 515 <29.55
7 ${\rm hii1553 +B }$ VB K4 03 47 40.9 +22 55 49 39.2 20.2 424 <29.60
7 ${\rm hii1532 }$   K6 03 47 41.1 +23 44 26 40.1 1.3 366 <28.78
7 ${\rm hii1593 }$   G9 03 47 48.0 +23 13 07 30.5 0.4 497 <28.10
7 ${\rm hii1613 }$   F9 03 47 52.4 +23 56 30 47.1 30.4 414 <30.09
7 ${\rm sk394 }$     03 47 52.8 +22 59 35 34.9 3.9 447 <29.16
7 ${\rm hii1645 }$   G7 03 47 55.5 +23 27 56 29.2 7.0 510 <29.36
7 ${\rm PPl15 }$ VB   03 48 04.4 +23 39 33 32.9 8.6 394 <29.26
7 ${\rm hcg314 }$     03 48 05.6 +22 38 11 48.4 28.0 376 <30.09
7 ${\rm hcg309 }$   M6 03 48 05.7 +23 02 04 31.1 1.8 475 <28.79
7 ${\rm hcg307 }$     03 48 07.8 +23 44 24 35.5 10.6 436 <29.61
7 ${\rm PPl12 }$     03 48 10.3 +23 59 25 47.2 5.7 411 <29.36
7 ${\rm hii1756 }$   K9 03 48 10.9 +23 30 27 26.8 0.6 506 <28.27
7 ${\rm hcg310 }$     03 48 11.1 +23 39 45 31.8 6.1 268 <29.58
7 ${\rm hcg315 }$     03 48 13.6 +23 38 01 30.2 0.2 347 <27.98
7 ${\rm hii1797 }$   F9 03 48 16.8 +23 38 14 29.8 0.2 259 <28.13
7 ${\rm hii1794 }$   G2 03 48 17.0 +23 53 27 41.3 21.8 479 <29.88
7 ${\rm hii1823 }$   B9 03 48 20.7 +23 25 19 23.0 0.2 558 <27.75
7 ${\rm hcg323 }$   M3 03 48 22.5 +22 52 23 34.7 13.5 467 <29.68
7 ${\rm hii1827 }$   M3 03 48 22.6 +23 58 22 44.9 26.7 467 <29.98
7 ${\rm hii1856 }$   F9 03 48 26.0 +24 02 56 48.7 31.4 382 <30.14
7 ${\rm hcg332 }$     03 48 26.4 +23 11 31 22.7 2.8 360 <29.11
7 ${\rm hii1883 }$   K4 03 48 27.9 +23 18 04 20.9 2.7 551 <28.92
7 ${\rm hcg328 }$     03 48 29.7 +23 58 06 43.9 0.9 460 <28.51
7 ${\rm hii1924 }$   G1 03 48 34.4 +23 26 07 20.3 2.4 560 <28.85
7 ${\rm hhj10 }$     03 48 35.1 +22 53 42 32.0 10.5 462 <29.58
7 ${\rm hcg341 }$   M1 03 48 37.5 +22 46 11 37.9 16.7 426 <29.82
7 ${\rm hcg343 }$     03 48 40.9 +23 14 19 18.8 2.0 495 <28.82
7 ${\rm hii1993 }$   A9 03 48 43.8 +23 15 37 17.9 1.7 524 <28.72
7 ${\rm hii2016 }$   K6 03 48 45.3 +23 20 22 17.0 1.5 553 <28.65
7 ${\rm hii2034 }$   K3 03 48 49.2 +23 58 39 42.7 1.1 482 <28.59
7 ${\rm hii2106 +B }$ VB K1 03 48 58.4 +23 12 05 16.2 1.3 572 <28.27
7 ${\rm hcg353 }$   M4 03 49 00.9 +22 58 51 24.6 0.3 520 <27.92
7 ${\rm hii2126 }$   K1 03 49 02.2 +23 15 10 14.3 1.1 610 <28.48
7 ${\rm hii2144 }$   M1 03 49 05.7 +23 44 24 28.1 6.6 527 <29.32
7 ${\rm hii2147 }$ SB2 G9 03 49 06.0 +23 46 54 30.4 7.7 480 <29.13
7 ${\rm hii2168 }$ SB1 B9 03 49 09.6 +24 03 14 45.7 0.1 433 <27.07
7 ${\rm hii2193 +B }$ VB K9 03 49 11.2 +23 33 20 17.8 1.5 527 <28.38
7 ${\rm TS137 }$   A6 03 49 11.4 +22 36 36 43.9 29.5 449 <30.04
7 ${\rm hii2195 }$ SB? A7 03 49 12.1 +23 53 14 35.9 13.0 510 <29.33
7 ${\rm hii2209 }$   K9 03 49 12.2 +23 13 43 13.1 0.8 638 <28.32
7 ${\rm hcg363 }$     03 49 21.4 +23 39 08 21.9 3.3 671 <28.91
7 ${\rm hii2284 }$ SB1 G9 03 49 23.9 +23 50 23 32.6 9.5 435 <29.26
7 ${\rm sk315 }$     03 49 26.5 +22 50 56 29.3 8.8 536 <29.44
7 ${\rm hii2311 }$   K0 03 49 28.6 +23 42 46 25.0 5.1 502 <29.23
7 ${\rm hii2345 }$   F5 03 49 32.6 +23 22 51 8.1 0.5 662 <28.10
7 ${\rm hii2341 }$   G7 03 49 33.0 +23 47 45 29.6 7.0 474 <29.39
7 ${\rm hii2368 }$   M3 03 49 34.8 +23 27 18 10.3 0.6 651 <28.18
7 ${\rm TS142 }$   A2 03 49 38.3 +22 32 03 47.3 2.5 419 <28.99
7 ${\rm hii2406 }$ SB1 G9 03 49 39.3 +23 17 26 7.6 0.5 653 <27.82
7 ${\rm hii2417 }$   K4 03 49 40.4 +23 08 47 12.3 0.2 670 <27.70
7 ${\rm hii2415 }$   A7 03 49 40.8 +23 20 31 7.0 0.5 697 <28.09
7 ${\rm hii2425 }$   B9 03 49 43.4 +23 42 45 24.4 4.0 532 <29.10
7 ${\rm hii2462 }$   K1 03 49 50.2 +23 42 22 24.0 3.2 496 <29.04
7 ${\rm hii2506 }$   G1 03 49 56.4 +23 13 08 8.0 0.5 662 <28.14
7 ${\rm hii2500 }$ SB   03 49 57.4 +23 50 51 32.4 1.1 479 <28.29
7 ${\rm sk293 }$     03 49 58.2 +23 42 35 24.3 3.4 422 <29.13
7 ${\rm hii2548 }$   K7 03 50 04.9 +24 07 25 48.8 3.7 391 <29.19
7 ${\rm hii2602 }$   M5 03 50 12.1 +23 59 46 41.4 2.2 423 <28.93
7 ${\rm hii2655 }$   K8 03 50 20.1 +23 34 21 17.6 1.6 534 <28.69
7 ${\rm hii2665 }$   K0 03 50 21.2 +23 05 48 14.6 1.2 618 <28.52
7 ${\rm sk263 }$     03 50 38.8 +23 13 04 11.8 0.8 598 <28.35
7 ${\rm hii2786 }$   G1 03 50 40.0 +23 56 00 39.0 0.8 480 <28.45
7 ${\rm hcg409 }$     03 50 48.8 +22 40 14 40.7 20.4 470 <29.86
7 ${\rm hii2870 }$   K4 03 50 51.3 +23 19 46 13.9 1.2 641 <28.48
7 ${\rm hii2866 }$   A3 03 50 52.4 +23 57 41 41.4 21.5 486 <29.87
7 ${\rm hii2881 +B }$ VB K3 03 50 54.2 +23 50 07 34.6 3.6 523 <28.76
7 ${\rm hcg414 }$     03 50 58.1 +23 55 44 40.0 2.1 503 <28.84
7 ${\rm hii2966 }$   M3 03 51 12.0 +23 55 59 41.5 21.6 467 <29.89
7 ${\rm hcg423 }$   M1 03 51 15.7 +23 16 58 19.0 2.5 583 <28.84
7 ${\rm hii2984 }$   K3 03 51 16.7 +23 49 37 36.5 14.1 497 <29.67
7 ${\rm sk22 }$     03 51 28.5 +23 22 01 22.3 0.0 539 <26.71
7 ${\rm hii3063 }$   K5 03 51 29.8 +23 53 59 41.7 21.9 441 <29.92
7 ${\rm hii3104 }$   K6 03 51 37.9 +23 11 01 25.0 4.8 540 <29.17
7 ${\rm hcg437 }$     03 51 50.5 +22 53 46 36.4 1.0 374 <28.64
7 ${\rm hcg439 }$     03 51 54.4 +23 33 33 31.6 9.4 494 <29.50
7 ${\rm hcg440 }$     03 51 54.9 +23 57 44 48.0 2.4 422 <28.98
7 ${\rm hii3179 }$   F9 03 51 56.8 +23 54 08 45.4 27.3 444 <30.01
7 ${\rm hii3187 }$   K5 03 51 57.2 +23 20 23 28.4 6.8 547 <29.31
8 ${\rm hcg124 }$     03 43 38.9 +23 44 07 49.8 0.3 2976 <27.26
8 ${\rm hii659 }$   K3 03 45 25.8 +23 25 50 45.8 238.6 3536 <30.05
8 ${\rm hii799 }$   K7 03 45 50.4 +23 52 27 20.4 18.0 3965 <28.88
8 ${\rm hii996 }$   G2 03 46 22.5 +24 34 14 28.5 28.0 4522 <29.01
8 ${\rm hii1081 }$   M0 03 46 32.8 +23 18 20 49.0 1.8 3309 <27.96
8 ${\rm hii2548 }$   K7 03 50 04.9 +24 07 25 44.1 214.6 3655 <29.99
8 ${\rm hii2601 +B }$ VB M4 03 50 12.8 +24 21 08 47.9 1.8 3344 <27.65
9 ${\rm hii193 }$   G9 03 43 50.6 +24 14 52 42.4 109.4 4662 <29.59
9 ${\rm hii357 +B }$ VB K6 03 44 27.9 +24 10 19 33.6 100.4 4978 <29.22
9 ${\rm hii405 }$   F9 03 44 40.6 +24 49 08 49.9 205.9 4017 <29.93
9 ${\rm hii673 }$     03 45 30.1 +24 18 47 21.3 42.7 5202 <29.14
9 ${\rm hii817 }$   B9 03 45 54.3 +24 33 18 27.3 34.1 5743 <29.00
9 ${\rm hii916 }$ SB K1 03 46 11.6 +24 37 22 29.4 52.1 5138 <28.93
