next previous
Up: The circumstellar environment of survey


Subsections

2 Millimeter continuum observations

2.1 Source sample and classification

The original goal of our bolometer observations was to make a complete, homogeneous survey for 1.3 mm continuum emission in the embedded YSOs known in the Taurus-Auriga molecular cloud complex (e.g., Myers et al. 1987 - M 87 -; Kenyon et al. 1990 - KHSS90 -; Kenyon & Hartmann 1993; Tamura et al. 1991). Our Taurus subsample thus comprises 26 YSOs which have all been classified as Class I sources, hence candidate protostars (see below), on the basis of their infrared spectral energy distributions (SEDs) (e.g. M 87, KHSS90, and Table 2). It also includes the Class 0 object IRAM 04191+1523 (IRAM 04191 for short) which was discovered in the course of this 1.3 mm continuum survey and is presently undetected shortward of 60 $\mu $m (see André et al. 1999 - hereafter AMB99).

The Taurus cloud has a relatively low spatial density of YSOs and is believed to be representative of the isolated or distributed mode of low-mass star formation (e.g. Gómez et al. 1993). In this case, it has been argued that stars form as a result of the self-initiated collapse of isolated dense cores, possibly driven by ambipolar diffusion (e.g. Myers 1987; Lizano & Shu 1989; Mouschovias 1991; although see Hartmann 2000). Accordingly, Taurus-Auriga may be the nearest ($d =140\ $pc) and best example of a major star-forming region where the standard self-similar theory of isolated protostars (see Sect. 1) should apply to a good approximation.

In order to investigate the possible influence of environmental effects on the structure of protostellar envelopes, we then enlarged our initial Taurus sample by including several Bok globules detected by IRAS at d = 160-$460\ $pc (e.g. Benson & Myers 1989; Yun & Clemens 1992), as well as embedded YSOs in the Perseus molecular cloud complex at $d \sim 300\ $pc (e.g. Bachiller et al. 1991a,b). The Bok globules are small isolated molecular clouds, not clearly associated with any star-forming complex (e.g. Clemens & Barvainis 1988; Lee & Myers 1999), that should also resemble the predictions of the standard protostellar model. By contrast, protostellar evolution in cluster-forming clouds such as Perseus and $\rho $ Ophiuchi is likely to depart significantly from scale-free descriptions (e.g. MAN98; see also Sect. 5 below).

Table 1 lists the most common names of each source in the literature (Col. 1), the abbreviated name adopted in this paper (Col. 2), the source 1950 equatorial coordinates (Cols. 3 and 4, based on the reference listed in Col. 8), along with its adopted distance (Col. 5), bolometric temperature (Col. 6), and bolometric luminosity (Col. 7, based on the reference listed in Col. 9). In total, we took 1.3 mm continuum maps toward 49 embedded YSOs, which are broken down into 4 Class II, 30 Class I, and 15 Class 0 sources.

In this classification, Class 0 sources, distinguished by large submillimeter to bolometric luminosity ratios and self-embedded in massive circumstellar envelopes, are believed to be young protostars at the beginning of the main accretion phase (André et al. 1993, 2000 - hereafter AWB93, AWB2000). Class I sources, characterized by rising SEDs from $\sim$$2~\mu$m to $\sim$ $25{-}100~\mu$m, are interpreted as more evolved protostars which have already accumulated the majority of their final stellar mass but are still accreting matter from a residual envelope plus accretion disk (Lada 1987; M87; André & Montmerle 1994 - hereafter AM94; Chen et al. 1995). Class II and Class III YSOs, with falling infrared SEDs, correspond to pre-main sequence (PMS) stars, e.g., T Tauri stars (see Bertout 1989 for a review), surrounded by a circumstellar disk (optically thick and optically thin, respectively). For the practical purposes of this paper, we have assigned an SED class to each source of Table 2 based on the following limiting ranges of bolometric temperature (cf. Chen et al. 1995, 1997; Gregersen et al. 1997): $\mbox{$T_{\mbox{\tiny bol}}$ }< 70\ \mbox{K}$ for Class 0, $70\ \mbox{K}\le \mbox{$T_{\mbox{\tiny bol}}$ }< 650\ \mbox{K}$ for Class I, and $650\ \mbox{K}\le \mbox{$T_{\mbox{\tiny bol}}$ }< 2\,880\ $K for Class II. Note that most of the IRAS Bok globules and Perseus YSOs observed here are confirmed Class 0 protostars (cf. Table 1 of AWB2000).


