A&A 372, 676-685 (2001)
DOI: 10.1051/0004-6361:20010379
H. Zhang
Yunnan Observatory, Chinese Academy of Sciences, Kunming, 650011, PR China
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, PR China
Received 17 November 1998 / Accepted 14 March 2001
Abstract
The Moreton wave that accompanied the X12/3B June 4 1991 white light flare (WLF) is analyzed. The wave,
with a wavelength of
km, propagated along the solar limb on the chromosphere, and the wavefronts were
accelerated during the propagation: their velocity increased from 2500 kms-1 to 4000 kms-1. The analyses show that the
wave originated in the layers of the atmosphere between the photosphere and the upper chromosphere, and it is
suggested that both a magneto-hydrodynamic (MHD) disturbance and a gas-dynamic disturbance are coupled to
induce the wave. The MHD disturbance is caused by a rapid variation of the magnetic field, which merges and
alternatively emerges. A gas-dynamic disturbance is produced by a strong downward compression of the deep
chromosphere and a spray upward ejection occurring simultaneously in the disturbance source region. In the
disturbance source, the increase in the magnetic pressure is responsible for the wave acceleration. The
photospheric (longitudinal) magnetic field of the source emerges continually during the wavefront propagation,
and the corresponding magnetic pressure also increases. The wavefronts that are carried by the plasma around the
disturbance source are accelerated, since the transverse pressure compresses the plasma. The observed results do
not support the hypothesis that the Moreton wave is the "sweeping skirt" of the shock wavefront, as proposed by
Uchida (1974).
Key words: Sun: flares - Sun: magnetic fields - Sun: chromosphere
A Moreton wave is a flare-associated phenomenon, first observed by Moreton (1963) as a propagating
chromospheric disturbance that accompanied a flare. According to the report of Smith & Harvey (1971), the
wave is observed in H
or in H
Å; its mean chromospheric velocities are in the range of 440 kms-1-1125 kms-1. The wavefronts present as a dark leading edge and a bright wake in H
Å, or as a bright leading edge
and a dark wake in the H
Å (Dodson & Hedeman 1968). These may result from the depression and
relaxation of chromospheric structures. The bright emission fronts are produced by material ejecta seen projected
on the disk (Smith & Harvey 1971). In the majority of cases (70%), the angular width of the observed
wavefronts is less than 90
,
and in the rest of the cases (30%), the angular width is more than 100
.
The
flare-associated wave is well associated with Type II bursts (e.g. Wild 1968). Sprays were associated with flare
waves in the case of the flare on August 28, 1968. Zirin & Russo Lackner (1969) identified the origin of the
wave as a spray. Relating Moreton waves with sprays, and with Type II bursts, appears very attractive, since the
similarity in velocity of these phenomena suggests that they may be different aspects of the same basic process.
Recent EIT observations (Moses et al. 1997) showed a coronal mass ejection (CME), tentatively identified as a
coronal manifestation of a "Moreton wave''.
A Moreton wave is regarded as the propagation of a MHD disturbance produced in a flare. However, the properties of the disturbance source are far from being established, because identification of both its precise location and time of onset is difficult. The most active region during the 22 solar maximum, NOAA AR6659, (e.g. Zhang Hongqi et al. 1994; Zhang Heng et al. 1996) produced a white light flare X12/3B (beginning at 03:37:25 UT and maximum at 03:39 UT) on June 4 1991. A Moreton wave, a spray and Type II bursts accompanied the flare (Sakurai et al. 1995). The wave moved towards the North Pole along the solar limb, and the distance of propagation was 1.4 times the solar radius on a time scale of about 270 s. The velocity of the wavefronts was initially about 2500 kms-1 and later it reached 4000 kms-1 when the wavefronts approached to the North Pole (Sakurai et al. 1995). In other words, the fronts were obviously accelerated. The maximum velocity of 4000 kms-1 of the wave after acceleration is probably the largest ever observed.