9 ${\rm hii1094 }$   M0 03 46 35.8 +23 58 02 12.7 42.9 6981 <29.01
9 ${\rm hcg246 }$     03 46 58.4 +24 27 41 18.1 12.7 5099 <28.62
9 ${\rm hcg313 }$   M5 03 48 20.2 +24 54 56 49.3 340.2 4003 <30.15
9 ${\rm hii2244 }$   K3 03 49 20.5 +24 46 37 49.7 40.3 3214 <29.32
9 ${\rm hii2407 }$ SB1 K3 03 49 42.2 +24 27 48 42.3 61.0 4336 <29.07
9 ${\rm hii2462 }$   K1 03 49 50.2 +23 42 22 48.5 346.5 4084 <30.15
9 ${\rm sk293 }$     03 49 58.2 +23 42 35 49.9 368.3 3946 <30.19
9 ${\rm hii2602 }$   M5 03 50 12.1 +23 59 46 46.1 71.4 3921 <29.48
11 ${\rm hii146 }$   M0 03 43 36.5 +23 27 15 48.5 68.1 668 <30.23
11 ${\rm hii164 }$ SB1 F7 03 43 42.8 +23 35 42 44.0 3.0 768 <28.51
11 ${\rm hcg144 }$     03 44 16.3 +23 37 06 36.5 32.6 886 <29.79
11 ${\rm hii762 }$   M0 03 45 43.9 +24 04 28 20.9 3.2 897 <28.77
11 ${\rm hii793 }$   M1 03 45 48.8 +23 51 11 14.9 0.7 1079 <28.02
11 ${\rm hcg219 }$   K4 03 46 25.3 +24 09 38 20.8 5.7 1103 <28.93
11 ${\rm hii1061 +B }$ VB K9 03 46 31.1 +24 07 04 18.1 7.5 1160 <28.73
11 ${\rm hii1094 }$   M0 03 46 35.8 +23 58 02 9.3 15.3 1251 <29.31
11 ${\rm sk465 }$     03 46 36.0 +23 04 18 45.2 1.2 745 <28.43
11 ${\rm hii1100 +B }$ VB K5 03 46 37.2 +24 20 38 31.3 12.1 837 <29.08
11 ${\rm hcg247 }$     03 46 57.0 +23 15 04 34.8 0.4 881 <27.83
11 ${\rm hii1234 }$   A1 03 46 59.3 +24 31 14 42.1 18.8 726 <29.63
11 ${\rm hii1332 }$   K4 03 47 13.4 +23 42 53 13.4 8.4 1179 <29.07
11 ${\rm hii1338 }$ SB2 F6 03 47 16.4 +24 07 44 20.2 6.9 1134 <28.70
11 ${\rm hcg273 }$     03 47 30.5 +24 22 14 34.8 11.3 959 <29.29
11 ${\rm hii1514 }$   G4 03 47 40.3 +24 21 54 35.3 15.0 962 <29.41
11 ${\rm hcg307 }$     03 48 07.8 +23 44 24 22.2 0.7 930 <28.13
11 ${\rm hii1762 }$   F2 03 48 13.4 +24 19 08 36.6 14.6 824 <29.47
11 ${\rm hii1883 }$   K4 03 48 27.9 +23 18 04 40.5 7.9 855 <29.19
11 ${\rm hcg324 }$   M5 03 48 31.0 +24 16 53 37.4 1.8 917 <28.51
11 ${\rm hii2106 +B }$ VB K1 03 48 58.4 +23 12 05 49.4 66.0 725 <29.88
11 ${\rm hii2345 }$   F5 03 49 32.6 +23 22 51 48.2 59.8 770 <30.11
12 ${\rm hii146 }$   M0 03 43 36.5 +23 27 15 49.3 633.2 6836 <30.19
12 ${\rm hii212 }$   K9 03 43 55.6 +24 25 36 49.9 54.4 6533 <29.14
12 ${\rm hcg144 }$     03 44 16.3 +23 37 06 36.6 258.7 8651 <29.70
12 ${\rm hcg194 }$     03 45 36.7 +24 39 07 48.6 161.6 7159 <29.57
12 ${\rm hii817 }$   B9 03 45 54.3 +24 33 18 41.9 38.0 8136 <28.89
12 ${\rm hii1081 }$   M0 03 46 32.8 +23 18 20 34.8 31.3 8991 <28.76
12 ${\rm hii1084 }$   F2 03 46 34.1 +23 37 28 16.0 20.6 11563 <28.47
12 ${\rm sk465 }$     03 46 36.0 +23 04 18 48.8 686.9 7335 <30.19
12 ${\rm hcg247 }$     03 46 57.0 +23 15 04 38.2 12.0 7940 <28.40
12 ${\rm hii1234 }$   A1 03 46 59.3 +24 31 14 38.7 13.7 8757 <28.41
12 ${\rm hii1514 }$   G4 03 47 40.3 +24 21 54 32.2 92.5 9062 <29.23
12 ${\rm hii1762 }$   F2 03 48 13.4 +24 19 08 33.9 137.5 8450 <29.43
12 ${\rm hii1883 }$   K4 03 48 27.9 +23 18 04 42.9 162.8 8050 <29.53
13 ${\rm hii817 }$   B9 03 45 54.3 +24 33 18 41.6 124.3 14811 <29.14
13 ${\rm hcg273 }$     03 47 30.5 +24 22 14 30.6 181.4 19543 <29.19
13 ${\rm hii1827 }$   M3 03 48 22.6 +23 58 22 22.6 19.9 5473 <28.78
13 ${\rm hcg324 }$   M5 03 48 31.0 +24 16 53 33.5 110.8 18829 <28.99
13 ${\rm hii2345 }$   F5 03 49 32.6 +23 22 51 48.8 143.1 15415 <29.19
26 ${\rm hii1100 +B }$ VB K5 03 46 37.2 +24 20 38 47.7 230.2 13514 <29.15
26 ${\rm hii1110 }$   K5 03 46 38.8 +24 31 14 48.3 63.4 13276 <28.90
26 ${\rm hii1122 }$ SB2 F6 03 46 39.2 +24 06 13 49.7 147.4 11373 <29.03
26 ${\rm hii1173 }$   M4 03 46 49.1 +24 36 01 47.3 1049.0 13293 <30.12
26 ${\rm hcg244 }$     03 46 53.5 +24 17 16 44.2 51.1 14430 <28.77
26 ${\rm PPl13 }$     03 46 54.8 +24 27 59 44.2 15.9 14067 <28.27
26 ${\rm hcg246 }$     03 46 58.4 +24 27 41 43.3 26.4 14319 <28.49
26 ${\rm hii1234 }$   A1 03 46 59.3 +24 31 14 43.8 6.8 14122 <27.90
26 ${\rm hii1280 }$   K5 03 47 03.5 +24 09 36 43.5 62.8 10903 <28.98
26 ${\rm hii1284 }$   F0 03 47 04.1 +23 59 45 47.0 89.5 14075 <29.02
26 ${\rm NPL26 }$     03 47 07.8 +24 23 37 40.8 756.6 15231 <29.92
26 ${\rm hii1309 }$   F6 03 47 09.9 +24 16 38 40.6 227.3 14969 <29.40
26 ${\rm NPL22 }$ VB   03 47 15.4 +24 23 31 39.1 662.6 15881 <29.54
26 ${\rm hii1338 }$ SB2 F6 03 47 16.4 +24 07 44 41.2 46.1 13421 <28.46
26 ${\rm hii1348 +B }$ VB K5 03 47 17.9 +24 23 28 38.5 10.5 16035 <27.74
26 ${\rm Teide1 }$     03 47 18.0 +24 22 31 38.5 17.4 16065 <28.25
26 ${\rm hii1362 }$   A8 03 47 19.2 +24 08 23 40.4 26.2 12835 <28.53
26 ${\rm hii1375 }$   A1 03 47 20.9 +24 07 00 40.5 58.9 14640 <28.82
26 ${\rm hii1392 +B }$ VB   03 47 23.7 +23 54 57 45.7 233.3 13935 <29.14
26 ${\rm hii1397 +B }$ VB A2 03 47 24.2 +23 54 54 45.7 236.5 13935 <29.15
26 ${\rm hii1432 }$   B9 03 47 28.9 +24 06 21 39.1 112.9 15508 <29.08
26 ${\rm hii1431 }$ SB2 A2 03 47 29.3 +24 17 20 36.1 180.3 16120 <28.97
26 ${\rm hcg273 }$     03 47 30.5 +24 22 14 35.6 134.0 17003 <29.12
26 ${\rm hii1454 }$   K4 03 47 33.6 +24 41 04 40.0 22.6 7925 <28.68
26 ${\rm sk409 }$     03 47 37.9 +24 49 12 43.7 47.8 13777 <28.76
26 ${\rm hii1485 }$   K7 03 47 38.0 +24 53 32 46.6 66.8 13385 <28.92
26 ${\rm hii1514 }$   G4 03 47 40.3 +24 21 54 33.4 213.3 16951 <29.32
26 ${\rm hii1532 }$   K6 03 47 41.1 +23 44 26 49.8 285.7 12898 <29.57
26 ${\rm hii1531 }$   K6 03 47 41.3 +23 58 20 40.5 215.6 15271 <29.37
26 ${\rm ALR929 }$   M4 03 47 47.6 +24 29 59 32.8 351.7 17129 <29.53
26 ${\rm hcg292 }$     03 47 49.7 +24 25 45 31.5 22.9 16872 <28.35
26 ${\rm hcg295 }$     03 47 50.9 +24 30 20 32.2 16.2 16822 <28.20
26 ${\rm hii1613 }$   F9 03 47 52.4 +23 56 30 39.6 210.9 15399 <29.36
26 ${\rm hii1695 }$   M1 03 48 04.0 +24 03 59 33.1 347.4 17318 <29.52
26 ${\rm hcg307 }$     03 48 07.8 +23 44 24 46.0 84.8 12791 <29.04
26 ${\rm PPl12 }$     03 48 10.3 +23 59 25 34.6 74.8 16673 <28.87
26 ${\rm hcg310 }$     03 48 11.1 +23 39 45 49.4 158.3 11185 <29.37
26 ${\rm hii1776 }$   G7 03 48 17.6 +25 02 54 48.3 106.3 12889 <29.14
26 ${\rm hcg313 }$   M5 03 48 20.2 +24 54 56 41.3 121.0 14323 <29.15
