A&A 372, 241-244 (2001)
DOI: 10.1051/0004-6361:20010490
S. Campana1 - A. N. Parmar2 - L. Stella3
1 - Osservatorio Astronomico di Brera, Via E. Bianchi 46,
23807 Merate (Lecco), Italy
2 -
Astrophysics Division, Space Science Department of ESA,
ESTEC, PO Box 299, 2200 AG Noordwijk,
The Netherlands
3 -
Osservatorio Astronomico di Roma, Via Frascati 33,
00040 Monteporzio Catone (Roma), Italy
Received 5 March 2001 / Accepted 2 April 2001
Abstract
We report BeppoSAX observations of five transient black hole candidates
during their quiescent phase. We confirm that these sources are X-ray faint,
improving on and complementing existing upper limits. We derive 1-10 keV
upper limits for GRO J0422+32, GRS 1009-45, 4U 1630-47 and XTE J1748-288, which
range from
to
.
We positively
detect GS 2023+338. Its X-ray spectrum can be fit by a power law (photon
index
)
or a thermal bremsstrahlung (with
keV),
converting in both cases to a 1-10 keV unabsorbed luminosity of
.
These values are comparable to the ones derived during an ASCA observation
in 1994, indicating that the source remains stable over a
5 yr baseline.
Key words: binaries: general - black hole physics - X-rays: stars
Transient black hole binaries are characterised by bright outbursts lasting up to several months and recurring every 1-100 yr (with a clear preference for long recurrence times). In between these outbursts, sources are quiescent with very low X-ray luminosities. At the present time only five transient Black Hole Candidates (BHCs) have been detected in quiescence and upper limits exist for six other systems (Asai et al. 1998; Menou et al. 1999a; Campana & Stella 2000; Garcia et al. 2001).
A 0620-00 was the first BHC to be detected in quiescence. Despite the small
number of photons collected in the ROSAT observation the spectrum was
determined to be soft. A 0.5-10 keV luminosity of
(for a distance of d=1.2 kpc) was obtained by extrapolating the ROSAT data
(McClintock et al. 1995). Chandra detected the source at a level
10 times lower (Garcia et al. 2001).
GS 2023+338 (V 404 Cyg) was
observed with ASCA at a 0.5-10 keV luminosity of
(d=3.5 kpc; Narayan et al. 1997). The spectrum
is well fit by a power law with photon index
or by a thermal bremsstrahlung with an equivalent temperature of
keV. Analysing the same dataset Asai et al. (1998) obtained
.
Finally, GRO J1655-40 was detected again
by ASCA at
(d=3.2 kpc; Hameury et al.
1997). The spectrum could be described by a power law model with a quoted index
(Hameury et al. 1997). Asai et al. (1998) analysed the
same dataset and found
.
Chandra observed this source
when it was a factor of
10 lower (Garcia et al. 2001).
Source | LECS Exp. time | MECS Exp. time | PDS Exp. Time | Observation |
(s) | (s)* | (s) | number | |
GRO J0422+32 | 19681 | 46274 (2) | 21275 | 20535001 |
GRS 1009-45 | 19773 | 40675 (2) | 20689 | 20607001 |
4U 1630-47 | 13357 | 32944 (3) | 22426 | 20315001 |
GS 2023+338 | - | 21384 (3) | 10098 | 20303001 |
XTE J1748-288+ | 19174 | 47884 (2) | 34787 | 20130002 |
+ Source at 5' off-axis.
Since the discovery of their low X-ray quiescent luminosity, the study of BHCs
in quiescence has attracted attention because this emission might be able
to distinguish them from quiescent neutron star systems (for a review see
Campana et al. 1998a).
At the very beginning, Tanaka & Shibazaki (1996) argued that BHCs and
neutron stars systems at low luminosities show similar soft spectra, well
approximated by a single temperature black body
(
keV).
This was based on (and biased by) ROSAT results and only on a single BHC
(A 0620-00). ASCA and BeppoSAX observations led to the discovery of hard
tails in neutron star
systems (Asai et al. 1996, 1998; Campana et al. 1998b, 2000) as well as
the detection of non-thermal spectra in GS 2023+338 and GRO J1655-40,
challenging this picture (however, GS 2023+338 and GRO J1655-40 have
orbital periods longer than the great majority of low mass transients and,
therefore, likely experience a higher time-averaged mass exchange rate).
In a recent paper, Garcia et al. (2001) reported on deep Chandra observations
of black hole transients in quiescence, detecting two new sources with short
orbital period (GRO J0422+32 and GS 2000+25). Now three short orbital period BHCs
have been detected all with 0.5-10 keV luminosities in the
range. These data confirm that black hole transients
in quiescence are much less luminous than the corresponding neutron star
transient systems in X-rays.