The flare was observed with the Magnetic Field Telescope (MFT) of the Beijing Astronomical Observatory
(BAO) in Huairou, Beijing, China, and the magnetic fields, velocity fields and monochromatic images at two
wavelengths (i.e. H:
Å in the chromosphere and
Å in the photosphere) were recorded. The flare process
was also videotaped by both the Solar Flare Telescope (SFT) and the H
full disk flare patrol telescope of the
National Astronomical Observatory of Japan (NAOJ, Mitaka). The data recorded by the SFT are the
chromospheric H
intensity within a FOV of
.
The Moreton wave is quite obviously displayed on the
videotape obtained with the flare patrol telescope. Fortunately, the MFT of BAO recorded the H
intensity and
velocity field map of the Moreton wave when its wavefronts were still within the view-field of the telescope.
These data are quite precious for us to study the relationship of the wave to the accompanying spray, especially
in order to study the origin and the wavefronts of the Moreton wave.
Figure 1 shows the H
image of the flare observed with the MFT. During the
maximum of the flare, the two bright ribbons, which can be seen in the left-bottom quadrant of the figure, covered
the umbra of the major sunspot and were positioned in two areas with opposite polarities. The two ribbons
separated gradually after the maximum, while the post-flare loops (with the ribbons as their "foot points'') gradually
ascended (Zhang Hongqi et al. 1994). This was a typical two-ribbon flare. We regard the two bright ribbons as the
main part of the flare (cf. Fig. 3d). In the region to the north (right-upper quadrant of
Fig. 1) of the main flare,
there is an arc-shaped emission belt.
![]() |
Figure 1:
The chromospheric H![]() |
Open with DEXTER |
This emission belt is the projection of a spray against the disk. The spray
ejecting process can be seen clearly in the H
video recording, and its formation process is schematically shown in
frames of Fig. 2. At 03:38:52 UT the "origin of spray'' (i.e. the brightest kernels in the small rectangle of Fig. 1)
starts to brighten (Fig. 2a). Then the spray material was ejected about 3 degrees toward the east (Fig. 2b), which means
that the material moved upward with a velocity of 617 kms-1, because the active region AR6659, which was the
origin of the spray material, was located at N
E70
on the solar disk. Afterwards, the front-tip (marked
"front-tip'' in Fig. 2) of the spray material moved 30000 km along the solar surface in 3 s from
03:38:58 UT to 03:39:01 UT (Figs. 2b,c). Therefore, the velocity of the spray may be estimated as 10000 kms-1.
![]() |
Figure 2:
Schematic sketches showing the rapid development of the spray seen in Fig. 1, based on the H![]() ![]() |
Open with DEXTER |
The wavefront of the Moreton wave can be seen in the field of
view of SFT (Fig. 3a,b) and MFT (Fig. 3c).
![]() |
Figure 3:
a), b) The chromospheric H![]() ![]() |
Open with DEXTER |
A chromospheric (H,
Å) velocity
field map was recorded by MFT at BAO. Figure 4 shows the H
velocity field as a map in gray scale of AR6659
in June 4, 1991. The line-of-sight velocity was integrated over the time interval 03:39:18.9-03:39:24UT. Two
arc-shaped black belts (red shift) and white belts (blue shift) can be seen in the figure. Four
dotted lines, overlapped on the map, outline the location and extension of these belts ("t1'' and "t2'' outline the
black belts, "c1'' and "c2' outline the white-belts). The 4 dotted lines in Fig. 4 are arranged in 4 concentric circles.
![]() |
Figure 4:
Gray-scaled H![]() |
Open with DEXTER |
The location of the small rectangle in the velocity
map Fig. 4 is same as the one in Fig. 1. Within this region, there is a very prominent red-shift area, which is not
only at the geometric center of the 4 concentric circles (i.e. wavefronts), but corresponds to the origin of the spray
seen on the chromosphere (Fig. 1). Therefore, the red-shift area is the center of the wavefronts, i.e. the source of
the Moreton wave. In other words, the spray and the wave originate in the same source, and the wavefronts are
shaped like the spray trace, as mentioned above. Thus, while the spray is observed in the chromospheric H
(Fig. 2)
and H
(Fig. 1) brightness field, not only the crests and troughs, but also the source of the disturbance are present
in the velocity field recording. The distance from the source to the second crest (marked by "c2'') is
km,
and to the first crest (marked by "c1'') is
km, giving a wavelength of
km (cf. Sect. 2.1.3).