26 ${\rm hii1827 }$   M3 03 48 22.6 +23 58 22 33.2 113.3 16956 <29.05
26 ${\rm hcg322 }$     03 48 25.2 +24 14 27 24.3 67.0 12535 <28.95
26 ${\rm hcg328 }$     03 48 29.7 +23 58 06 32.3 39.2 17183 <28.58
26 ${\rm hii1876 }$ SB? A4 03 48 30.0 +24 20 46 22.1 7.9 15037 <27.64
26 ${\rm hcg324 }$   M5 03 48 31.0 +24 16 53 22.4 49.5 12589 <28.82
26 ${\rm hcg335 }$     03 48 34.9 +24 12 05 23.0 133.7 12961 <29.23
26 ${\rm hcg337 }$     03 48 39.8 +24 12 43 21.8 49.1 9958 <28.91
26 ${\rm hcg339 }$   M5 03 48 42.0 +25 00 30 43.5 64.9 13793 <28.89
26 ${\rm ALR728 }$   M1 03 48 49.0 +24 11 21 20.5 4.6 12737 <27.78
26 ${\rm hii2082 }$   K8 03 48 58.9 +25 06 15 47.4 18.9 12122 <28.41
26 ${\rm hii2144 }$   M1 03 49 05.7 +23 44 24 39.7 1258.8 15468 <30.13
26 ${\rm hii2168 }$ SB1 B9 03 49 09.6 +24 03 14 22.5 4.4 11783 <27.49
26 ${\rm hii2193 +B }$ VB K9 03 49 11.2 +23 33 20 49.8 143.4 13238 <28.95
26 ${\rm hii2195 }$ SB? A7 03 49 12.1 +23 53 14 31.0 238.5 15298 <29.11
26 ${\rm hii2220 }$   A4 03 49 16.7 +24 23 48 11.7 8.3 20565 <27.82
26 ${\rm hcg363 }$     03 49 21.4 +23 39 08 43.6 814.3 14707 <29.96
26 ${\rm hii2263 }$   B9 03 49 21.6 +24 22 53 10.4 9.6 20753 <27.89
26 ${\rm hii2284 }$ SB1 G9 03 49 23.9 +23 50 23 32.7 82.6 16575 <28.62
26 ${\rm hii2311 }$   K0 03 49 28.6 +23 42 46 39.7 45.1 15571 <28.68
26 ${\rm hii2341 }$   G7 03 49 33.0 +23 47 45 34.7 96.9 16610 <28.99
26 ${\rm hii2425 }$   B9 03 49 43.4 +23 42 45 39.2 2.3 15261 <27.41
26 ${\rm hii2462 }$   K1 03 49 50.2 +23 42 22 39.4 36.1 15141 <28.60
26 ${\rm hii2488 }$   A3 03 49 56.5 +24 20 58 3.2 12.4 22293 <27.97
26 ${\rm sk293 }$     03 49 58.2 +23 42 35 39.0 63.1 15089 <28.84
26 ${\rm hii2655 }$   K8 03 50 20.1 +23 34 21 47.3 56.2 13414 <28.84
26 ${\rm hcg403 }$   M4 03 50 29.8 +25 03 08 42.1 9.2 14281 <28.03
26 ${\rm hii2786 }$   G1 03 50 40.0 +23 56 00 26.6 125.3 13208 <29.20
26 ${\rm hcg414 }$     03 50 58.1 +23 55 44 28.3 86.2 17885 <28.90
26 ${\rm hii2908 }$   K5 03 51 02.2 +25 03 21 43.8 44.0 14045 <28.72
26 ${\rm hii2966 }$   M3 03 51 12.0 +23 55 59 29.5 113.0 17226 <29.04
26 ${\rm hii2984 }$   K3 03 51 16.7 +23 49 37 35.7 13.7 16625 <28.14
26 ${\rm hii3031 }$   F3 03 51 27.1 +24 31 08 20.8 50.0 11877 <28.84
26 ${\rm hcg440 }$     03 51 54.9 +23 57 44 34.3 94.5 15856 <29.00
26 ${\rm hii3179 }$   F9 03 51 56.8 +23 54 08 37.1 168.0 15460 <29.26
26 ${\rm hcg454 }$   M2 03 52 20.6 +24 33 57 33.0 61.0 15849 <28.81
26 ${\rm hcg456 }$     03 52 30.8 +24 32 41 34.7 84.1 13314 <29.02
26 ${\rm hcg473 }$     03 53 40.8 +24 25 11 48.9 16.4 11555 <28.37
27 ${\rm hcg63 }$     03 42 02.8 +24 12 38 46.9 1014.1 16724 <30.00
27 ${\rm sk701 }$     03 42 03.2 +24 32 14 35.0 13.7 20369 <28.05
27 ${\rm hcg71 }$   M0 03 42 21.5 +24 39 54 28.5 99.2 17071 <28.98
27 ${\rm hcg73 }$     03 42 26.2 +24 14 09 42.2 741.5 17538 <29.85
27 ${\rm AK1B078 }$   K4 03 42 27.5 +25 02 51 30.6 15.1 9562 <28.42
27 ${\rm sk676 }$     03 42 28.5 +25 01 02 29.5 81.9 11725 <29.07
27 ${\rm sk663 }$     03 42 49.0 +24 10 17 42.5 84.0 15025 <28.97
27 ${\rm hii25 }$   F7 03 42 55.0 +24 29 36 26.5 69.7 22477 <28.71
27 ${\rm hcg93 }$     03 42 56.4 +24 05 00 46.4 45.8 15660 <28.69
27 ${\rm sk65 }$     03 42 57.0 +25 22 47 40.8 24.9 18058 <28.36
27 ${\rm hii34 }$   K2 03 43 02.8 +24 40 12 19.4 61.6 17722 <28.76
27 ${\rm sk650 }$     03 43 11.5 +25 25 25 41.7 152.2 17311 <29.16
27 ${\rm hcg103 }$     03 43 13.0 +24 39 21 17.7 71.4 24296 <28.69
27 ${\rm sk638 }$     03 43 26.8 +24 27 11 23.6 40.6 18819 <28.55
27 ${\rm hcg112 }$   M4 03 43 34.1 +25 35 27 49.8 22.5 12536 <28.48
27 ${\rm sk622 }$     03 43 35.1 +25 24 32 39.1 484.4 13338 <29.78
27 ${\rm hii133 }$   K8 03 43 36.8 +24 23 40 25.6 165.5 19027 <29.16
27 ${\rm hcg115 }$     03 43 37.2 +25 24 34 39.0 422.6 13336 <29.72
27 ${\rm hii158 }$   A8 03 43 43.1 +24 22 30 26.2 175.5 21086 <29.14
27 ${\rm TS51x }$   F9 03 43 47.1 +25 24 52 38.8 229.9 14612 <29.42
27 ${\rm AK1B146a }$ SB2 F8 03 43 50.5 +25 16 10 30.2 45.8 15368 <28.39
27 ${\rm hcg126 }$   M5 03 43 53.7 +25 28 31 42.1 191.2 17122 <29.27
27 ${\rm sk596 }$     03 43 56.6 +25 15 45 29.5 29.1 15806 <28.48
27 ${\rm hcg138 }$     03 44 13.9 +25 32 17 45.4 93.7 16611 <28.97
27 ${\rm hii335 }$   K6 03 44 23.0 +24 04 07 42.9 1055.0 17745 <30.00
27 ${\rm hii338 }$   F6 03 44 23.4 +24 07 59 39.0 942.2 18623 <29.93
27 ${\rm hii344 }$   A9 03 44 25.6 +24 23 43 23.3 42.1 18823 <28.57
27 ${\rm hcg156 }$   M5 03 44 26.8 +24 24 33 22.5 50.0 17003 <28.69
27 ${\rm hii357 +B }$ VB K6 03 44 27.9 +24 10 19 36.7 463.2 19211 <29.30
27 ${\rm hii390 }$   K9 03 44 35.3 +24 00 06 47.0 64.5 16564 <28.81
27 ${\rm hii430 }$   K0 03 44 43.8 +24 13 54 33.5 57.1 17869 <28.73
27 ${\rm AK1B199 }$   K3 03 44 43.8 +25 29 59 43.4 92.3 17325 <28.95
27 ${\rm hii447 }$   B9 03 44 48.1 +24 17 24 30.2 211.4 15984 <29.34
27 ${\rm hii468 }$ SB1 B8 03 44 52.4 +24 06 50 40.7 5.0 15400 <27.43
27 ${\rm hii489 }$   G2 03 44 56.3 +24 25 59 22.4 152.7 18064 <29.15
27 ${\rm hii514 }$   G6 03 45 03.9 +25 15 29 30.1 138.6 20507 <29.05
27 ${\rm sk534 }$     03 45 05.2 +25 29 12 43.4 51.2 17504 <28.69
27 ${\rm hii554 }$   K7 03 45 11.8 +24 35 11 16.2 211.1 23109 <29.18
27 ${\rm hcg177 }$     03 45 11.9 +24 30 19 20.1 54.9 19830 <28.66
27 ${\rm sk526 }$     03 45 15.7 +25 06 39 23.2 114.8 17780 <29.03
27 ${\rm hcg183 }$     03 45 16.0 +24 07 18 41.5 15.7 14587 <28.25
27 ${\rm hii590 }$   K8 03 45 18.0 +25 06 00 23.0 188.3 17718 <29.25
27 ${\rm hcg189 }$     03 45 24.5 +25 02 40 21.2 1.7 10579 <27.42
27 ${\rm hii652 }$   A7 03 45 26.0 +24 02 08 47.1 71.7 14802 <28.91
27 ${\rm hii673 }$     03 45 30.1 +24 18 47 32.1 435.0 21033 <29.54
27 ${\rm hii697 }$   F2 03 45 34.3 +24 27 50 25.1 85.4 20321 <28.84
27 ${\rm hcg194 }$     03 45 36.7 +24 39 07 18.6 161.9 18596 <29.16
27 ${\rm hii717 }$ SB? A5 03 45 37.7 +24 20 10 31.8 171.2 20875 <28.83
27 ${\rm hcg196 }$     03 45 38.9 +25 13 29 31.8 41.6 16779 <28.61
