next previous
Up: The O-Na and Mg-Al clusters


2 Sample selection and observations

Observations were carried out in two 6-nights runs (June and September 2000); due to poor weather conditions in the September run, we were not able to complete the acquisition of the spectra in 47 Tuc. Hence the present paper deals only with data for the two other clusters. In the same runs we also acquired data for 25 field stars with good parallaxes from the Hipparcos catalogue and metallicity similar to that of the GCs.

For each cluster, we selected two groups of stars: (i) dwarfs about 0.2 mag brighter than the turn-off (5 stars in NGC 6397 and 9 in NGC 6752); and (ii) stars at the base of the red giant branch (3 stars in NGC 6397 and 9 stars in NGC 6752), hereinafter called subgiants. Positions of the observed stars in the C-M diagrams of the two clusters (from Grundahl et al. 1999) are given in Fig. 1. A posteriori, radial velocities and chemical composition show that all stars are bona fide members of the clusters. Stars with likely strong and weak CN bands were selected from Strömgren photometry: the c1index seems in fact to be higher for CN-richer stars (see Grundahl et al. 1999). Given this choice, it should be clear that stars are not a random sample of stars in the different magnitude bins, but rather they were selected in order to include quite extreme cases of CN-poor and CN-rich stars. For comparison, we give in Fig. 2 also the location in a similar C-M diagram of the field stars we observed.

The observations were carried out using the dichroic beamsplitter #2. This allowed us to observe simultaneously two spectral ranges with the two arms of the spectrograph. Slightly different setups were used in the two runs: the blue spectra cover the spectral range from about 3500 Å to about 4700 Å, while the red spectra cover the range from 5700 Å to about 8700 Å. This very broad spectral range allows observations of a large number of spectral features. The resolution was set by the slit width: in most cases this was 1 arcsec (yielding a resolution of 43000 at order centers); however, this value was sometimes changed according to the variable seeing conditions, from 0.7 arcsec in the best cases, down to 1.2 arcsec in the worst ones. The slit length was always set at 8 arcsec, allowing accurate sky subtraction (necessary, since observations were carried out in full moon). Most of the objects are very faint ( $V\;\lower.6ex\hbox{$\sim$ }\kern-7.75pt\raise.65ex\hbox{$>$ }\;17$), so that long exposures were required even with an 8 m telescope like Kueyen, and a very efficient spectrograph like UVES. Typical exposure times were $\sim$1 hr for subgiants, and about 4 hr (split in 3 to 4 segments) for TO stars. The S/N (per pixel at 6700 Å; there are about 5 pixels per resolution element) of the resulting spectra is $\sim$100 in the best cases, and down to about 20 in the worst ones. Relevant data are presented in Tables 1-3.

 
Table 1: Parameters for field stars
Star Mv B-V b-y [Fe/H] $\log g$ $T_{\rm eff}$ $T_{\rm eff}$ $T_{\rm eff}$
HD/BD           H$_\alpha$ Best Alonso et al.
10607 4.03 0.56 0.372 -0.95 4.00 5780 5734  
29907 6.01 0.63 0.452 -1.47 4.82 5636 5406  
31128 5.05 0.49 0.358 -1.44 4.63 6279 5969  
108177 4.87 0.43 0.330 -1.70 4.44 5884 6063 6067
116064 4.74 0.45 0.349 -1.87 4.35 5770 5923  
120559 5.93 0.66 0.424 -0.90 4.51 5207 5378  
121004 5.12 0.62 0.424 -0.75 4.32 5401 5548  
126681 5.71 0.60 0.400 -1.13 4.55 5444 5556 5541
132475 3.62 0.56 0.401 -1.61 3.79 5596 5520 5788
134169 3.82 0.565 0.370 -0.81 4.06 6106 5825 5874
134439 6.72 0.77 0.487 -1.31 4.78 5151 5052 4974
134440 7.05 0.85 0.527 -1.28 4.69 4777 4777 4746
140283 3.34 0.49 0.380 -2.46 3.67 5560 5645 5691
145417 6.81 0.82 0.509 -1.23 4.78 5096 4922  
159482 4.92 0.58 0.382 -0.83 4.32 5546 5656  
166913 4.22 0.45 0.326 -1.59 4.08 5921 6020  
181743 4.96 0.45 0.351 -1.81 4.42 5749 5927  
188510 5.59 0.60 0.416 -1.44 4.50 5412 5485 5564
189558 3.59 0.575 0.386 -1.15 3.87 5829 5670 5663
193901 5.44 0.55 0.377 -1.03 4.62 5848 5780 5750
194598 4.60 0.49 0.348 -1.15 4.42 6064 5980 6017
204155 4.07 0.57 0.378 -0.70 4.06 5907 5751  
205650 5.39 0.51 0.375 -1.12 4.52 5628 5782  
-35 0360 6.31 0.76 0.472 -1.08 4.52 4957 5086 4980
+05 3640 6.50 0.74 0.474 -1.15 4.62 4987 5063  



