next previous
Up: Multicomponent radiatively driven stellar


5 Comparison of terminal velocities


 

 
Table 2: Stellar and wind parameters of O6-B5 stars selected from LSL. $\dot{\mbox{\eufont M}}$ is computed mass-loss rate. Terminal velocities measured by LSL (Col. $v_{\infty }$ (LSL)) are compared with theoretical values obtained by LSL using a "cooking formula'' of KPPA (Col. $v_{\infty }$ (KPPA)) and with predicted ones computed with an assumption of a nonisothermal wind model (Col. $v_{\infty }$ (predicted)).
HD Stellar parameters Wind parameters   Terminal velocities
number $\mbox{\eufont M}$ R* $T_{\rm eff}$ z* k $\alpha $ $\delta $ $\dot{\mbox{\eufont M}}$ $v_{\infty }$ (LSL) $v_{\infty }$ (KPPA) $v_{\infty }$ (predicted)
  $[{\mbox{\eufont M}}_{\odot}]$ $[R_{\odot}]$ $[{\rm K}] $         $[{\mbox{\eufont M}}_{\odot}\,{\rm yr}^{-1}]$ $[{\rm km}\,{\rm s}^{-1}]$ $[{\rm km}\,{\rm s}^{-1}]$ $[{\rm km}\,{\rm s}^{-1}]$
30614 43.0 27.6 $30\,900$ 1.0 0.158 0.609 0.120 ${8.9\times 10^{-6}}$ $ 1500\,\pm\,200 $ 2241 1450
34656 30.0 9.9 $ 38\,100 $ 1.0 0.171 0.607 0.120 ${1.0\times 10^{-6}}$ $ 2100\,\pm\,100 $ 3598 2590
36861 30.0 12.3 $36\,000$ 1.0 0.167 0.607 0.120 ${1.5\times 10^{-6}}$ $ 2200\,\pm\,300 $ 3084 2230
41117 25.0 43.4 $18\,500$ 1.0 0.410 0.507 0.098 ${2.8\times 10^{-6}}$ $ 500\,\pm\,50 $ 1058 740
43384 19.0 39.8 $16\,300$ 1.0 0.311 0.510 0.112 ${4.0\times 10^{-7}}$ $ 500\,\pm\,100 $ 1015 690
47240 17.0 23.4 $20\,800$ 1.0 0.451 0.514 0.091 ${9.7\times 10^{-7}}$ $ 1000\,\pm\,100 $ 1267 930
51309 11.0 16.3 $16\,700$ 1.0 0.329 0.509 0.109 ${1.7\times 10^{-8}}$ $ 700\,\pm\,100 $ 1309 910
52382 17.0 20.4 $20\,800$ 1.0 0.451 0.514 0.091 ${4.9\times 10^{-7}}$ $ 1200\,\pm\,100 $ 1381 1030
69464 49.0 20.1 $37\,200$ 1.0 0.169 0.607 0.120 ${9.9\times 10^{-6}}$ $ 2100\,\pm\,200 $ 2721 1840
74194 28.0 14.5 $33\,000$ 1.0 0.161 0.608 0.120 ${1.4\times 10^{-6}}$ $ 2000\,\pm\,300 $ 2829 1970
79186 18.0 62.4 $13\,600$ 1.0 0.284 0.519 0.100 ${6.6\times 10^{-7}}$ $ 450\,\pm\,50 $ 772 530
91572 38.0 9.6 $42\,200$ 1.0 0.175 0.606 0.114 ${1.6\times 10^{-6}}$ $ 2400\,\pm\,100 $ 3989 2940
91969 25.0 22.9 $26\,000$ 1.0 0.284 0.568 0.108 ${3.0\times 10^{-6}}$ $ 1500\,\pm\,100 $ 1816 1240
92964 29.0 68.4 $17\,400$ 1.0 0.361 0.509 0.105 ${1.1\times 10^{-5}}$ $ 550\,\pm\,50 $ 807 530
93130 43.0 13.8 $40\,200$ 1.0 0.174 0.606 0.119 ${4.5\times 10^{-6}}$ $ 2500 \,\pm\, 300 $ 3337 2370
96248 25.0 38.9 $20\,800$ 1.0 0.451 0.514 0.091 ${7.3\times 10^{-6}}$ $ 650\,\pm\,50 $ 1116 770
96917 46.0 25.2 $33\,000$ 1.0 0.161 0.608 0.120 ${9.5\times 10^{-6}}$ $ 1800\,\pm\,200 $ 2430 1600
101190 48.0 13.9 $42\,200$ 1.0 0.175 0.606 0.114 ${6.3\times 10^{-6}}$ $ 2800\,\pm\,200 $ 3452 2450
