next previous
Up: Forced precession models for


1 Introduction

A vast majority of the known short-period comets are subject to nongravitational forces (Marsden & Williams 1997). The method to determine nongravitational effects in the comet's orbital motion was proposed by Marsden et al. (1973), who assumed that the three components of a nongravitational force acting on the comet have the form:

\begin{displaymath}F_i = A_ig(r) \>\>\> A_i = {\rm ~const ~~for~~} i=1,2,3\,
\end{displaymath} (1)

where F1,F2,F3 represent the radial, transverse and normal component of the nongravitational force, respectively. The analytical function g(r) simulates the ice sublimation rate as a function of the heliocentric distance r. At least three consecutive apparitions are needed to determine the "constant'' nongravitational parameters A1, A2, A3effective within investigated time interval. To examine whether these parameters are really constant or not, it is necessary to combine sets of three (at least) consecutive apparitions.
  \begin{figure}
\par\includegraphics[height=16.0cm,width=7.5cm,angle=90.0,clip]{H...
...degraphics[height=16.0cm,width=13.0cm,angle=90.0,clip]{H2284f2.EPS}
\end{figure} Figure 1: Temporal variation of the cometary distance from the Sun (thick solid curves) and from the Earth (thin solid curves) for six investigated comets. The distributions of observations with respect to perihelion passages and approaches of the comets to the Earth are shown on the bottom of each graph


  \begin{figure}
\subfigure[]{\includegraphics[height=9.8cm,width=8.8cm,clip]{H228...
...e[]{\includegraphics[height=8.73cm,width=8.8cm,clip]{H2284F4.EPS} }
\end{figure} Figure 2: Changes of the orbits of six comets caused by approaches to Jupiter; the dashed curves denote these parts of cometary orbit which are placed under the ecliptic plane

In most short-period comets long-term nongravitational effects are constant or slowly changing with time, however, in some comets these effects seem to be strongly variable (see Fig. 2 in Sekanina 1993a). Then, rapidly varying nongravitational perturbations are rather irregular (as in the spectacular case of Comet 21P/Giacobini-Zinner), but sometimes may show systematic trends in the motions (32P/Comas Sola and 37P/Forbes cases). It seems that some discontinuities are present in otherwise continuous nongravitational perturbations, thus comets exhibiting such a behaviour are called "erratic'' comets (Marsden & Sekanina 1971). From rich sample of known erratic short-period comets six are investigated in detail in this paper. Four of them, 31P/Schwassmann-Wachmann 2, 32P/Comas Solá, 37P/Forbes, and 43P/Wolf-Harrington, have been observed for almost seventy-year long time interval since their discoveries (see Table 1 and Fig. 1); the next two - 16P/Brooks 2 and 21P/Giacobini-Zinner - have been observed at 14 and 13 returns, respectively, for almost a century. All of them have experienced close approaches to Jupiter; in Fig. 2 we present two orbits for each comet to show changes of heliocentric orbits caused by approaches to Jupiter (more details are given in Sect. 5).

 

 
Table 1: Global range of orbital parameters (perihelion distance, q, eccentricity, e, and inclination, i) and close encounters with Jupiter for six erratic comets
Range of orbital parameters close encounter
          with Jupiter
Year P q e i date dist.
[yr] [yr] [AU]   [$^\circ $]   [AU]
16P/Brooks 2
1886 37.5 5.453 0.513 7.134    
          July 1886 .001
1911 7.10 1.963 0.469 6.070    
          Feb. 1922 0.12
1994 6.89 1.843 0.491 5.541    
21P/Giacobini-Zinner
1887 7.00 1.241 0.661 33.408    
          Oct. 1898 0.19
1900 6.46 0.932 0.732 29.830    
          Sep. 1969 0.57
1972 6.52 0.994 0.715 31.703    
31P/Schwassmann-Wachmann 2
1920 9.29 3.565 0.194 0.741    
          Mar. 1926 0.18
1994 6.39 2.070 0.399 3.753    
          Mar. 1997 0.25
2002 8.72 3.408 0.195 4.550    
32P/Comas Solá
1910 9.35 2.152 0.515 18.707    
          May  1912 0.18
1927 8.52 1.772 0.575 13.766    
1996 8.83 1.846 0.568 12.917    
37P/Forbes
1929 6.38 1.528 0.556 4.645    
1987 6.26 1.475 0.566 4.671    
          Aug. 1990 0.34
1993 6.13 1.447 0.568 7.159    
43P/Wolf-Harrington
1925 7.60 2.428 0.372 23.684    
          June 1936 0.12
1939 6.20 1.448 0.571 18.322    
          Jan. 1948 0.72
1952 6.50 1.599 0.541 18.493    
1997 6.46 1.581 0.544 18.510    