  

 
Table 1: Sample of observed embedded YSOs
IRAS and other Adopted Coordinates d $T_{\mbox{\tiny bol}}$ $L_{\mbox{\tiny bol}}$ Coord. Lum.
source names name (1) $\alpha_{\rm 1950}$ $\delta_{\rm 1950}$ (pc) (K) ($L_\odot$) ref. (2) ref. (3)
M04016+2610 L1489 04$^{\rm h}$01$^{\rm m}$40 $\hbox{$.\!\!^{\rm s}$ }$6 26 $\hbox{$^\circ$ }$10 $\hbox{$^\prime$ }$49 $\hbox{$^{\prime\prime}$ }$ 140 238 3.7 21 22
M04108+2803A M04108-A 04$^{\rm h}$10$^{\rm m}$47 $\hbox{$.\!\!^{\rm s}$ }$3 28 $\hbox{$^\circ$ }$03 $\hbox{$^\prime$ }$49 $\hbox{$^{\prime\prime}$ }$ 140   0.1 21 17
M04108+2803B M04108-B 04$^{\rm h}$10$^{\rm m}$49 $\hbox{$.\!\!^{\rm s}$ }$3 28 $\hbox{$^\circ$ }$03 $\hbox{$^\prime$ }$57 $\hbox{$^{\prime\prime}$ }$ 140 205 0.6 21 17
K04113+2758 K04113 04$^{\rm h}$11$^{\rm m}$20 $\hbox{$.\!\!^{\rm s}$ }$8 27 $\hbox{$^\circ$ }$58 $\hbox{$^\prime$ }$33 $\hbox{$^{\prime\prime}$ }$ 140 606 >1.6 27 17
H04145+2812/V892 Tau Elias1 04$^{\rm h}$15$^{\rm m}$34 $\hbox{$.\!\!^{\rm s}$ }$5 28 $\hbox{$^\circ$ }$12 $\hbox{$^\prime$ }$02 $\hbox{$^{\prime\prime}$ }$ 140 $3\,226$ 16 7 7
K04158+2805 K04158 04$^{\rm h}$15$^{\rm m}$52 $\hbox{$.\!\!^{\rm s}$ }$2 28 $\hbox{$^\circ$ }$05 $\hbox{$^\prime$ }$10 $\hbox{$^{\prime\prime}$ }$ 140 528 >0.4 15 17
K04166+2706 K04166 04$^{\rm h}$16$^{\rm m}$37 $\hbox{$.\!\!^{\rm s}$ }$8 27 $\hbox{$^\circ$ }$06 $\hbox{$^\prime$ }$29 $\hbox{$^{\prime\prime}$ }$ 140 139 0.3 15 17
K04169+2702 K04169 04$^{\rm h}$16$^{\rm m}$53 $\hbox{$.\!\!^{\rm s}$ }$8 27 $\hbox{$^\circ$ }$02 $\hbox{$^\prime$ }$48 $\hbox{$^{\prime\prime}$ }$ 140 170 0.8 15 17
K04181+2655 K04181+2655 04$^{\rm h}$18$^{\rm m}$06 $\hbox{$.\!\!^{\rm s}$ }$4 26 $\hbox{$^\circ$ }$55 $\hbox{$^\prime$ }$01 $\hbox{$^{\prime\prime}$ }$ 140 278 0.4 15 17
K04181+2654 K04181+2654 04$^{\rm h}$18$^{\rm m}$06 $\hbox{$.\!\!^{\rm s}$ }$9 26 $\hbox{$^\circ$ }$54 $\hbox{$^\prime$ }$04 $\hbox{$^{\prime\prime}$ }$ 140 346 0.5 15 17
IRAM04191+1523 IRAM 04191 04$^{\rm h}$19$^{\rm m}$06 $\hbox{$.\!\!^{\rm s}$ }$4 15 $\hbox{$^\circ$ }$22 $\hbox{$^\prime$ }$46 $\hbox{$^{\prime\prime}$ }$ 140 18 0.15 1 1