27 ${\rm hii745 }$   F8 03 45 41.2 +24 17 21 34.6 363.5 19822 <29.48
27 ${\rm hii746 }$ SB? G9 03 45 41.7 +24 25 55 27.7 65.3 21545 <28.40
27 ${\rm hii762 }$   M0 03 45 43.9 +24 04 28 46.4 194.6 16627 <29.29
27 ${\rm hii785 }$   B9 03 45 49.5 +24 22 06 31.7 375.5 20551 <29.48
27 ${\rm hii804 }$   A7 03 45 51.5 +24 02 22 49.0 29.4 16160 <28.48
27 ${\rm hii813 }$   M5 03 45 53.6 +24 28 10 27.9 235.2 21109 <29.27
27 ${\rm hii817 }$   B9 03 45 54.3 +24 33 18 24.9 70.1 8399 <29.14
27 ${\rm TS84 }$   A7 03 45 59.4 +25 24 00 43.1 56.5 13907 <28.83
27 ${\rm hii859 }$   A0 03 46 02.8 +24 31 42 27.4 38.0 13803 <28.66
27 ${\rm sk490 }$   M1 03 46 03.7 +25 27 12 46.4 132.9 13088 <29.23
27 ${\rm sk488 }$     03 46 05.5 +24 36 46 25.5 194.8 21869 <29.17
27 ${\rm hii879 }$   K4 03 46 06.4 +24 34 04 26.9 121.4 16835 <29.08
27 ${\rm hii883 }$   K4 03 46 06.8 +24 33 47 27.1 118.9 14770 <29.13
27 ${\rm hii906 }$   M3 03 46 09.8 +24 40 26 25.2 157.3 20837 <29.10
27 ${\rm hii916 }$ SB K1 03 46 11.6 +24 37 22 26.6 189.8 23128 <28.83
27 ${\rm hii974 }$   K7 03 46 20.4 +24 47 09 26.8 60.2 21153 <28.68
27 ${\rm hii996 }$   G2 03 46 22.5 +24 34 14 30.1 152.9 21537 <29.07
27 ${\rm hcg219 }$   K4 03 46 25.3 +24 09 38 46.6 153.4 16216 <29.20
27 ${\rm hii1028 }$ SB? A4 03 46 27.1 +24 15 20 42.5 1032.0 17553 <29.69
27 ${\rm hii1029 }$   K9 03 46 28.5 +24 45 33 28.6 54.9 20514 <28.65
27 ${\rm hii1061 +B }$ VB K9 03 46 31.1 +24 07 04 49.5 124.1 15762 <28.82
27 ${\rm hii1095 }$   K2 03 46 37.7 +24 44 53 30.8 72.0 20336 <28.77
27 ${\rm hii1110 }$   K5 03 46 38.8 +24 31 14 34.7 11.7 19129 <28.00
27 ${\rm hii1114 }$   K9 03 46 40.2 +24 55 53 32.5 168.1 14395 <29.29
27 ${\rm hii1173 }$   M4 03 46 49.1 +24 36 01 35.0 431.9 18628 <29.59
27 ${\rm hcg244 }$     03 46 53.5 +24 17 16 45.4 11.3 16688 <28.05
27 ${\rm hii1207 }$   G3 03 46 54.8 +24 47 49 34.6 320.6 18376 <29.46
27 ${\rm PPl13 }$     03 46 54.8 +24 27 59 39.4 18.2 14993 <28.31
27 ${\rm hcg246 }$     03 46 58.4 +24 27 41 40.3 24.0 15344 <28.41
27 ${\rm hii1234 }$   A1 03 46 59.3 +24 31 14 38.9 117.1 17671 <29.04
27 ${\rm hii1266 +B }$ VB F2 03 47 03.4 +24 49 13 36.6 334.6 18165 <29.18
27 ${\rm NPL26 }$     03 47 07.8 +24 23 37 44.2 958.4 9501 <30.22
27 ${\rm NPL22 }$ VB   03 47 15.4 +24 23 31 45.7 1057.3 9991 <29.94
27 ${\rm hii1348 +B }$ VB K5 03 47 17.9 +24 23 28 46.3 1092.9 10336 <29.94
27 ${\rm sk428 }$     03 47 20.7 +25 05 13 44.4 99.4 15817 <29.02
27 ${\rm hcg261 }$     03 47 22.9 +24 50 58 41.1 193.3 16518 <29.29
27 ${\rm hcg263 }$   M7 03 47 25.7 +25 08 34 46.8 65.0 15315 <28.85
27 ${\rm hcg273 }$     03 47 30.5 +24 22 14 49.4 94.2 10793 <29.16
27 ${\rm hii1454 }$   K4 03 47 33.6 +24 41 04 43.8 207.2 16281 <29.32
27 ${\rm sk409 }$     03 47 37.9 +24 49 12 44.4 204.3 15710 <29.34
27 ${\rm hii1485 }$   K7 03 47 38.0 +24 53 32 44.8 262.6 14151 <29.49
27 ${\rm ALR929 }$   M4 03 47 47.6 +24 29 59 49.6 1189.5 15014 <30.12
8,9 ${\rm hii134 +B }$ VB M1 03 43 36.5 +24 13 58 45.4 136.1 7824 <29.16
8,9 ${\rm hii133 }$   K8 03 43 36.8 +24 23 40 47.5 622.6 7098 <30.16
8,9 ${\rm hii158 }$   A8 03 43 43.1 +24 22 30 45.8 4.9 7271 <28.05
8,9 ${\rm hii212 }$   K9 03 43 55.6 +24 25 36 44.2 58.9 7921 <29.09
8,9 ${\rm hcg135 }$   K4 03 43 56.9 +23 57 07 42.0 15.7 8255 <28.50
8,9 ${\rm hii232 }$ SB? A7 03 44 00.2 +24 33 26 46.9 198.9 7609 <29.34
8,9 ${\rm JRS26 }$   M9 03 44 02.0 +23 51 47 42.7 21.1 7659 <28.66
8,9 ${\rm hii253 }$   G5 03 44 03.4 +24 30 17 44.6 402.9 7922 <29.93
8,9 ${\rm sk586 }$     03 44 09.5 +24 35 23 46.2 217.2 7758 <29.67
8,9 ${\rm hii303 +B }$ VB K1 03 44 14.5 +24 06 08 36.5 298.4 6865 <29.56
8,9 ${\rm hcg144 }$     03 44 16.3 +23 37 06 47.8 5.1 7460 <28.05
8,9 ${\rm hcg145 }$     03 44 17.6 +24 26 48 40.2 56.0 8646 <29.03
8,9 ${\rm hcg146 }$   M4 03 44 18.9 +24 35 20 44.5 354.2 7581 <29.89
8,9 ${\rm hcg155 }$     03 44 20.8 +23 33 41 49.4 688.4 7009 <30.21
8,9 ${\rm hii335 }$   K6 03 44 23.0 +24 04 07 34.8 239.8 7889 <29.70
8,9 ${\rm hcg150 }$   M3 03 44 25.5 +24 40 54 46.9 29.2 6551 <28.87
8,9 ${\rm hii344 }$   A9 03 44 25.6 +24 23 43 37.2 330.2 8888 <29.79
8,9 ${\rm hcg156 }$   M5 03 44 26.8 +24 24 33 37.3 335.0 8940 <29.79
8,9 ${\rm sk564 }$     03 44 31.6 +23 35 28 46.4 554.4 7195 <30.11
8,9 ${\rm hii370 }$   M1 03 44 31.9 +23 52 32 36.2 19.5 8872 <28.56
8,9 ${\rm PPl14 }$     03 44 34.0 +23 51 25 36.3 4.2 9172 <27.88
8,9 ${\rm hii390 }$   K9 03 44 35.3 +24 00 06 32.8 9.5 9390 <28.22
8,9 ${\rm hcg161 }$   M4 03 44 36.2 +23 30 13 49.6 685.8 6389 <30.25
8,9 ${\rm hcg160 }$     03 44 39.5 +24 31 44 38.6 53.8 8134 <29.04
8,9 ${\rm hii430 }$   K0 03 44 43.8 +24 13 54 30.3 6.6 9392 <28.07
8,9 ${\rm hii447 }$   B9 03 44 48.1 +24 17 24 30.2 159.0 9717 <29.43
8,9 ${\rm hii468 }$ SB1 B8 03 44 52.4 +24 06 50 27.9 6.3 7431 <27.84
8,9 ${\rm hii489 }$   G2 03 44 56.3 +24 25 59 32.2 65.4 9652 <29.05
8,9 ${\rm hcg172 }$     03 45 01.0 +24 46 43 46.2 38.2 7837 <28.91
8,9 ${\rm hii522 }$ SB1 K2 03 45 03.2 +23 50 23 31.2 11.9 9748 <28.01
8,9 ${\rm hii530 }$   F3 03 45 05.1 +23 42 11 36.2 224.8 7777 <29.68
8,9 ${\rm hhj48 }$     03 45 06.4 +24 40 43 40.6 10.9 8443 <28.33
8,9 ${\rm hcg176 }$     03 45 06.6 +23 36 51 40.1 10.5 7408 <28.37
8,9 ${\rm hii541 }$ SB? B9 03 45 09.6 +24 50 23 48.3 41.5 7466 <28.66
8,9 ${\rm hcg177 }$     03 45 11.9 +24 30 19 32.1 39.6 6748 <28.99
8,9 ${\rm hhj14 }$     03 45 12.5 +23 53 45 27.5 3.6 9629 <27.80
8,9 ${\rm hcg184 }$   M9 03 45 13.3 +23 31 02 44.0 496.5 7571 <30.04
8,9 ${\rm hcg183 }$     03 45 16.0 +24 07 18 22.6 6.9 6850 <28.22
8,9 ${\rm hii636 }$   K4 03 45 22.1 +23 28 20 45.4 573.2 7782 <30.09
8,9 ${\rm hii624 }$   M4 03 45 23.4 +24 51 03 47.4 187.7 7322 <29.63
8,9 ${\rm hii627 }$ SB? F7 03 45 24.0 +24 53 11 49.3 319.5 7154 <29.57
8,9 ${\rm hii652 }$   A7 03 45 26.0 +24 02 08 21.2 15.4 8518 <28.48
8,9 ${\rm hii676 }$   K7 03 45 29.5 +23 45 39 30.0 88.3 8048 <29.26
8,9 ${\rm hii697 }$   F2 03 45 34.3 +24 27 50 26.7 21.1 9306 <28.58