 

 
Table 2: Global characteristics of observations of six erratic comets. For Comet 16P/Brooks 2 observations till 1939 apparition were simulated; also the observations for 1926 and 1939/40 apparitions in the Comet 21P/Giacobini-Zinner case, were simulated; thus the mean residuals a priori for both of them are not given
Comet No of           No No Mean
design. apparitions Observation interval of of res.
              obs. res. a priori
16P 14 1889 Aug. 29 - 1995 Feb. 24 595  961 1 $.\!\!^{\prime\prime}$78
21P 13 1900 Dec. 24 - 1999 Apr. 30 1589 2529 2 $.\!\!^{\prime\prime}$04
31P 11 1929 Jan. 4 - 1995 July 4 485  921 1 $.\!\!^{\prime\prime}$31
32P  9 1926 Nov. 4 - 1997 June 25 582  939 1 $.\!\!^{\prime\prime}$41
37P  9 1929 Aug. 22 - 1999 Nov. 11 286  553 1 $.\!\!^{\prime\prime}$15
43P  9 1924 Dec. 22 - 1998 May  26 322  628 1 $.\!\!^{\prime\prime}$23



 

 
Table 3: Nongravitational parameters A1, A2, A3 determined by linking three or four consecutive apparitions. The mean residual RMS and number of observations used to improve the orbits are given in the last two columns
Appearances A1 A2 A3 Mean No
  in units of 10-8 AU/day2 res of
          obs.
16P/Brooks 2  
1889/96/03 $4.11 \pm .92 $ $-.3243 \pm .0021$ $-.271 \pm .229$ 2 $.\!\!^{\prime\prime}$81 114
1896/03/11 $2.26 \pm .41 $ $-.2870 \pm .0019$ $-.386 \pm .097$ 1 $.\!\!^{\prime\prime}$47 108
1903/11/25 $0.978\pm .154$ $-.2410 \pm .0030$ $+.564 \pm .130$ 1 $.\!\!^{\prime\prime}$44 118
1911/25/32 $1.01 \pm .15 $ $-.2190 \pm .0066$ $+.523 \pm .103$ 1 $.\!\!^{\prime\prime}$41 110
1932/39/46 $0.357 \pm .220$ $-.2517 \pm .0012$ $+.200 \pm .093$ 1 $.\!\!^{\prime\prime}$89 81
1939/46/53 $1.34 \pm .27 $ $-.2341 \pm .0011$ $+.121 \pm .080$ 1 $.\!\!^{\prime\prime}$76 71
1946/53/60 $1.25 \pm .17 $ $-.2055 \pm .0077$ $+.081 \pm .062$ 1 $.\!\!^{\prime\prime}$73 63
1953/60/74 $1.35 \pm .14 $ $-.2051 \pm .0020$ $+.169 \pm .061$ 1 $.\!\!^{\prime\prime}$43 54
1960/74/80 $0.685 \pm .229$ $-.1614 \pm .0020$ $+.177 \pm .076$ 1 $.\!\!^{\prime\prime}$67 40
1974/80/87 $0.584 \pm .235$ $-.1354 \pm .0019$ $+.253 \pm .073$ 2 $.\!\!^{\prime\prime}$03 90
1980/87/94 $0.234 \pm .163$ $-.1574 \pm .0005$ $+.112 \pm .047$ 1 $.\!\!^{\prime\prime}$61 181
21P/Giacobini-Zinner  
1900/13/26 $0.632 \pm .136$ $+.0348 \pm .0001$ $-.037 \pm .095$ 4 $.\!\!^{\prime\prime}$07 205
1913/26/33 $0.403 \pm .072$ $+.0351 \pm .0003$ $+.107 \pm .080$ 3 $.\!\!^{\prime\prime}$85 197
1933/40/46 $0.179 \pm .055$ $+.0376 \pm .0023$ $-.069 \pm .055$ 2 $.\!\!^{\prime\prime}$08 63
1940/46/59 $0.278 \pm .016$ $+.0393 \pm .0006$ $-.017 \pm .023$ 1 $.\!\!^{\prime\prime}$71 85
1946/59/72 $0.244 \pm .011$ $+.1063 \pm .0001$ $-.169 \pm .015$ 2 $.\!\!^{\prime\prime}$44 180
1959/72/79 $0.357 \pm .021$ $-.0182 \pm .0005$ $+.132 \pm .021$ 2 $.\!\!^{\prime\prime}$25 144
1972/79/85 $0.398 \pm .015$ $-.0610 \pm .0013$ $-.077 \pm .016$ 1 $.\!\!^{\prime\prime}$81 314
1979/85/92 $0.146 \pm .038$ $-.0600 \pm .0008$ $-.148 \pm .019$ 1 $.\!\!^{\prime\prime}$30 228