T04191+1523 T04191 04$^{\rm h}$19$^{\rm m}$09 $\hbox{$.\!\!^{\rm s}$ }$6 15 $\hbox{$^\circ$ }$23 $\hbox{$^\prime$ }$20 $\hbox{$^{\prime\prime}$ }$ 140 210 0.5 27 22
M04239+2436 M04239 04$^{\rm h}$23$^{\rm m}$54 $\hbox{$.\!\!^{\rm s}$ }$5 24 $\hbox{$^\circ$ }$36 $\hbox{$^\prime$ }$54 $\hbox{$^{\prime\prime}$ }$ 140 236 1.3 21 17
M04248+2612/HH31IRS2 M04248 04$^{\rm h}$24$^{\rm m}$52 $\hbox{$.\!\!^{\rm s}$ }$7 26 $\hbox{$^\circ$ }$12 $\hbox{$^\prime$ }$42 $\hbox{$^{\prime\prime}$ }$ 140 334 0.4 21 17
Z04260+2642 Z04260 04$^{\rm h}$26$^{\rm m}$00 $\hbox{$.\!\!^{\rm s}$ }$0 26 $\hbox{$^\circ$ }$42 $\hbox{$^\prime$ }$32 $\hbox{$^{\prime\prime}$ }$ 140   0.1 9 17
04263+2426/GVTauB Haro6-10 04$^{\rm h}$26$^{\rm m}$22 $\hbox{$.\!\!^{\rm s}$ }$0 24 $\hbox{$^\circ$ }$26 $\hbox{$^\prime$ }$30 $\hbox{$^{\prime\prime}$ }$ 140 253 7.0 21 17
K04264+2433 Elias6 04$^{\rm h}$26$^{\rm m}$28 $\hbox{$.\!\!^{\rm s}$ }$1 24 $\hbox{$^\circ$ }$33 $\hbox{$^\prime$ }$24 $\hbox{$^{\prime\prime}$ }$ 140 252 0.5 15 9
F04287+1801 L1551-IRS5 04$^{\rm h}$28$^{\rm m}$40 $\hbox{$.\!\!^{\rm s}$ }$2 18 $\hbox{$^\circ$ }$01 $\hbox{$^\prime$ }$42 $\hbox{$^{\prime\prime}$ }$ 140 97 28 14 10
04287+1806 HH30-IRS 04$^{\rm h}$28$^{\rm m}$43 $\hbox{$.\!\!^{\rm s}$ }$3 18 $\hbox{$^\circ$ }$06 $\hbox{$^\prime$ }$02 $\hbox{$^{\prime\prime}$ }$ 140   > 0.1 20 24
04287+1807/Haro6-14 HLTau 04$^{\rm h}$28$^{\rm m}$44 $\hbox{$.\!\!^{\rm s}$ }$4 18 $\hbox{$^\circ$ }$07 $\hbox{$^\prime$ }$36 $\hbox{$^{\prime\prime}$ }$ 140 576 7.1 7 24
04288+1802 L1551-NE 04$^{\rm h}$28$^{\rm m}$50 $\hbox{$.\!\!^{\rm s}$ }$4 18 $\hbox{$^\circ$ }$02 $\hbox{$^\prime$ }$10 $\hbox{$^{\prime\prime}$ }$ 140 75 6 21 5
M04295+2251/L1536-IRS M04295 04$^{\rm h}$29$^{\rm m}$32 $\hbox{$.\!\!^{\rm s}$ }$2 22 $\hbox{$^\circ$ }$51 $\hbox{$^\prime$ }$11 $\hbox{$^{\prime\prime}$ }$ 140 447 0.6 21 21
04296+1725 GGTau 04$^{\rm h}$29$^{\rm m}$37 $\hbox{$.\!\!^{\rm s}$ }$2 17 $\hbox{$^\circ$ }$25 $\hbox{$^\prime$ }$22 $\hbox{$^{\prime\prime}$ }$ 140 $2\,621$ 2.0 7 17