Advection dominated accretion flow (ADAF) models have become popular to explaining the low luminosity of quiescent BHCs as well as their spectral energy distribution (Narayan et al. 1996; Narayan et al. 1997; Menou et al. 1999a, 1999b). In these models, a large fraction of the gravitational energy is advected into the black hole, therefore lowering considerably the radiative efficiency of the accretion process. Observations show that the ratio of minimum X-ray luminosity in quiescence to maximum X-ray luminosity in outburst is significantly smaller (a factor of about 100) in black hole transients than in and neutron star transients (Narayan et al. 1997; Garcia et al. 1998; Garcia et al. 2001). Campana & Stella (2000) noted that in the latest ADAF models the optical/UV luminosity derives from synchrotron radiation produced by the ADAF itself and therefore must be included in the luminosity budget. Ascribing the bulk of the residual optical/UV flux to the ADAF removes much of the difference in luminosity swing between black hole and neutron star transients, weakening one of the main drives of ADAF models. Possible ways out are that a large fraction of the accreting matter is stopped/evaporated at the outer disk boundary with only a very small fraction leaking towards the compact object and/or ADAFs do not contribute to the optical luminosity as in the older ADAF models (Campana & Stella 2000).
A different interpretation relies on the coronal activity of the companion
star. This mechanism provides a quiescent luminosity of the order of
for main sequence stars (Eracleous et al. 1991), unless subgiant
companions are present (
for RS CVn systems; Campana
& Stella 2000; Bildsten & Rutledge 2000). This mechanism therefore might
be at work only in the most X-ray faint BHCs.
In this paper we present a comprehensive view of black hole transients in quiescence observed with the Italian/Dutch satellite BeppoSAX complementing and improving current upper limits and existing spectra. In Sect. 2 we describe the data set and analysis. In Sect. 3 we discuss the results.
We present the results of the observations of black hole transients in quiescence carried out with the BeppoSAX satellite (Boella et al. 1997a). We analysed the data from the Low Energy Concentrator Spectrometer (LECS; 0.1-10 keV, Parmar et al. 1997a) and the Medium Energy Concentrator Spectrometer (MECS; 1.3-10 keV, Boella et al. 1997b). As usual, LECS data were collected only during satellite night-time leading to shorter exposure times. Upper limits in the hard X-ray band were obtained with the Phoswich Detector System (PDS, 15-300 keV; Frontera et al. 1997). The PDS collimators rocked on and off the target in order to monitor the background. This also resulted in a shorter exposure time than the MECS.
BeppoSAX observed four BHCs in quiescence: GRO J0422+32, GRS 1009-45, 4U
1630-47 and GS 2023+338. XTE J1748-288 was serendipitously observed during a
pointing toward the Galactic Center region. For a summary of the observations
see Table 1.
![]() |
Figure 1: X-ray spectrum of GS 2023+338 in quiescence. The spectrum is fit with an absorbed power law model. In the lower panel the ratio between the data and the model is presented. |
Open with DEXTER |
The BeppoSAX images were searched for sources at the position of the BHCs' optical counterpart. Only one out of five BHCs was detected (GS 2023+338), confirming the elusiveness of this kind of source in quiescence.
Upper limits for imaging instruments were determined counting the number of events within a specified box (4' radius), correcting those counts for vignetting, exposure and point spread function and comparing them with the number of events in an outer background box free of sources. In the case of the PDS collimators source upper limits were derived by comparing the number of events collected on and off the the source.
GRO J0422+32 was observed by BeppoSAX on September 2, 1998, about 2200 days
after the previous outburst. The source was not detected and we place a
upper limit of
c s-1 on the MECS count rate, which
translates
to a flux limit of
(2-10 keV), assuming a power
law spectrum with photon index
(the same as observed in GS 2023+338
in quiescence; Narayan et al. 1997) and the galactic column density in the
direction of the source
.
For a distance of 3.6 kpc
(Shrader et al. 1994) we obtain an upper limit on the 2-10 keV luminosity of
.
This is to be compared with the value derived by Garcia et al. (1998) of
(0.5-10 keV) which was obtained by extrapolating the result of a deep ROSAT-HRI pointing over a much larger energy range.
The BeppoSAX PDS data give an upper limit of
in the 15-50 keV energy band, which translates to
.
4U 1630-47 was observed on March 26, 1997, about one year after the 1996 outburst
(this source in contrast with other transient BHCs shows recurrent outbursts,
Parmar et al. 1995). The
upper limit on the MECS count rate amounts to
c s-1.
This translates to an upper limit on the 2-10 keV unabsorbed luminosity
of
for a distance of 10 kpc, a power
law with
and
(Oosterbroek et al. 1998).
Even if this upper limit is in the range of those previously obtained with the
ROSAT-HRI (
0.2-2.4 keV) and ROSAT-PSPC (
0.2-2.4 keV; Parmar
et al. 1997b), the more extended energy range
of the MECS makes the BeppoSAX limit less affected by interstellar absorption.