1985/92/99 $0.218 \pm .010$ $-.0512 \pm .0018$ $-.022 \pm .012$ 1 $.\!\!^{\prime\prime}$84 419
31P/Schwassmann-Wachmann 2  
29/35/42/48 $0.863 \pm .225$ $-.1984 \pm .0033$ $-.082 \pm .074$ 1 $.\!\!^{\prime\prime}$34  83
35/42/48/55 $1.264 \pm .059$ $-.1943 \pm .0013$ $-.052 \pm .049$ 1 $.\!\!^{\prime\prime}$12 103
42/48/55/61 $0.805 \pm .082$ $-.1633 \pm .0012$ $+.076 \pm .046$ 1 $.\!\!^{\prime\prime}$11 121
48/55/61/68 $1.347 \pm .052$ $-.1672 \pm .0014$ $+.007 \pm .053$ 1 $.\!\!^{\prime\prime}$38 116
55/61/68/74 $1.811 \pm .063$ $-.2111 \pm .0014$ $-.088 \pm .050$ 1 $.\!\!^{\prime\prime}$70 146
61/68/74/81 $2.003 \pm .068$ $-.1837 \pm .0015$ $-.026 \pm .062$ 2 $.\!\!^{\prime\prime}$11 125
68/74/81/87 $1.576 \pm .092$ $-.2333 \pm .0025$ $+.040 \pm .088$ 3 $.\!\!^{\prime\prime}$48 136
74/81/87/94 $1.306 \pm .031$ $-.2960 \pm .0009$ $+.005 \pm .029$ 1 $.\!\!^{\prime\prime}$66 273
32P/Comas Solá  
1926/35/44 $0.823 \pm .088$ $+.0033 \pm .0015$ $-.054 \pm .045$ 2 $.\!\!^{\prime\prime}$02 172
1935/43/53 $0.688 \pm .055$ $+.0418 \pm .0011$ $-.143 \pm .035$ 1 $.\!\!^{\prime\prime}$48 125
1943/52/62 $0.744 \pm .051$ $-.0159 \pm .0011$ $-.130 \pm .027$ 1 $.\!\!^{\prime\prime}$33 116
1951/61/70 $0.691 \pm .046$ $-.0729 \pm .0010$ $-.211 \pm .028$ 1 $.\!\!^{\prime\prime}$33 126
1960/69/79 $0.710 \pm .048$ $-.1253 \pm .0022$ $-.202 \pm .030$ 1 $.\!\!^{\prime\prime}$52 114
1968/78/88 $0.605 \pm .104$ $-.1358 \pm .0010$ $+.037 \pm .049$ 1 $.\!\!^{\prime\prime}$49 114
1977/87/96 $0.872 \pm .072$ $-.1125 \pm .0014$ $-.090 \pm .054$ 1 $.\!\!^{\prime\prime}$41 162
37P/Forbes  
1929/42/48 $0.416 \pm .186$ $+.0805 \pm .0028$ $+.044 \pm .040$ 1 $.\!\!^{\prime\prime}$82 48
1942/48/61 $0.562 \pm .063$ $+.0488 \pm .0007$ $-.096 \pm .025$ 1 $.\!\!^{\prime\prime}$56 46
1948/61/74 $0.694 \pm .036$ $-.0260 \pm .0001$ $-.072 \pm .018$ 1 $.\!\!^{\prime\prime}$71 65
1961/74/80 $0.565 \pm .049$ $-.0784 \pm .0005$ $-.036 \pm .022$ 1 $.\!\!^{\prime\prime}$69 68
1974/80/87 $0.829 \pm .060$ $-.0626 \pm .0017$ $-.046 \pm .022$ 1 $.\!\!^{\prime\prime}$26 66
1980/87/93 $0.359 \pm .030$ $-.0391 \pm .0012$ $-.023 \pm .018$ 1 $.\!\!^{\prime\prime}$14 111
1987/93/99 $0.409 \pm .027$ $-.0403 \pm .0013$ $-.012 \pm .018$ 1 $.\!\!^{\prime\prime}$06 167
43P/Wolf-Harrington  
1924/52/59 $0.109 \pm .077$ $-.0648 \pm .0040$ $-.022 \pm .041$ 1 $.\!\!^{\prime\prime}$48  79
1951/58/65 $0.199 \pm .038$ $-.0513 \pm .0012$ $-.049 \pm .025$ 1 $.\!\!^{\prime\prime}$18  91
1958/65/71 $0.343 \pm .034$ $-.0486 \pm .0011$ $-.031 \pm .023$ 1 $.\!\!^{\prime\prime}$27  77
1965/71/78 $0.370 \pm .084$ $-.0471 \pm .0025$ $-.013 \pm .039$ 1 $.\!\!^{\prime\prime}$60  59
1971/78/84 $0.333 \pm .056$ $-.0096 \pm .0028$ $-.000 \pm .037$ 1 $.\!\!^{\prime\prime}$87  69
1978/84/91 $0.285 \pm .116$ $-.0178 \pm .0025$ $-.033 \pm .057$ 1 $.\!\!^{\prime\prime}$86  71
1984/91/98 $0.406 \pm .021$ $-.0366 \pm .0008$ $-.009 \pm .015$ 1 $.\!\!^{\prime\prime}$12 184