K04302+2247 K04302 04$^{\rm h}$30$^{\rm m}$16 $\hbox{$.\!\!^{\rm s}$ }$8 22 $\hbox{$^\circ$ }$47 $\hbox{$^\prime$ }$04 $\hbox{$^{\prime\prime}$ }$ 140 202 0.3 16 17
T04325+2402/L1535-IRS T04325 04$^{\rm h}$32$^{\rm m}$33 $\hbox{$.\!\!^{\rm s}$ }$5 24 $\hbox{$^\circ$ }$02 $\hbox{$^\prime$ }$15 $\hbox{$^{\prime\prime}$ }$ 140 157 0.9 27 22
K04361+2547 TMR1 04$^{\rm h}$36$^{\rm m}$09 $\hbox{$.\!\!^{\rm s}$ }$8 25 $\hbox{$^\circ$ }$47 $\hbox{$^\prime$ }$28 $\hbox{$^{\prime\prime}$ }$ 140 144 3.7 16 22
M04365+2535/L1534 TMC1A 04$^{\rm h}$36$^{\rm m}$31 $\hbox{$.\!\!^{\rm s}$ }$2 25 $\hbox{$^\circ$ }$35 $\hbox{$^\prime$ }$56 $\hbox{$^{\prime\prime}$ }$ 140 172 2.4 21 21
K04368+2557 L1527 04$^{\rm h}$36$^{\rm m}$49 $\hbox{$.\!\!^{\rm s}$ }$5 25 $\hbox{$^\circ$ }$57 $\hbox{$^\prime$ }$16 $\hbox{$^{\prime\prime}$ }$ 140 59 1.6 18 15
M04381+2540/TMC1 M04381 04$^{\rm h}$38$^{\rm m}$08 $\hbox{$.\!\!^{\rm s}$ }$5 25 $\hbox{$^\circ$ }$40 $\hbox{$^\prime$ }$53 $\hbox{$^{\prime\prime}$ }$ 140 139 0.7 21 21
M04385+2550/Haro6-33 TMC1C 04$^{\rm h}$38$^{\rm m}$34 $\hbox{$.\!\!^{\rm s}$ }$6 25 $\hbox{$^\circ$ }$50 $\hbox{$^\prime$ }$44 $\hbox{$^{\prime\prime}$ }$ 140 636 >0.4 21 17
M04489+3042 M04489 04$^{\rm h}$48$^{\rm m}$55 $\hbox{$.\!\!^{\rm s}$ }$2 30 $\hbox{$^\circ$ }$42 $\hbox{$^\prime$ }$18 $\hbox{$^{\prime\prime}$ }$ 140 399 0.3 21 21
05417+0907 B35 05$^{\rm h}$41$^{\rm m}$44 $\hbox{$.\!\!^{\rm s}$ }$8 09 $\hbox{$^\circ$ }$07 $\hbox{$^\prime$ }$38 $\hbox{$^{\prime\prime}$ }$ 460   15 28 8
16442-0930 L260 16$^{\rm h}$44$^{\rm m}$13 $\hbox{$.\!\!^{\rm s}$ }$9 $-09\hbox{$^\circ$ }$29 $\hbox{$^\prime$ }$59 $\hbox{$^{\prime\prime}$ }$ 160   1.0 21 21
18148-0440 L483-MM 18$^{\rm h}$14$^{\rm m}$50 $\hbox{$.\!\!^{\rm s}$ }$6 $-04\hbox{$^\circ$ }$40 $\hbox{$^\prime$ }$49 $\hbox{$^{\prime\prime}$ }$ 200 48 14 23 18
18331-0035 L588 18$^{\rm h}$33$^{\rm m}$07 $\hbox{$.\!\!^{\rm s}$ }$6 $-00\hbox{$^\circ$ }$35 $\hbox{$^\prime$ }$48 $\hbox{$^{\prime\prime}$ }$ 200   ? 23  
19156+1906 L723-MM 19$^{\rm h}$15$^{\rm m}$42 $\hbox{$.\!\!^{\rm s}$ }$0 19 $\hbox{$^\circ$ }$06 $\hbox{$^\prime$ }$55 $\hbox{$^{\prime\prime}$ }$ 300 39 3 2 12