 
Table 2: Data for NGC 6397 stars (identifications from Grundahl et al. 1999); Al abundances from resonance lines
Star S/N n. [Fe/H] rms EW [O/Fe] [O/Fe] EW EW [Na/Fe] [Mg/Fe] [Al/Fe]
    lines     7771 LTE nLTE 8183 8194 nLTE   nLTE
Dwarfs
1543 91 23 -2.02 0.12 14.7 0.32 0.16 .. 38.8 0.21 0.06 0.20
1622 82 21 -2.02 0.10 13.3 0.27 0.11 28.5 40.7 0.28 0.10 0.26
1905 92 22 -2.06 0.11 13.4 0.27 0.11 17.1 29.4 0.02 0.12 0.25
201432 97 22 -2.00 0.11 12.8 0.25 0.08 17.0 35.6 0.08 0.06 0.10
202765 59 18 -2.02 0.14 16.1 0.38 0.21 20.7 28.5 0.06 -0.06 0.19
Subgiants
669 91 27 -2.01 0.11  6.0 0.34 0.26 62.9 86.8 0.48 0.23 0.46
793 105 31 -2.04 0.12 <6.0 <0.34 <0.26 39.9 72.1 0.21 0.28 0.31
206810 85 23 -2.10 0.10  8.0 0.48 0.48 49.5 68.3 0.25 0.10 0.28



 
Table 3: Data for NGC 6752 stars. Stars are ordered according to increasing Na abundance. Star identifications are from Grundahl et al. (1999). Note: 1) Al abundances from resonance lines; (2) Al abundances from high excitation 8772.9/73.9 doublet
Star S/N n. [Fe/H] rms EW [O/Fe] [O/Fe] EW EW [Na/Fe] [Mg/Fe] [Al/Fe]
    lines     7771 LTE nLTE 8183 8194 nLTE   nLTE
Dwarfs
4428 49 22 -1.52 0.14 35.7 0.35 0.24 24.4 57.1 -0.35 0.04 -0.48 (1)
4383 49 23 -1.42 0.19 46.0 0.60 0.49 33.6 61.5 -0.23 0.01 -0.11 (1)
202316 44 21 -1.56 0.20 28.7 0.31 0.20 42.6 69.0 -0.09 -0.06 -0.45 (1)
4341 42 23 -1.57 0.26 21.6 0.30 0.21 63.4 83.7 0.18 0.06 -0.76 (1)
4458 33 17 -1.52 0.27 19.4 0.04 -0.06 71.9 82.6 0.24 -0.09 -0.63 (1)
4661 21 16 -1.24 0.17 .. .. .. 75.4 84.3 0.28 0.15 -0.09 (1)
5048 44 25 -1.43 0.12 11.0 -0.29 -0.37 78.2 93.7 0.37 -0.24 0.19 (1)
4907 66 28 -1.41 0.21 12.0 -0.25 -0.34 102.9 103.0 0.61 -0.09 0.14 (1)
200613 25 18 -1.24 0.18 .. .. .. 103.5 110.1 0.64 0.06 0.60 (1)
Subgiants
1406 48 44 -1.39 0.16 18.0 0.40 0.34 82.1 105.7 0.02 0.20 0.10 (2)
1665 49 41 -1.34 0.15 .. .. .. 86.7 116.6 0.10 0.10 -0.13 (2)
1445 35 33 -1.53 0.13 .. .. .. 95.0 .. 0.19 0.06 0.33 (2)
1563 44 38 -1.42 0.17 17.4 0.38 0.33 97.0 131.0 0.25 0.11 0.17 (2)
1400 70 41 -1.44 0.14 15.3 0.33 0.28 103.4 .. 0.29 0.10 0.34 (2)
1461 25 32 -1.38 0.24 .. .. .. 94.9 144.4 0.29 0.10 -0.06 (2)
202063 29 38 -1.49 0.27 .. .. .. 120.4 143.8 0.44 0.13 0.33 (2)
1481 55 46 -1.39 0.15 .. .. .. 122.5 166.2 0.54 -0.07 0.69 (2)
1460 38 32 -1.37 0.15 <14.0 <0.25 <0.19 137.4 .. 0.65 -0.19 0.86 (2)



  \begin{figure}
{
\psfig{figure=MS10579_fig2.eps,width=8cm,clip=} }
\end{figure} Figure 2: Colour-magnitude diagram for the field stars; MV is computed using Hipparcos parallaxes


  \begin{figure}
{
\psfig{figure=MS10579_fig8.eps,width=6cm,clip=} }
\end{figure} Figure 3: Comparison between EWs measured on the spectra of two dwarfs in NGC 6397 (stars 1543 and 1622), and two dwarfs in NGC 6752 (stars 4907 and 4428). The rms obtained from these comparisons are 3.4 mÅ for the stars in NGC 6397, and 4.8 mÅ for the stars in NGC 6752 (assuming equal error for both stars)


next previous
Up: The O-Na and Mg-Al clusters

Copyright ESO 2001