8,9 ${\rm hcg194 }$     03 45 36.7 +24 39 07 35.5 232.1 8599 <29.65
8,9 ${\rm hii717 }$ SB? A5 03 45 37.7 +24 20 10 21.2 51.9 8406 <28.71
8,9 ${\rm hii762 }$   M0 03 45 43.9 +24 04 28 16.7 21.7 10683 <28.53
8,9 ${\rm hii793 }$   M1 03 45 48.8 +23 51 11 22.9 12.5 8816 <28.37
8,9 ${\rm hii785 }$   B9 03 45 49.5 +24 22 06 20.3 33.6 6822 <28.91
8,9 ${\rm hii804 }$   A7 03 45 51.5 +24 02 22 15.7 23.9 11212 <28.55
8,9 ${\rm hii813 }$   M5 03 45 53.6 +24 28 10 24.2 71.6 8824 <29.13
8,9 ${\rm hii870 +B }$ VB K6 03 46 02.7 +23 44 16 27.0 14.8 9142 <28.13
8,9 ${\rm hii859 }$   A0 03 46 02.8 +24 31 42 26.2 9.7 9726 <28.22
8,9 ${\rm hii882 }$   K4 03 46 04.0 +23 24 21 45.7 117.4 7893 <29.39
8,9 ${\rm sk488 }$     03 46 05.5 +24 36 46 30.5 73.1 9734 <29.10
8,9 ${\rm hii879 }$   K4 03 46 06.4 +24 34 04 28.0 78.3 9963 <29.12
8,9 ${\rm hii883 }$   K4 03 46 06.8 +24 33 47 27.7 74.1 9937 <29.09
8,9 ${\rm hii885 +B }$ VB K4 03 46 07.7 +24 52 02 44.9 68.9 7916 <28.86
8,9 ${\rm hii915 +B }$ VB K6 03 46 08.3 +23 20 52 48.8 186.5 7498 <29.32
8,9 ${\rm hii906 }$   M3 03 46 09.8 +24 40 26 33.7 67.9 9350 <29.08
8,9 ${\rm hii923 }$   G1 03 46 09.9 +23 20 25 49.2 173.2 7490 <29.59
8,9 ${\rm hii975 }$ PHB K1 03 46 17.8 +23 29 13 40.2 26.6 8643 <28.41
8,9 ${\rm hii1028 }$ SB? A4 03 46 27.1 +24 15 20 9.8 12.3 12017 <27.93
8,9 ${\rm hii1029 }$   K9 03 46 28.5 +24 45 33 37.7 13.3 7816 <28.45
8,9 ${\rm hii1084 }$   F2 03 46 34.1 +23 37 28 31.5 58.2 9896 <28.99
8,9 ${\rm hii1103 }$   M2 03 46 35.2 +23 24 44 44.1 498.7 8084 <30.01
8,9 ${\rm hii1095 }$   K2 03 46 37.7 +24 44 53 36.7 6.3 7496 <28.14
8,9 ${\rm hii1110 }$   K5 03 46 38.8 +24 31 14 23.2 23.1 8155 <28.67
8,9 ${\rm hii1114 }$   K9 03 46 40.2 +24 55 53 47.6 43.0 6449 <29.04
8,9 ${\rm hii1173 }$   M4 03 46 49.1 +24 36 01 27.8 7.6 7525 <28.22
8,9 ${\rm hii1215 }$   G2 03 46 53.6 +23 35 02 33.6 56.5 8763 <29.03
8,9 ${\rm PPl13 }$     03 46 54.8 +24 27 59 19.8 33.8 9666 <28.77
8,9 ${\rm hii1207 }$   G3 03 46 54.8 +24 47 49 39.5 101.6 7899 <29.33
8,9 ${\rm hii1275 }$   K0 03 47 01.3 +23 29 43 38.9 13.3 7653 <28.46
8,9 ${\rm hii1286 }$ SB2 M5 03 47 03.7 +23 37 00 31.7 19.1 7414 <28.33
8,9 ${\rm hii1284 }$   F0 03 47 04.1 +23 59 45 9.9 7.7 12043 <28.03
8,9 ${\rm NPL26 }$     03 47 07.8 +24 23 37 15.8 25.6 10738 <28.60
8,9 ${\rm hii1321 }$   M1 03 47 09.3 +23 44 33 24.4 68.5 6816 <29.22
8,9 ${\rm hii1332 }$   K4 03 47 13.4 +23 42 53 26.2 126.4 7679 <29.44
8,9 ${\rm Teide1 }$     03 47 18.0 +24 22 31 15.4 9.1 10552 <28.15
8,9 ${\rm hii1362 }$   A8 03 47 19.2 +24 08 23 6.5 7.8 12313 <28.02
8,9 ${\rm hii1380 +B }$ VB A2 03 47 20.8 +23 48 14 21.5 43.5 8357 <28.64
8,9 ${\rm hii1375 }$   A1 03 47 20.9 +24 07 00 7.0 10.1 12664 <28.12
8,9 ${\rm hcg261 }$     03 47 22.9 +24 50 58 43.1 103.7 8289 <29.32
8,9 ${\rm hcg269 }$     03 47 26.6 +23 38 02 31.6 3.8 9245 <27.83
8,9 ${\rm hii1425 }$   A5 03 47 26.7 +23 40 44 29.0 11.3 9437 <28.30
8,9 ${\rm sk417 }$     03 47 28.0 +23 26 55 42.4 431.7 7054 <30.01
8,9 ${\rm hii1431 }$ SB2 A2 03 47 29.3 +24 17 20 12.3 1.2 11284 <26.93
8,9 ${\rm hcg277 }$   M1 03 47 33.3 +23 41 34 28.6 36.9 9667 <28.80
8,9 ${\rm hii1454 }$   K4 03 47 33.6 +24 41 04 34.0 40.6 9318 <28.86
8,9 ${\rm sk409 }$     03 47 37.9 +24 49 12 42.1 17.2 8374 <28.53
8,9 ${\rm hii1512 }$   K6 03 47 37.9 +23 28 06 41.8 459.9 8017 <29.98
8,9 ${\rm hii1485 }$   K7 03 47 38.0 +24 53 32 46.3 46.0 7952 <28.98
8,9 ${\rm hcg292 }$     03 47 49.7 +24 25 45 21.6 7.6 5620 <28.35
8,9 ${\rm hii1645 }$   G7 03 47 55.5 +23 27 56 43.1 30.0 8172 <28.79
8,9 ${\rm hii1695 }$   M1 03 48 04.0 +24 03 59 17.0 0.2 10084 <26.45
8,9 ${\rm PPl15 }$ VB   03 48 04.4 +23 39 33 33.3 21.1 9284 <28.27
8,9 ${\rm hcg307 }$     03 48 07.8 +23 44 24 29.7 12.5 9896 <28.32
8,9 ${\rm PPl12 }$     03 48 10.3 +23 59 25 20.0 26.0 9138 <28.68
8,9 ${\rm hii1756 }$   K9 03 48 10.9 +23 30 27 42.1 12.7 8233 <28.41
8,9 ${\rm hii1794 }$   G2 03 48 17.0 +23 53 27 24.5 33.4 5541 <29.00
8,9 ${\rm hii1785 }$   M5 03 48 17.2 +24 30 17 29.1 11.1 8290 <28.35
8,9 ${\rm hii1823 }$   B9 03 48 20.7 +23 25 19 47.7 812.4 7573 <30.25
8,9 ${\rm hcg322 }$     03 48 25.2 +24 14 27 21.9 16.4 7117 <28.58
8,9 ${\rm hcg328 }$     03 48 29.7 +23 58 06 24.5 19.6 9803 <28.52
8,9 ${\rm hii1876 }$ SB? A4 03 48 30.0 +24 20 46 25.3 98.2 10118 <28.91
8,9 ${\rm hcg324 }$   M5 03 48 31.0 +24 16 53 23.9 11.3 9091 <28.32
8,9 ${\rm hii1924 }$   G1 03 48 34.4 +23 26 07 48.3 855.8 7483 <30.28
8,9 ${\rm hcg335 }$     03 48 34.9 +24 12 05 23.5 21.7 5560 <28.81
8,9 ${\rm hcg337 }$     03 48 39.8 +24 12 43 24.7 19.6 6072 <28.73
8,9 ${\rm ALR728 }$   M1 03 48 49.0 +24 11 21 26.6 83.8 7251 <29.28
8,9 ${\rm hcg349 }$     03 48 57.2 +24 19 45 30.5 24.5 9652 <28.63
8,9 ${\rm hii2144 }$   M1 03 49 05.7 +23 44 24 38.7 696.1 4888 <30.37
8,9 ${\rm hii2168 }$ SB1 B9 03 49 09.6 +24 03 14 31.6 6.4 9612 <27.74
8,9 ${\rm hii2172 }$ SB1 G2 03 49 11.6 +24 38 13 43.3 32.8 7639 <28.55
8,9 ${\rm hii2195 }$ SB? A7 03 49 12.1 +23 53 14 35.2 1.0 8996 <26.96
8,9 ${\rm hii2220 }$   A4 03 49 16.7 +24 23 48 36.1 14.3 9141 <28.41
8,9 ${\rm hcg363 }$     03 49 21.4 +23 39 08 44.9 515.0 6457 <30.12
8,9 ${\rm hii2263 }$   B9 03 49 21.6 +24 22 53 36.8 29.5 9093 <28.73
8,9 ${\rm hii2284 }$ SB1 G9 03 49 23.9 +23 50 23 38.9 106.2 8436 <29.02
8,9 ${\rm hii2289 }$   A6 03 49 25.8 +24 14 53 35.4 222.8 7250 <29.71
8,9 ${\rm hcg370 }$     03 49 27.5 +24 31 55 42.2 66.0 8342 <29.12
8,9 ${\rm hii2311 }$   K0 03 49 28.6 +23 42 46 43.9 458.7 6400 <30.08
8,9 ${\rm hcg372 }$   M3 03 49 32.9 +24 32 04 43.3 58.6 8236 <29.07
8,9 ${\rm hii2341 }$   G7 03 49 33.0 +23 47 45 42.0 95.7 8024 <29.30
8,9 ${\rm hii2366 }$   K0 03 49 36.4 +24 17 47 38.3 295.9 8161 <29.78
8,9 ${\rm hcg375 }$     03 49 36.5 +24 18 11 38.5 334.1 8313 <29.82
8,9 ${\rm hii2425 }$   B9 03 49 43.4 +23 42 45 46.7 615.2 7283 <30.15
8,9 ${\rm hii2488 }$   A3 03 49 56.5 +24 20 58 43.6 122.2 7881 <29.41
8,9 ${\rm hcg394 }$   M9 03 50 15.2 +24 13 37 46.3 462.3 5981 <30.11