Figure 5 is a magnified map of the velocity field within the rectangle of
Fig. 4, i.e. the velocity field of the source.
![]() |
Figure 5: The velocity field map of the area within the small rectangle (disturbance source of the Moreton wave) in Fig. 4. Three dashed lines extend along the places where the line-of-sight velocity is greater in the source. |
Open with DEXTER |
![]() |
Figure 6:
a) A magnified map of the chromospheric H![]() |
Open with DEXTER |
In addition, there were 6 patches of white light emission accompanying the flare. Figure 7a is the photospheric
brightness field of the disturbance source region, Fig. 7b shows the co-alignment of the photospheric source region
with the vortex-like red-shift area. The brightest areas, marked "C'' and "D'' in Fig. 7a, show where the white light
flare (WLF) patches are located. These are very close to the vortex-like red-shift area (Fig. 7b).
![]() |
Figure 7: a) The photosphere image (at 04:05:33 UT) of the disturbance source; the brighter places marked by "C'' and "D'' are coincident with the WLF patches "C'' and "D''. b) The photospheric image (in contours of brightness; the levels of the contours are 99.5% and 92.2% of peak-brightness) and velocity field (gray-scaled) of the disturbance source are co-aligned. The symbols "C'' and "D'' are the same as above, others marked by "3'' and "4'' are where the brightness is greater than 92.2% of peak-brightness. |
Open with DEXTER |
The velocity field (in gray scale) and the magnetic field (in contours) map of the source region are overlaid in Fig. 8d. We see from this figure that the cross-section of the downward vortex-like plasma bubble is located in the magnetic region with positive polarity between two neutral lines (indicated as "N''), and is roughly in accordance with the magnetic field intensity contour of 110 Gauss. By examining the history of its magnetic field (Figs. 8a-c), it is obvious that the magnetic flux changes rapidly within the N-polarity region. At 00:28:59 UT (Fig. 8a), the 110 G-contour covers nearly half of the N-region, and contours inside the 110 G-contour show a field strength greater than 190 G in some places. However, later, at 01:37:24 UT, the field strength within the region was less than 110 G (Fig. 8b). Then, from 02:24:06 UT, small areas with a field strength of 110 G begin to emerge, and the total region is surrounded by the 110 G-contours until 04:05:55 UT (Fig. 8d). The N-polarity magnetic flux and the average strength within the source region during the period are estimated, and listed as Items 1, 2, 3, and 15 of Table 1. We can see from Table 1 that the magnetic flux of the region undergoes rapid variation during 3.6 hours (00:28:59-04:05:55 UT): it first decreases, then increases, suggesting the merging and emerging of the magnetic field.
Since the history of the Moreton wave phenomenon is quite complicated, and since the data concern the
chromospheric velocity field and the photospheric magnetic field, the observed characteristics of the events
relevant to the flare and the Moreton wave are summarized in Table 1. An analysis of the observations and a
discussion then are made, and finally, a conclusion is drawn.
