A&A 376, 333-335 (2001)
DOI: 10.1051/0004-6361:20010873
School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431 606, India
Received 13 December 1999 / Accepted 25 May 2001
Abstract
Following tentative detection of cyclopropene (C3H4) in Sgr B2
through its transition 3
22-221, several attempts to confirm the
presence of cyclopropene in astronomical objects (including Sgr B2
itself) have been made. We suggest that cyclopropene may be observed in
astronomical objects through its transition 2
20-221 at 3.67218 GHz,
in absorption, even against the cosmic 2.7 K background, in a region having low
density and low kinetic temperature.
Key words: ISM: molecules - molecular data
With the discovery of cyclopropenylidene (C3H2) in a large number of
astronomical objects (see, e.g., Madden et al. 1989), cyclopropene (C3H4)
has become a plausible candidate for detection in astronomical objects. A weak
line at 106.86 GHz in Sgr B2 observed by Thaddeus et al. (1985) coincided
with one of the predicted strongest lines, the 3
22-221 transition,
of C3H4. Following this tentative detection of cyclopropene in Sgr
B2, several attempts have been made to confirm its presence in astronomical
objects (including Sgr B2 itself).
In order to provide rotational frequencies of cyclopropene throughout the radio
spectrum to an accuracy sufficient for astronomical purposes, Vrtilek et al.
(1987) reported the radio spectrum of cyclopropene. In Sgr B2, a search with the
Bell Laboratories 7 m telescope for the 5
15- 414 and 5
05-
404 ortho-para line pair at 149.279 GHz and 149.549 GHz, respectively,
resulted in an upper limit of column density
cm-2,
assuming a line width of 24 km s-1 and a rotational temperature of
11 K (Vrtilek et al. 1987). This upper limit was found to lie below the
tentative detection (which implied the column density of C3H4 to be
cm-2), but is still somewhat above the measurement
for C3H2 (
cm-2).
![]() |
Figure 1: Rotational energy levels in the ground vibrational state of para-C3H4, accounted for in the present investigation. |
Open with DEXTER |
![]() |
Figure 2:
The iso-lines for intensity against the cosmic 2.7 K background, in
the unit of Planck's function at the kinetic temperature of T (K), i.e.,
![]() |
Open with DEXTER |
Cyclopropene is a cyclic, asymmetric top molecule with the electric dipole moment of 0.45 D (Kasai et al. 1958) along the a-axis of inertia. In the present investigation, the NLTE occupation numbers of the C3H4 molecules are calculated in an on-the-spot approximation, by using the escape probability method (see, e.g., Rausch et al. 1996), where the external radiation field, impinging on the volume element emitting the line(s), is the cosmic 2.7 K background only.
The molecular data required as input for the present investigation are: (i) Einstein coefficients for various radiative transitions between the rotational energy levels accounted for, and (ii) the rate coefficients for collisional transitions between the levels due to collisions with H2 molecules. The details for calculation of Einstein A-coefficients for a-type rotational transitions in an asymmetric top molecule have been discussed by Chandra & Rashmi (1998). These transitions are governed by the selection rules:
J: | ![]() ![]() |
|
ka, kc: | odd, odd
![]() |
ortho-transitions |
even, even
![]() |
para-transitions. |
As of today, knowledge of the collisional transitions, particularly in
asymmetric top molecules, is very poor. Furthermore, there are no data for the
collisional rates for cyclopropene available in the literature. In the absence
of any knowledge of collisional rates, we assumed that the collisional rate
coefficient for a downward transition
at
temperature T (K) is given by
![]() |
(1) |
The rate coefficient for the corresponding upward transition
has been calculated with the help of the detailed
equilibrium equation.
In order to include a large number of astronomical objects where the molecule
may be observed, numerical calculations are carried out for wide ranges of
physical parameters. The molecular hydrogen density has been varied over the
range from 103 cm-3 to 106 cm-3, and the calculations are
performed for the kinetic temperatures of 10, 20 and 30 K. The transition
2
20- 221 at 3.67218 GHz, proposed for detection in astronomical
objects, belongs to para-C3H4. For para-C3H4, we accounted for
52 rotational energy levels, shown in Fig. 1. These levels are connected through
217 radiative transitions for which the Einstein A-coefficients are given in
Table 1b. In the calculations, the free parameters are hydrogen density
,
and
,
where
is the
density of C3H4, and
is the velocity gradient. The intensity,
,
of a line generated in an interstellar cloud, with homogeneous
excitation conditions, is given by
![]() |
Figure 2 shows the iso-lines of intensity for the transition 2
20- 221,
in the units of Planck's function [
], for the
kinetic temperatures T = 10, 20, and 30 K. In the figure, we have plotted only
negative intensities; in the large density region (on the right-side of
iso-lines), the intensity becomes positive. Thus, the absorption and emission
nature of the line may play a significant role in providing information about
the limiting value of the density in the region. For the low density region, the
line 2
20- 221 shows absorption, even against the cosmic 2.7 K
background, whereas in the large density region, the transition shows an
emission against the cosmic 2.7 K background. (If there is a source in the
background of the object, the line would show absorption against the background
source.) The negative value of
increases with
the decrease of the molecular hydrogen density. Further, it increases with the
decrease of the kinetic temperature T. Thus, cyclopropene has a large
probability of detection through its transition 2
20- 221 in cosmic
objects having low density and low kinetic temperature.
Acknowledgements
We are grateful to Prof. Dr. W. H. Kegel of the University of Frankfurt/Main, Germany for his encouragement. Financial support from the D.S.T., New Delhi is gratefully acknowledged. Thanks are due to Mr. Harshal Hayatnagarkar for his valuable help.