Various interpretations have been proposed to explain the long-term variations in nongravitational perturbations of comet's orbital motion. In this paper the nongravitational motion of these erratic comets during their whole observational intervals assuming that sublimation of the rotating and precessing icy cometary nucleus is a source of nongravitational effects and their temporal variations. We will show that it is possible to link all apparitions of each comet on the basis of forced precession model with physically reasonable parameters. Thus, we conclude that the forced precession model of the rotating nonspherical cometary nucleus adequately explains variations of the nongravitational effects observed in investigated "erratic'' comets and is suitable to make predictions of the future returns. Preliminary analysis including five of six comets discussed here, was published elsewhere (Królikowska et al. 1999). These investigations are a continuation of studies of nongravitational effects undertaken by Sitarski and collaborators (e.g. Sitarski 1992, 1994b; Królikowska & Sitarski 1996; Królikowska et al. 1998a, 1998b; Królikowska & Szutowicz 1999; Szutowicz 1999, 2000).

  \begin{figure}
\par\includegraphics[height=12.0cm,width=8.8cm,clip]{H2284f5.EPS}\end{figure} Figure 3: Temporal variations in the nongravitational parameter A2 for six short-period comets. The open circles represent values of A2 determined as constant values within sets of at least three consecutive apparitions (see Table 3); these circles are referred to the middle of the time intervals covered by calculations (which are shown as thin solid horizontal lines). The solid circles are the mean (e.g. $\overline A_2$ from Eq. (3)) averaged over three consecutive revolutions around the Sun) values of A2 (e.g. resulting from ours forced precession models discussed in the Sects. 3-5). Solid circles are drawn on the middle of thick dashed horizontal lines which represent the time interval taking into account for A2 averaging. Upright arrows indicate the moments of discontinuities of $\tau $ (and also A in 21P/case) introduced to the forced precession models (see Sect. 4 and Table 4)


next previous
Up: Forced precession models for

Copyright ESO 2001