101436 42.0 12.4 $41\,200$ 1.0 0.174 0.606 0.117 ${3.5\times 10^{-6}}$ $ 2700\,\pm\,200 $ 3487 2570
106343 24.0 40.7 $19\,700$ 1.0 0.464 0.506 0.091 ${5.3\times 10^{-6}}$ $ 800\,\pm\,100 $ 1074 730
109867 26.0 38.9 $20\,800$ 1.0 0.451 0.514 0.091 ${6.7\times 10^{-6}}$ $ 1200\,\pm\,200 $ 1144 800
112244 46.0 25.2 $33\,000$ 1.0 0.161 0.608 0.120 ${9.5\times 10^{-6}}$ $ 1600\,\pm\,100 $ 2430 1580
116084 15.0 24.8 $17\,400$ 1.0 0.361 0.509 0.105 ${1.4\times 10^{-7}}$ $ 500\,\pm\,100 $ 1201 830
148379 24.0 40.7 $19\,700$ 1.0 0.464 0.506 0.091 ${5.3\times 10^{-6}}$ $ 500\,\pm\,100 $ 1074 730
151515 41.0 14.9 $ 38\,100 $ 1.0 0.171 0.607 0.120 ${4.1\times 10^{-6}}$ $ 2400\,\pm\,100 $ 3196 2230
151804 70.0 34.0 $34\,000$ 1.0 0.163 0.608 0.120 ${3.6\times 10^{-5}}$ $ 1500\,\pm\,200 $ 2226 1370
152405 25.0 15.3 $30\,500$ 1.0 0.157 0.609 0.120 ${1.0\times 10^{-6}}$ $ 1800\,\pm\,200 $ 2616 1800
152424 52.0 33.4 $30\,500$ 1.0 0.157 0.609 0.120 ${1.5\times 10^{-5}}$ $ 1500\,\pm\,100 $ 2056 1350
154090 26.0 38.9 $20\,800$ 1.0 0.451 0.514 0.091 ${6.7\times 10^{-6}}$ $ 950\,\pm\,50 $ 1144 800
157246 17.0 23.4 $20\,800$ 1.0 0.451 0.514 0.091 ${9.7\times 10^{-7}}$ $ 900\,\pm\,200 $ 1267 930
162978 40.0 16.0 $37\,100$ 1.0 0.169 0.607 0.120 ${4.4\times 10^{-6}}$ $ 2200\,\pm\,200 $ 2939 2090
163758 50.0 20.1 $37\,200$ 1.0 0.169 0.607 0.120 ${9.5\times 10^{-6}}$ $ 2300\,\pm\,200 $ 2765 1890
166596 9.7 9.8 $18\,700$ 1.0 0.419 0.507 0.097 ${9.6\times 10^{-9}}$ $ 700\,\pm\,50 $ 1551 1170
175754 34.0 14.2 $36\,000$ 1.0 0.167 0.607 0.120 ${2.4\times 10^{-6}}$ $ 2000\,\pm\,100 $ 2998 2130
186980 35.0 13.9 $37\,100$ 1.0 0.169 0.607 0.120 ${2.8\times 10^{-6}}$ $ 2100\,\pm\,100 $ 3028 2180
188209 43.0 27.6 $30\,900$ 1.0 0.158 0.609 0.120 ${8.9\times 10^{-6}}$ $ 1600\,\pm\,100 $ 2241 1450
190603 24.0 40.7 $19\,700$ 1.0 0.464 0.506 0.091 ${5.3\times 10^{-6}}$ $ 500\,\pm\,50 $ 1074 730
190864 42.0 14.0 $39\,200$ 1.0 0.173 0.606 0.120 ${3.8\times 10^{-6}}$ $ 2300\,\pm\,200 $ 3338 2340
198478 17.0 36.3 $16\,300$ 1.0 0.311 0.510 0.112 ${3.0\times 10^{-7}}$ $ 550\,\pm\,100 $ 1009 690
204172 23.0 20.0 $26\,000$ 1.0 0.284 0.568 0.108 ${1.8\times 10^{-6}}$ $ 1600\,\pm\,200 $ 1911 1320
206165 19.0 35.8 $18\,500$ 1.0 0.410 0.507 0.098 ${1.6\times 10^{-6}}$ $ 600\,\pm\,50 $ 1011 720
210809 38.0 21.4 $32\,000$ 1.0 0.160 0.608 0.120 ${4.2\times 10^{-6}}$ $ 2000\,\pm\,200 $ 2588 1700
210839 51.0 19.6 $38\,200$ 1.0 0.171 0.607 0.120 ${1.1\times 10^{-5}}$ $ 2200\,\pm\,200 $ 2882 1930
213087 21.0 23.4 $23\,400$ 1.0 0.368 0.541 0.100 ${1.9\times 10^{-6}}$ $ 1400\,\pm\,200 $ 1533 1080
218915 43.0 27.6 $30\,900$ 1.0 0.158 0.609 0.120 ${8.9\times 10^{-6}}$ $ 1800\,\pm\,100 $ 2241 1450