Item | Time | Event recorded (relevant section) | Object concerned |
1 | 00:28:59 | Magnetic flux is
![]() |
Disturbance source |
2 | 01:37:24 | Magnetic flux reduces to
![]() |
Disturbance source |
(Fig. 8b). | |||
3 |
02:24:06 | Magnetic flux begins to increase to
![]() |
Disturbance source |
strength is 44 G (Fig. 8c) | |||
4 | 03:37:25 | The flare starts (1) | Flare |
5 | 03:37:30 | WLF patch-A occurs (2.2.3) | WLF patch |
6 | 03:38:45 | WLF patch-B and C occur (2.2.3) | WLF patch |
Border of the source | |||
7 | 03:38:52 | Spray origin starts to brighten (2.1.1) | Spray origin |
8 | 03:38:58- | The front-tip of the spray moves 30000 km (2.1.1) | Spray |
03:39:01 | |||
9 | 03:39:00 | WLF patch-D occurs (2.2.3) | WLF patch |
Border of the source | |||
10 | 03:39:18.9- | The crests, troughs, and the disturbance source (red-shift area) are | Disturbance source |
03:39:24 | recorded by MFT on velocity field (2.1.3), and the red-shift velocity of | Wavefronts | |
the vortex-like bubble reaches its maximum (2.2.1) | |||
11 | 03:39:23- | Matter escaped from the spray trace (2.1.1) | Wavefronts |
03:39:25 | |||
12 | 03:39:34- | Pictures of the wave propagation are taken by the H![]() |
Wavefronts |
03:44:04 | (full disk) (2.1.2) | ||
13 | 03:41:28- | The wavefronts are recorded by the SFT (FOV
![]() |
Wavefronts |
03:41:54 | (FOV
![]() |
||
14 | 03:45:05 | Velocity field map shows the relaxation of the vortex-like bubble (2.2.2) | Disturbance source |
15 | 04:05:55 | Magnetic flux increases continually to
![]() |
Disturbance source |
strength reaches to 124 G (Fig. 8d) |
![]() |
Figure 8:
a- c) Magnetic fields within the disturbance source. Thick-solid lines represent neutral lines of the field,
while solid (or dashed) lines represent N (or S)-polarity. Contour levels are ![]() ![]() |
Open with DEXTER |
The observations presented in 2.2.4 indicate that the averaged magnetic field strength within the disturbance
source varies rapidly before the propagation of the wave (see items 1-3 in Table 1) began. It decreases to less than
half over about one hour, and then increases. The average (longitudinal) field strength B, increasing or decreasing,
leads to magnetic pressure
increasing or decreasing. The magnetic pressure acts to push the plasma out
from regions of higher magnetic pressure to regions where the magnetic pressure is lower. Variations in magnetic
pressure cause the plasma around the source to move transversally: it would contract towards the source if the
pressure within the source decreases, and would expand away from the source if the pressure increases.
Thus, such a magneto-hydrodynamic (MHD) effect may generate a propagating wave.
In addition, the fact that a prominent red-shift occurs within the source implies a strong downwards compression of the deep chromosphere, and may then be indirect evidence for explosive activity above the chromosphere and for release of mechanical energy, which might drive the Moreton wave. In fact, the observed WLF patches "C'' and "D'' fall within the border of the source, resulting from intense bombardment of the upper chromosphere by energetic electrons, since WLF is interpreted as electron-precipitation (Fang 1997; Hudson et al. 1992). Therefore, a dynamical disturbance of the gas could also drive the Moreton wave.
In order to generate a wave that propagates with a wavelength of
km and a primary velocity of
about 2500 kms-1, a period of 5.6 s is needed. Although the magnetic field observations presented did not
show such a time scale, impulsive magnetic field variations might certainly occur, since a flare took place, and
this impulsiveness cannot be detected by the usual magnetic field observations. Sampling of the magnetic field
observations in the flare of AR6659 in June 4, 1992 occurred only at the times shown in Figs. 8a-d.
The Moreton wave accompanying the WLF of AR6659 on June 4, 1991 is observed to have a close relationship with a spray. Not only do the wave and the spray originate from a common source, but also the wavefronts have the same shape as the trace by which the spray ejected. Both the wavefronts and the spray show real mass motions and the wavefronts propagate toward the North Pole along the disk limb while the spray ejects upwards to enter the corona. They both are accelerated by the magnetic pressure to reach very high velocities: 4000 kms-1 for the wavefronts and 10000 kms-1 for the spray. In spite of the similarities between the wave and the spray, they respectively present different kinds of motions. The wavefronts alternatively depress (lead towards a trough) and relax (to lead to a crest) in the chromosphere, while the spray ejects up into the corona. The former is visible for 280 s (03:39:24-03:44:04 UT, cf. items 10 and 12 of Table 1) on the disk, while the latter is visible only for 180 s (03:38:52-03:41:54 UT, cf. item 7 of Table 1 and Fig. 3c). Moreover, as indicated in Sect. 2.1.2, the spray was not the origin of the wave, since the wavefront sweep across the spray trace but did not come from the spray.
Acknowledgements
The author thanks the Japanese Society for the Promotion of Science (JSPS) for an invitation to visit the NAOJ and the University of Tokyo. Also the author would like to express her deep thanks to Prof. Takashi Sakurai, who has corrected some points and proposed Table 1. This work is supported by the Scientific Application Foundation of Yunnan Province, item No. 1999A0088M.