11-13 ${\rm hii120 }$ SB1 G6 03 43 31.8 +23 40 28 45.9 156.9 21050 <28.79
11-13 ${\rm hii129 }$   K1 03 43 34.3 +23 45 44 44.1 38.8 23183 <28.44
11-13 ${\rm hii134 +B }$ VB M1 03 43 36.5 +24 13 58 47.7 184.7 22645 <28.83
11-13 ${\rm hii152 }$   G6 03 43 37.6 +23 32 11 47.6 237.2 24186 <29.21
11-13 ${\rm hcg124 }$     03 43 38.9 +23 44 07 43.4 53.0 19157 <28.66
11-13 ${\rm hii189 }$   K9 03 43 48.5 +23 32 23 45.3 268.4 26069 <29.23
11-13 ${\rm hii233 }$ SB F8 03 43 58.7 +23 52 59 37.9 110.5 28219 <28.51
11-13 ${\rm hii248 }$   G9 03 44 00.5 +23 32 39 42.8 117.1 26980 <28.86
11-13 ${\rm JRS26 }$   M9 03 44 02.0 +23 51 47 37.2 90.0 27907 <28.73
11-13 ${\rm hii263 }$ SB K1 03 44 04.7 +24 16 33 43.4 203.7 18918 <28.95
11-13 ${\rm hcg145 }$     03 44 17.6 +24 26 48 47.5 330.5 23803 <29.36
11-13 ${\rm hcg155 }$     03 44 20.8 +23 33 41 38.2 174.9 29774 <28.99
11-13 ${\rm hii335 }$   K6 03 44 23.0 +24 04 07 34.2 1068.8 29797 <29.77
11-13 ${\rm hii338 }$   F6 03 44 23.4 +24 07 59 35.5 1181.4 27021 <29.86
11-13 ${\rm hii344 }$   A9 03 44 25.6 +24 23 43 44.1 10.1 24252 <27.84
11-13 ${\rm hcg156 }$   M5 03 44 26.8 +24 24 33 44.5 0.6 24507 <26.62
11-13 ${\rm sk564 }$     03 44 31.6 +23 35 28 35.2 102.1 29320 <28.76
11-13 ${\rm PPl14 }$     03 44 34.0 +23 51 25 29.9 48.2 29028 <28.44
11-13 ${\rm hii390 }$   K9 03 44 35.3 +24 00 06 30.4 23.3 31538 <28.09
11-13 ${\rm hcg161 }$   M4 03 44 36.2 +23 30 13 37.3 1061.2 28206 <29.80
11-13 ${\rm hcg160 }$     03 44 39.5 +24 31 44 48.0 500.9 23844 <29.54
11-13 ${\rm hii430 }$   K0 03 44 43.8 +24 13 54 34.5 39.5 27343 <28.38
11-13 ${\rm hii447 }$   B9 03 44 48.1 +24 17 24 36.0 971.5 27388 <29.77
11-13 ${\rm hii470 }$   F3 03 44 51.1 +23 16 09 45.2 18.5 22275 <28.14
11-13 ${\rm hii468 }$ SB1 B8 03 44 52.4 +24 06 50 29.1 16.8 29633 <27.67
11-13 ${\rm hii489 }$   G2 03 44 56.3 +24 25 59 41.1 246.2 26277 <29.19
11-13 ${\rm hii530 }$   F3 03 45 05.1 +23 42 11 25.3 8.2 33315 <27.61
11-13 ${\rm hcg176 }$     03 45 06.6 +23 36 51 27.7 415.6 33035 <29.32
11-13 ${\rm hii554 }$   K7 03 45 11.8 +24 35 11 47.1 255.9 23501 <29.26
11-13 ${\rm hcg177 }$     03 45 11.9 +24 30 19 42.8 527.2 25910 <29.53
11-13 ${\rm hhj14 }$     03 45 12.5 +23 53 45 21.1 3.6 21192 <27.45
11-13 ${\rm hcg184 }$   M9 03 45 13.3 +23 31 02 30.4 17.6 32232 <27.96
11-13 ${\rm hcg183 }$     03 45 16.0 +24 07 18 24.7 53.6 23809 <28.57
11-13 ${\rm hcg181 }$   M4 03 45 16.5 +24 34 34 46.1 285.3 24234 <29.29
11-13 ${\rm hii652 }$   A7 03 45 26.0 +24 02 08 20.2 39.0 22405 <28.46
11-13 ${\rm sk520 }$     03 45 27.6 +23 10 14 46.4 129.5 25372 <28.93
11-13 ${\rm hii673 }$     03 45 30.1 +24 18 47 30.8 593.1 29740 <29.52
11-13 ${\rm hii697 }$   F2 03 45 34.3 +24 27 50 38.3 61.4 27836 <28.56
11-13 ${\rm hii717 }$ SB? A5 03 45 37.7 +24 20 10 31.1 220.0 30039 <28.78
11-13 ${\rm hii745 }$   F8 03 45 41.2 +24 17 21 28.3 456.1 32895 <29.36
11-13 ${\rm hii785 }$   B9 03 45 49.5 +24 22 06 31.6 673.5 28898 <29.59
11-13 ${\rm hii804 }$   A7 03 45 51.5 +24 02 22 15.4 3.5 36133 <27.20
11-13 ${\rm hii813 }$   M5 03 45 53.6 +24 28 10 37.0 1055.7 27360 <29.81
11-13 ${\rm hii859 }$   A0 03 46 02.8 +24 31 42 39.8 71.7 18796 <28.80
11-13 ${\rm hii882 }$   K4 03 46 04.0 +23 24 21 30.3 316.1 31036 <29.23
11-13 ${\rm sk488 }$     03 46 05.5 +24 36 46 44.6 214.0 18911 <29.27
11-13 ${\rm hii879 }$   K4 03 46 06.4 +24 34 04 41.9 197.5 18648 <29.25
11-13 ${\rm hii883 }$   K4 03 46 06.8 +24 33 47 41.6 186.8 18501 <29.23
11-13 ${\rm hii906 }$   M3 03 46 09.8 +24 40 26 48.0 52.2 22655 <28.58
11-13 ${\rm hii916 }$ SB K1 03 46 11.6 +24 37 22 44.9 204.6 23013 <28.87
11-13 ${\rm hii996 }$   G2 03 46 22.5 +24 34 14 41.5 161.3 26421 <29.01
11-13 ${\rm hii1028 }$ SB? A4 03 46 27.1 +24 15 20 22.7 152.9 16167 <28.89
11-13 ${\rm hii1110 }$   K5 03 46 38.8 +24 31 14 38.2 16.8 27234 <28.01
11-13 ${\rm hii1139 }$   F7 03 46 39.9 +23 06 39 46.6 21.2 24269 <28.16
11-13 ${\rm hii1173 }$   M4 03 46 49.1 +24 36 01 43.0 1797.5 25593 <30.07
11-13 ${\rm hii1200 }$   F9 03 46 50.4 +23 14 22 38.9 142.2 28311 <28.92
11-13 ${\rm PPl13 }$     03 46 54.8 +24 27 59 35.0 57.1 28973 <28.52
11-13 ${\rm hcg246 }$     03 46 58.4 +24 27 41 34.8 88.0 28820 <28.70
11-13 ${\rm hii1305 }$   K5 03 47 07.2 +23 13 36 39.9 209.7 24398 <29.16
11-13 ${\rm NPL26 }$     03 47 07.8 +24 23 37 31.0 8.1 30320 <27.65
11-13 ${\rm NPL22 }$ VB   03 47 15.4 +24 23 31 31.3 76.1 31811 <28.30
11-13 ${\rm hii1348 +B }$ VB K5 03 47 17.9 +24 23 28 31.4 104.5 32097 <28.43
11-13 ${\rm Teide1 }$     03 47 18.0 +24 22 31 30.5 84.7 32639 <28.64
11-13 ${\rm hii1362 }$   A8 03 47 19.2 +24 08 23 17.3 52.6 33805 <28.41
11-13 ${\rm hii1380 +B }$ VB A2 03 47 20.8 +23 48 14 10.0 41.0 36877 <27.96
11-13 ${\rm hii1375 }$   A1 03 47 20.9 +24 07 00 16.3 19.4 34962 <27.97
11-13 ${\rm hcg270 }$     03 47 23.7 +23 08 59 45.1 1496.8 19328 <30.11
11-13 ${\rm hii1425 }$   A5 03 47 26.7 +23 40 44 16.0 90.5 37086 <28.61
11-13 ${\rm sk417 }$     03 47 28.0 +23 26 55 28.2 51.7 32834 <28.42
11-13 ${\rm hii1431 }$ SB2 A2 03 47 29.3 +24 17 20 26.4 375.2 31685 <28.99
11-13 ${\rm hii1454 }$   K4 03 47 33.6 +24 41 04 49.3 38.3 23906 <28.43
11-13 ${\rm hii1516 }$   K7 03 47 40.3 +24 18 08 28.2 369.5 28656 <29.33
11-13 ${\rm hii1593 }$   G9 03 47 48.0 +23 13 07 42.7 19.0 25956 <28.08
11-13 ${\rm hcg292 }$     03 47 49.7 +24 25 45 35.9 62.0 27622 <28.57
11-13 ${\rm hii1645 }$   G7 03 47 55.5 +23 27 56 30.1 170.2 31252 <28.96
11-13 ${\rm hii1695 }$   M1 03 48 04.0 +24 03 59 21.3 139.1 18404 <29.10
11-13 ${\rm PPl15 }$ VB   03 48 04.4 +23 39 33 23.0 9.1 25965 <27.46
11-13 ${\rm PPl12 }$     03 48 10.3 +23 59 25 20.7 38.4 19248 <28.52
11-13 ${\rm hii1756 }$   K9 03 48 10.9 +23 30 27 30.2 71.1 32171 <28.57
11-13 ${\rm hcg310 }$     03 48 11.1 +23 39 45 24.1 121.2 18796 <29.03
11-13 ${\rm hii1823 }$   B9 03 48 20.7 +23 25 19 35.6 79.0 29884 <28.64
11-13 ${\rm hcg322 }$     03 48 25.2 +24 14 27 31.4 140.5 30079 <28.89
11-13 ${\rm hcg332 }$     03 48 26.4 +23 11 31 47.8 105.1 23764 <28.87