  \begin{figure}
\par\includegraphics[width=8.53cm,clip]{MS1524fn.eps} \end{figure} Figure 12: Comparison of predicted and observational (taken from LSL) values of terminal velocities. Vertical lines denote uncertainty of observed values. Straight line is one-to-relation. For comparison, we plotted theoretical terminal velocities computed by LSL using "cooking formula'' (crosses).

In addition, we decided to compare our predicted terminal velocities with that measured by Lamers et al. (1995, hereafter LSL). They found a discrepancy between theoretical values obtained from a "cooking formula'' of Kudritzki et al. (1989, hereafter KPPA) and their experimental values. We computed wind models of O6-B5 stars for which LSL measured the terminal velocity. Parameters of each wind model are given in Table 2. Stellar parameters are taken from LSL, wind parameters are adopted from Abbott (1982). For many stars we found quite a good agreement between observed and predicted terminal velocities (see Fig. 12 for comparison of predicted and observed values). Although some values of predicted terminal velocities miss the measured value significantly (e.g. for the star HD166596), it is evident that the overall agreement between our predicted terminal velocities and the observed ones is much better than that of the "cooking formula'' of KPPA and the systematic difference, which was previously attributed to an overestimation of $\alpha $(by LSL), has been removed.

However, there are still differences between observed and predicted values of $v_{\infty }$. There are three basic reasons for this discrepancy. First, rotation lowers the terminal velocity (cf. Friend & Abbott 1986). However, Petrenz & Puls (2000) using 2D models showed that the influence of the rotation on terminal velocity in many cases is only marginal. Second, our wind models (especially the radiative force) are constrained. Although we included physical processes that have not been included yet (frictional heating, Gayley-Owocki heating, multicomponent nature of the wind), there are still limits. Our treatment of ionization is only approximate, the equilibrium is not determined consistently with radiation field. In addition, our models are not fully consistent with respect to the radiative force, a proper NLTE treatment of the radiative transfer problem would be very useful. This two reasons causes that many of the terminal velocities are not within quoted uncertainties. However, we plan to improve our models in near future.

Another source of differences may come from uncertainties of stellar parameters derived from observations. Note that, e.g., stars HD106343, HD148379, and HD190603 have roughly the same parameters, however different observed terminal velocities.

The "cooking formula'' of KPPA should be consistent with detailed calculations of Pauldrach et al. (1986) with an accuracy about 5%. However, our predicted terminal velocities correspond to those computed by Pauldrach et al. (1986), too. Thus, there is not clear source of discrepancy between terminal velocities observed by LSL and predicted using formula of KPPA. We stress that the effect of frictional or Gayley-Owocki heating on the terminal velocity are negligible for the models described in this section.


next previous
Up: Multicomponent radiatively driven stellar

Copyright ESO 2001