At high energies, the PDS limit on the 15-50 keV flux was of
(corresponding to
). This
relatively high value is due to the presence of a number of sources in the PDS
field of view, which are clearly seen in the MECS.
GRS 1009-45 was observed on December 3, 1998, about 1900 days after the
previous outburst. We obtain a
upper limit of
c s-1 on the MECS count rate. This translates into
an upper limit of
on the 2-10 keV unabsorbed
luminosity for a distance of 3 kpc (Della Valle et al. 1997),
a power law with
and
.
The 15-50 keV upper limit from the PDS amounts to
.
No previous upper limits exist on the 2-10 keV and 15-50 keV luminosities.
XTE J1748-288 was observed on April 5, 1997, about 400 d before its discovery.
We obtain a
upper limit on the MECS count rate of
c s-1.
Despite the relatively long exposure, this fairly high value is due
to the source position right on the MECS "strongback'' (Boella et al. 1997b).
Using the appropriate response matrix we derive a flux of <
(i.e. <
at 8.5 kpc). No upper
limits in the 15-50 keV energy band can be set due to the presence of strong
sources in the field.
In passing we note that GX 339-4 has been observed and detected by BeppoSAX
at a level of
(Kong et al. 2000). This luminosity level
is high when compared with the other BHCs, suggesting that the observed
"off''-state of GX 339-4 may not correspond to the quiescent state of a transient
system (note also that GX 339-4 is usually considered a persistent source).
Another interesting system monitored by BeppoSAX is CI Cam (XTE J0421+560).
This source was observed three times in quiescence (156, 541 and 690 d after
the latest outburst, respectively) with very different outcomes:
i) a very soft spectrum (
)
with a low column density (
)
and a 1-10 keV luminosity of
(at 2 kpc);
ii) a hard spectrum (
)
with a high column density
(
)
and a luminosity of
;
iii) undetected with an upper limit of
(Parmar et al. 2000).
However, the nature of the compact object of CI Cam is presently unclear.
The source spectrum of GS 2023+338 was extracted from the MECS data within
a radius of 4' centered on the source position (LECS data were unavailable).
We collected 433 photons within the full energy range. Background subtraction was
performed using the standard background files. We used the publicly available
calibration files at 2000 January and XSPEC 11.0. We rebinned the MECS spectrum
in order to have at least 50 photons per spectral bin, resulting in seven bins.
The lack of the LECS data forced us to adopt a value for the absorbing column
density. Following Wagner et al. (1994) and Narayan et al. (1997) we used
a value of
.
With this value of the column density
a power law model provides an adequate description of the data with a photon
index
(errors at 90% confidence level for one
parameter of interest) with a
(for 5 d.o.f.). A
bremsstrahlung model provides also a good fit with
keV and
.
A black body model instead fails to
successfully describe the spectra with
(
keV). This last model can
be reconciled with the data only by assuming a very low column density (formally
null) and
keV (
).
The unabsorbed 1-10 keV flux
as derived with the power law model amounts to
.
This is to be compared with the
value derived
from the ASCA observation (Narayan et al. 1997). The 1-10 keV unabsorbed
luminosity is
(at 3.5 kpc).
The PDS provides an upper limit to the 15-50 keV luminosity of
.
We report on the BeppoSAX view of transient BHCs in quiescence. We further
confirm that BHCs in quiescence are X-ray faint with luminosities below
(at which neutron star transients are usually
detected) and report for the first time upper limits in the 2-10 keV
energy band for four sources: GRO J0422+32, GRS 1009-45, 4U 1630-47 and
XTE J1748-288. These limits improve and confirm existing extrapolations
from lower energy bands (mainly ROSAT, 0.1-2.4 keV).
Moreover, we quote the upper limits in the hard energy band 15-50 keV
derived from the PDS data. These hard X-ray luminosity limits might be useful
to constrain ADAF models, for which high energy tails are expected (current
models easily satisfy these constraints, e.g. Menou et al. 1999a).
After the failure of ASTRO-E, these limits will remain unrivaled for years to come.
One exception to the above cases, that was confirmed also by BeppoSAX
observation, is GS 2023+338, which revealed a level of
(1-10 keV). The GS 2023+338 luminosity derived is at a level and with a
spectrum similar to those of the ASCA observation five years before (Asai et al.
1998; Hameury et al. 1997). This indicates that, within the uncertainties,
the spectrum and the flux level of GS 2023+338 in quiescence remains fairly
constant.
Acknowledgements
We thank T. Mineo for making available to us off-axis MECS response matrices. This research has made use of SAXDAS linearised and cleaned event files (Rev.2.0) produced at the BeppoSAX Science Data Center. This work was partially supported through ASI grants.