11-13 ${\rm hcg328 }$     03 48 29.7 +23 58 06 24.7 25.9 16815 <28.41
11-13 ${\rm hii1876 }$ SB? A4 03 48 30.0 +24 20 46 36.7 38.1 26572 <28.08
11-13 ${\rm hcg335 }$     03 48 34.9 +24 12 05 31.6 274.7 30643 <29.17
11-13 ${\rm hcg337 }$     03 48 39.8 +24 12 43 32.9 200.5 30464 <29.04
11-13 ${\rm hcg343 }$     03 48 40.9 +23 14 19 47.2 224.2 23945 <29.19
11-13 ${\rm hii1993 }$   A9 03 48 43.8 +23 15 37 46.5 226.7 24462 <29.19
11-13 ${\rm hii2016 }$   K6 03 48 45.3 +23 20 22 43.0 218.8 26547 <29.14
11-13 ${\rm hii2027 }$ SB1 K1 03 48 48.8 +24 16 04 36.6 229.2 28224 <28.83
11-13 ${\rm ALR728 }$   M1 03 48 49.0 +24 11 21 33.9 75.8 30604 <28.61
11-13 ${\rm hii2126 }$   K1 03 49 02.2 +23 15 10 49.5 106.5 23359 <28.88
11-13 ${\rm hii2144 }$   M1 03 49 05.7 +23 44 24 33.6 1548.8 29141 <29.95
11-13 ${\rm hii2168 }$ SB1 B9 03 49 09.6 +24 03 14 34.8 103.7 26612 <28.51
11-13 ${\rm hcg355 }$     03 49 10.9 +24 20 51 43.5 180.9 25462 <29.07
11-13 ${\rm hii2193 +B }$ VB K9 03 49 11.2 +23 33 20 39.1 119.7 19103 <28.72
11-13 ${\rm hii2195 }$ SB? A7 03 49 12.1 +23 53 14 33.9 747.7 28913 <29.33
11-13 ${\rm hii2220 }$   A4 03 49 16.7 +24 23 48 46.4 64.0 23605 <28.65
11-13 ${\rm hcg363 }$     03 49 21.4 +23 39 08 38.7 99.2 27421 <28.78
11-13 ${\rm hii2263 }$   B9 03 49 21.6 +24 22 53 46.7 203.9 23801 <29.15
11-13 ${\rm hii2284 }$ SB1 G9 03 49 23.9 +23 50 23 36.7 271.6 27789 <28.91
11-13 ${\rm hii2289 }$   A6 03 49 25.8 +24 14 53 42.9 162.9 25427 <29.03
11-13 ${\rm hii2311 }$   K0 03 49 28.6 +23 42 46 39.1 136.4 27074 <28.92
11-13 ${\rm hii2341 }$   G7 03 49 33.0 +23 47 45 39.0 297.3 27760 <29.25
11-13 ${\rm hii2425 }$   B9 03 49 43.4 +23 42 45 42.3 143.5 25764 <28.97
11-13 ${\rm hii2462 }$   K1 03 49 50.2 +23 42 22 43.9 117.8 24562 <28.90
11-13 ${\rm sk293 }$     03 49 58.2 +23 42 35 45.7 89.1 23924 <28.79
11-13 ${\rm hii2602 }$   M5 03 50 12.1 +23 59 46 48.0 285.8 21319 <29.35


 
Table 7: X-ray data for Hyads below the detection limit of the ROSAT PSPC.
Obs. No. Designation Mult SpT X-ray position Offax Cts Expos $\log{L_{\rm X}}$
        $\alpha_{2000}$ $\delta_{2000}$ [arcmin]   [s] [erg/s]
7 ${\rm VB170}$   K5 03 51 01.9 +23 54 11 38.9 2.2 482 <27.96
10 ${\rm LH997 }$     04 22 31.0 +15 26 30 39.4 19.4 25551 <27.30
10 ${\rm VA262 }$   M6 04 23 12.3 +15 42 47 44.0 440.0 25565 <28.66
10 ${\rm LH995 }$     04 23 24.9 +15 41 48 41.5 1301.0 25718 <29.13
10 ${\rm VB173 }$   K6 04 23 25.1 +15 45 47 45.1 761.4 24598 <28.93
10 ${\rm VA282}$   M5 04 23 42.7 +15 52 52 50.0 280.0 23607 <28.50
10 ${\rm VA321}$   M4 04 24 28.0 +15 53 04 47.8 682.9 18677 <28.99
10 ${\rm VA329 }$   M5 04 24 38.2 +15 54 35 49.1 1503.0 18890 <29.32
10 ${\rm LH108 }$     04 27 39.6 +15 07 35 41.2 46.2 20257 <27.78
14 ${\rm VB183}$   K2 04 34 32.1 +15 49 39 46.2 6.7 1197 <28.17
14 ${\rm VB103 }$   F0 04 38 08.9 +16 02 01 43.3 27.1 1486 <28.67
14 ${\rm Bry804 }$     04 38 27.2 +16 00 13 47.8 17.7 1383 <28.53
15 ${\rm LP475-214}$     04 38 09.4 +11 19 06 46.7 0.6 478 <27.55
15 ${\rm LP475-251 }$   A6 04 41 01.6 +10 59 40 2.4 0.4 777 <27.12
16 ${\rm RE230}$   M9 04 26 19.0 +17 03 02 32.8 26.2 1480 <28.67
16 ${\rm VA420}$   M2 04 27 16.4 +17 14 32 24.9 3.9 2234 <27.66
16 ${\rm VB190}$ SB K8 04 28 50.6 +16 17 21 40.9 230.9 1821 <29.23
16 ${\rm VA512 }$   M4 04 29 00.0 +16 20 47 37.8 155.4 1900 <29.34
16 ${\rm VB181}$   K5 04 29 30.8 +16 14 42 45.4 50.4 1701 <28.89
17 ${\rm BD16^\circ516 }$ SB K1 03 50 26.3 +17 11 37 41.9 26807.9 19584 <30.27
18 ${\rm BD16^\circ516 }$ SB K1 03 50 26.3 +17 11 37 4.2 0.1 4039 <25.70
20 ${\rm H196 }$   M6 04 18 58.0 +15 08 57 42.6 353.7 6810 <29.14
20 ${\rm VA162 }$   M2 04 19 20.0 +14 19 00 36.2 14.3 6382 <27.77
20 ${\rm LH999 }$     04 19 37.2 +14 33 32 25.2 74.5 8884 <28.35
20 ${\rm VB33 }$ SB1 A7 04 20 36.3 +15 05 42 25.4 6.8 8703 <27.03
20 ${\rm LH202 }$     04 21 17.8 +15 30 02 48.0 27.0 5068 <28.15
20 ${\rm LH997 }$     04 22 31.0 +15 26 30 48.2 3.7 6616 <27.17
20 ${\rm VA260}$   M5 04 23 01.3 +15 13 42 40.9 7.9 6741 <27.49
21 ${\rm VA127 }$   M5 04 18 08.7 +17 25 00 44.8 724.7 10923 <29.25
21 ${\rm RE159 }$   F8 04 21 28.3 +18 15 59 44.5 924.1 12096 <29.31
21 ${\rm VA242}$   M3 04 22 39.2 +18 16 10 48.9 36.9 12148 <27.91
21 ${\rm VB47}$   A5 04 24 06.1 +17 26 39 41.3 365.3 13119 <28.84
22 ${\rm RE272 }$   M5 04 29 24.9 +17 50 01 48.2 745.0 11527 <29.23
22 ${\rm VB79}$   K0 04 29 31.4 +17 53 36 48.2 839.9 11175 <29.20
23 ${\rm GH7-246 }$   M4 04 30 33.8 +14 44 53 29.3 93.6 8030 <28.49
23 ${\rm VB191}$   K7 04 31 52.3 +15 29 59 48.6 17.2 8694 <28.03
23 ${\rm LH993 }$     04 32 38.4 +15 08 53 26.6 137.8 8887 <28.61
23 ${\rm VB95}$ SB A8 04 33 50.4 +14 50 42 20.3 23.5 8284 <27.58
23 ${\rm VA731 }$   M1 04 34 05.2 +14 13 03 36.7 15.7 9282 <27.65
28 ${\rm LP415-829 }$     04 25 41.7 +19 00 47 42.6 1.6 897 <27.66
28 ${\rm BD18^\circ638 }$   K6 04 27 56.7 +19 03 38 12.0 1.9 1404 <27.54
32 ${\rm VA118 }$   M4 04 17 51.4 +15 13 39 37.8 3.0 2722 <27.46
32 ${\rm VA131}$   M5 04 18 12.7 +16 05 53 36.6 54.9 2902 <28.70
32 ${\rm H196 }$   M6 04 18 58.0 +15 08 57 31.9 10.5 2496 <28.05
32 ${\rm VB33 }$ SB1 A7 04 20 36.3 +15 05 42 34.1 5.9 2314 <27.55
32 ${\rm VA203}$   M5 04 20 55.8 +14 51 35 49.0 19.2 2062 <28.39
32 ${\rm LH202 }$     04 21 17.8 +15 30 02 22.3 9.7 1741 <28.17
32 ${\rm LH997 }$     04 22 31.0 +15 26 30 40.2 87.2 2682 <28.93
32 ${\rm VA262 }$   M7 04 23 12.3 +15 42 47 48.6 72.4 2436 <28.90
33 ${\rm VA162 }$   M2 04 19 20.0 +14 19 00 34.9 50.4 16097 <27.92
33 ${\rm LH999 }$     04 19 37.2 +14 33 32 45.3 13.5 14010 <27.41
33 ${\rm LH998 }$     04 20 50.4 +13 45 53 6.2 9.5 24008 <27.02
33 ${\rm H282 }$   M5 04 22 59.7 +13 18 59 45.5 315.0 8275 <29.00
33 ${\rm LH996 }$     04 23 03.8 +13 40 59 34.2 416.9 16107 <28.84
34 ${\rm VA262 }$   M7 04 23 12.3 +15 42 47 37.7 167.6 11835 <28.57
34 ${\rm LH995 }$     04 23 24.9 +15 41 48 35.3 476.4 12264 <29.01
34 ${\rm VB173 }$   K6 04 23 25.1 +15 45 47 33.8 290.4 12237 <28.82