19345+0727 B335 19$^{\rm h}$34$^{\rm m}$35 $\hbox{$.\!\!^{\rm s}$ }$1 07 $\hbox{$^\circ$ }$27 $\hbox{$^\prime$ }$24 $\hbox{$^{\prime\prime}$ }$ 250 29 3 3 12
20386+6751 L1157-MM 20$^{\rm h}$38$^{\rm m}$39 $\hbox{$.\!\!^{\rm s}$ }$6 67 $\hbox{$^\circ$ }$51 $\hbox{$^\prime$ }$33 $\hbox{$^{\prime\prime}$ }$ 440 42 11 30 30
21106+4712 B361 21$^{\rm h}$10$^{\rm m}$40 $\hbox{$.\!\!^{\rm s}$ }$9 47 $\hbox{$^\circ$ }$12 $\hbox{$^\prime$ }$01 $\hbox{$^{\prime\prime}$ }$ 350   4.7 8 8
23238+7401 L1262 23$^{\rm h}$23$^{\rm m}$48 $\hbox{$.\!\!^{\rm s}$ }$7 74 $\hbox{$^\circ$ }$01 $\hbox{$^\prime$ }$08 $\hbox{$^{\prime\prime}$ }$ 200   2.3 8 29
  L1448-NW 03$^{\rm h}$22$^{\rm m}$31 $\hbox{$.\!\!^{\rm s}$ }$1 30 $\hbox{$^\circ$ }$35 $\hbox{$^\prime$ }$04 $\hbox{$^{\prime\prime}$ }$ 300 24 2.7 6 6
03225+3034/L1448-IRS3 L1448-N 03$^{\rm h}$22$^{\rm m}$31 $\hbox{$.\!\!^{\rm s}$ }$8 30 $\hbox{$^\circ$ }$34 $\hbox{$^\prime$ }$45 $\hbox{$^{\prime\prime}$ }$ 300 55 11 11 6
L1448-MM L1448-C 03$^{\rm h}$22$^{\rm m}$34 $\hbox{$.\!\!^{\rm s}$ }$3 30 $\hbox{$^\circ$ }$33 $\hbox{$^\prime$ }$35 $\hbox{$^{\prime\prime}$ }$ 300 55 8 11 6
03258+3104/SVS19 NGC 1333-IRAS 2 03$^{\rm h}$25$^{\rm m}$49 $\hbox{$.\!\!^{\rm s}$ }$9 31 $\hbox{$^\circ$ }$04 $\hbox{$^\prime$ }$16 $\hbox{$^{\prime\prime}$ }$ 350 41 40 26 13
  NGC 1333-IRAS 4A 03$^{\rm h}$26$^{\rm m}$04 $\hbox{$.\!\!^{\rm s}$ }$8 31 $\hbox{$^\circ$ }$03 $\hbox{$^\prime$ }$14 $\hbox{$^{\prime\prime}$ }$ 350 34 14 25 25
  NGC 1333-IRAS 4B 03$^{\rm h}$26$^{\rm m}$06 $\hbox{$.\!\!^{\rm s}$ }$5 31 $\hbox{$^\circ$ }$02 $\hbox{$^\prime$ }$51 $\hbox{$^{\prime\prime}$ }$ 350 36 14 25 25
03282+3035 IRAS 03282 03$^{\rm h}$28$^{\rm m}$15 $\hbox{$.\!\!^{\rm s}$ }$8 30 $\hbox{$^\circ$ }$35 $\hbox{$^\prime$ }$20 $\hbox{$^{\prime\prime}$ }$ 300 23 1.5 4 6
  HH211-MM 03$^{\rm h}$40$^{\rm m}$48 $\hbox{$.\!\!^{\rm s}$ }$7 31 $\hbox{$^\circ$ }$51 $\hbox{$^\prime$ }$24 $\hbox{$^{\prime\prime}$ }$ 300   <10? 19  
M03445+3242/B5-B B5-IRS1 03$^{\rm h}$44$^{\rm m}$31 $\hbox{$.\!\!^{\rm s}$ }$8 32 $\hbox{$^\circ$ }$42 $\hbox{$^\prime$ }$34 $\hbox{$^{\prime\prime}$ }$ 300   9.4 21 21