34 ${\rm VA292 }$   A2 04 23 55.5 +16 21 16 34.5 59.1 11510 <28.13
34 ${\rm VA329 }$   M5 04 24 38.2 +15 54 35 14.5 0.8 14618 <26.17
34 ${\rm VB72}$ SB1 A6 04 28 39.4 +15 52 15 44.1 1023.3 9508 <29.14
34 ${\rm VA502 }$   M1 04 28 52.2 +15 58 54 46.9 2196.6 7462 <29.89
40 ${\rm RE341 }$   G3 04 35 07.2 +19 30 58 46.3 1044.3 14897 <29.27
40 ${\rm RE370 }$   M9 04 37 32.4 +19 28 41 18.7 1.9 17945 <26.46
41 ${\rm LP358-717 }$     04 21 16.9 +23 11 50 42.4 6.9 2663 <27.83
42 ${\rm J257 +B }$ VB M3 04 08 39.6 +23 33 28 46.2 9.3 1954 <27.80
43 ${\rm VB74 }$   A8 04 28 50.2 +13 02 51 2.4 10.6 7805 <27.61
43 ${\rm LH91 }$     04 29 03.1 +13 38 00 35.2 264.7 5220 <29.13
43 ${\rm VA537}$   M5 04 29 16.1 +12 21 37 42.2 33.8 3519 <28.41
43 ${\rm LH81}$     04 30 12.6 +13 01 11 21.1 4.5 5002 <27.38
43 ${\rm RE287}$   K3 04 30 29.4 +13 36 52 42.0 5.7 3846 <27.60
43 ${\rm RE297}$   K6 04 31 12.5 +12 28 39 49.5 37.7 4303 <25.75
44 ${\rm H430}$   M1 04 28 22.3 +13 49 22 32.5 37.8 3169 <28.50
44 ${\rm LH91 }$     04 29 03.1 +13 38 00 22.9 2.5 2626 <27.39
44 ${\rm LH81}$     04 30 12.6 +13 01 11 42.9 10.9 2582 <28.05
44 ${\rm RE287}$   K3 04 30 29.4 +13 36 52 7.3 10.8 3921 <27.86
48 ${\rm H103 }$   M3 04 14 31.1 +17 20 25 45.2 10.3 1765 <28.19
48 ${\rm VA76 }$   M4 04 15 34.6 +16 45 46 17.9 5.0 3103 <27.63
48 ${\rm H150 }$   M3 04 16 46.0 +16 46 18 3.7 3.0 4315 <27.27
48 ${\rm VA96}$   M4 04 16 54.2 +16 21 26 27.8 2.5 2411 <27.44
48 ${\rm RE138 }$   M9 04 17 32.0 +16 56 58 13.4 74.6 4092 <28.68
48 ${\rm VA127 }$   M5 04 18 08.7 +17 25 00 40.8 153.5 3129 <29.11
48 ${\rm LH214 }$     04 19 41.9 +16 45 21 41.9 151.5 2999 <29.13
49 ${\rm VA371 }$   M6 04 25 51.5 +13 30 09 42.3 4.2 4653 <27.38
49 ${\rm VB74 }$   A8 04 28 50.2 +13 02 51 46.9 4.2 4397 <27.45
49 ${\rm LH91 }$     04 29 03.1 +13 38 00 14.5 13.6 7114 <27.70
53 ${\rm LP359-42 }$   M2 04 47 10.1 +24 01 11 49.2 33.5 5631 <28.20
54 ${\rm BD25^\circ733 }$   K5 04 47 41.0 +26 09 03 36.6 0.3 6948 <25.97
57 ${\rm RE9 }$   M6 03 58 14.2 +12 37 41 37.5 1.2 2019 <27.21
57 ${\rm GH7-73 +B }$ VB M1 04 01 11.1 +12 05 54 24.5 11.8 1750 <27.95
64 ${\rm VA622}$   M1 04 31 28.9 +17 43 08 21.5 11.1 1728 <28.23
64 ${\rm LP415-212 }$     04 33 42.7 +18 45 59 49.1 43.2 2356 <28.69
66 ${\rm RE202}$   M8 04 24 30.5 +18 59 13 40.3 0.9 874 <27.44
68 ${\rm RE145 }$   A7 04 18 27.5 +19 29 02 48.9 2.1 915 <27.79
70 ${\rm RE119 +B }$ VB M6 04 15 32.5 +20 48 25 31.1 93.6 3154 <28.59
70 ${\rm BD19^\circ691B }$   K1 04 17 23.5 +19 45 42 49.1 32.5 2407 <28.55
71 ${\rm LP414-157 }$     04 12 03.4 +20 49 52 49.8 70.3 1030 <29.26
72 ${\rm LP416-572 }$   M3 04 49 11.2 +17 42 57 33.9 16.9 1309 <28.53
74 ${\rm VA292 }$   A2 04 23 55.5 +16 21 16 47.3 76.7 8599 <28.37
74 ${\rm VA297 }$   M2 04 23 58.8 +16 43 18 36.7 36.1 7675 <28.09
74 ${\rm VA362 }$   M6 04 25 46.8 +17 32 41 42.9 76.5 7855 <28.41
74 ${\rm VA512 }$   M4 04 29 00.0 +16 20 47 47.2 839.2 9138 <29.39
84 ${\rm LP358-717 }$     04 21 16.9 +23 11 50 29.6 13.7 4663 <27.89
90 ${\rm VB191}$   K7 04 31 52.3 +15 29 59 38.3 56.4 10376 <28.47
90 ${\rm LH993 }$     04 32 38.4 +15 08 53 34.8 9.7 11779 <27.34
91 ${\rm HZ2,EG3 }$   A2 04 12 44.5 +11 52 01 42.0 38.4 9674 <28.02
91 ${\rm RE136 }$   M7 04 16 55.8 +12 51 44 45.2 21.6 9983 <27.76
91 ${\rm VA112 }$   M5 04 17 39.6 +12 24 54 48.0 67.2 9253 <28.28
96 ${\rm GH7-163}$     04 19 03.3 +19 32 42 49.7 61.7 2436 <28.83
96 ${\rm RE165 }$   F5 04 21 44.4 +20 24 10 34.3 1.7 3648 <27.08
96 ${\rm Bry262}$     04 21 49.0 +19 29 10 23.0 7.1 3997 <27.68
96 ${\rm RE199 }$   M7 04 24 20.8 +19 10 50 49.2 219.7 2611 <29.35
105 ${\rm VB140 }$ SB2 G9 04 24 43.2 +04 42 00 49.6 337.9 3071 <29.48
111 ${\rm RE101 }$   M9 04 12 49.8 +11 14 47 47.9 65.0 9731 <28.25
111 ${\rm RE106 }$   M7 04 13 17.8 +10 34 36 7.3 12.6 20811 <27.20
111 ${\rm RE112 }$   M9 04 14 00.8 +11 14 43 47.9 182.2 12563 <28.58
115 ${\rm VB79}$   K0 04 29 31.4 +17 53 36 28.1 184.9 4318 <28.96
38,39 ${\rm H103 }$   M3 04 14 31.1 +17 20 25 42.5 13.4 16807 <27.33
38,39 ${\rm VA76 }$   M4 04 15 34.6 +16 45 46 5.8 8.7 25897 <26.95
38,39 ${\rm H150 }$   M3 04 16 46.0 +16 46 18 18.9 65.6 18932 <27.96
38,39 ${\rm RE138 }$   M9 04 17 32.0 +16 56 58 33.3 3738.6 19142 <29.71
46,47 ${\rm LP475-176 }$     04 35 24.6 +10 44 53 48.8 91.1 8027 <28.48
46,47 ${\rm RE358 }$   M5 04 36 33.8 +10 59 27 26.5 7.0 10230 <27.26
46,47 ${\rm HD286900 }$   K6 04 36 41.3 +11 55 01 39.1 42.4 9570 <28.18
25,36,37 ${\rm RE271 }$   M3 04 29 16.5 +12 10 49 33.7 953.5 30553 <28.92
25,36,37 ${\rm VA714 }$   M9 04 33 35.4 +11 59 34 40.4 44.9 26945 <27.64
65,66 ${\rm RE199 }$   M7 04 24 20.8 +19 10 50 45.8 11.7 2238 <28.14
65,66 ${\rm LP415-829 }$     04 25 41.7 +19 00 47 24.3 10.4 1392 <28.30
65,66 ${\rm BD18^\circ638 }$   K6 04 27 56.7 +19 03 38 20.5 1.8 1403 <27.52
67-69 ${\rm LP415-543}$     04 20 27.5 +18 53 50 44.0 17.3 2675 <28.23
67-69 ${\rm RE162}$   M7 04 21 38.3 +20 18 10 46.6 15.4 2188 <28.27
67-69 ${\rm RE199 }$   M7 04 24 20.8 +19 10 50 39.3 14.9 2468 <28.20
67-69 ${\rm RE202}$   M8 04 24 30.5 +18 59 13 48.2 27.1 2550 <28.45
75,76 ${\rm LP414-158 }$     04 18 33.9 +18 21 56 42.8 54.4 9167 <28.20
75,76 ${\rm RE159 }$   F8 04 21 28.3 +18 15 59 9.3 3.9 17752 <26.77
35,73 ${\rm LH108 }$     04 27 39.6 +15 07 35 46.6 31.6 11296 <27.87
35,73 ${\rm VA502 }$   M1 04 28 52.2 +15 58 54 27.0 63.8 15017 <28.05
35,73 ${\rm VA512 }$   M4 04 29 00.0 +16 20 47 45.3 720.3 10518 <29.26
35,73 ${\rm VA529 }$   M1 04 29 12.2 +15 16 26 25.4 60.4 12467 <28.11
35,73 ${\rm VB82 +B }$ VB A6 04 30 33.9 +16 11 38 34.2 111.1 13285 <28.01
35,73 ${\rm LH993 }$     04 32 38.4 +15 08 53 47.3 1468.2 10872 <29.55
98,99 ${\rm RE77 }$   M9 04 08 27.6 +11 48 23 32.4 4.7 12426 <27.00
64,115 ${\rm RE272 }$   M5 04 29 24.9 +17 50 01 34.1 137.5 6892 <28.72
64,115 ${\rm LH992}$     04 32 51.5 +17 30 09 33.4 11.4 8332 <27.56
64,115 ${\rm RE331 }$   M6 04 33 55.4 +18 22 51 39.6 33.2 7373 <28.08


Copyright ESO 2001