Notes: (1) The first letter of the adopted name generally refers to source samples. Thus, "L'' corresponds to the Lynds catalogue (1962); "M'' and "K'' recall IRAS sources selected by M 87 and Kenyon et al. (1990, 1993a, 1993); "H'' and "T'' indicate sources studied by Heyer et al. (1987) and Tamura et al. (1991); "Z'' and "F'' refer to Beichman et al. (1986). (2) and (3) References: (1) AMB99; (2) and (3) Anglada et al. (1991, 1992); (4) Bachiller et al. (1994); (5) and (6) Barsony et al. (1993, 1998); (7) Beckwith et al. (1990); (8) and (9) Beichman et al. (1986, 1992); (10) Butner et al. (1991); (11) Curiel et al. (1990); (12) Davidson (1987); (13) Jennings et al. (1987); (14) Keene & Masson (1990); (15) KHSS90; (16) KCH93; (17) Kenyon & Hartmann (1993); (18) Ladd et al. (1991); (19) McCaughrean et al. (1994); (20) Mundt et al. (1987); (21) M 87; (22) Ohashi et al. (1996); (23) Parker (1988); (24) Reipurth et al. (1993); (25) and (26) Sandell et al. (1991, 1994); (27) Tamura et al. (1991); (28) and (29) Terebey et al. (1992, 1993); (30) Umemoto et al. (1992).

2.2 Bolometer mapping

We carried out our 1.3 mm mapping survey during five observing sessions from 1993 to 1999. All the runs were performed using the IRAM 30 m telescope on Pico Veleta (Spain) and the MPIfR bolometer arrays (now called MAMBO, e.g. Kreysa et al. 1998) with 7 channels (in 1993 and 1994), 19 channels (in 1995 and 1996), and 37 channels (in 1999). The passband of these bolometers has an equivalent width $\approx$70 GHz and is centered at $\nu_{\rm eff} \approx 240$ GHz (e.g. Kreysa et al. 1998).

Each YSO of Table 1 was first observed at its nominal infrared position in the "on-off'' observing mode, and then mapped in the "multi-point'' or "on-the-fly'' mode.

The multi-point mapping mode was mainly used in 1993, for sources which were too weak to be observed in the on-the-fly mapping mode with the 7-channel bolometer. Each multi-point map consists of several (>5) on-off integrations giving fluxes at a few ( $> 5 \times 7 =
35$) offsets around the nominal source position.

In the dual-beam on-the-fly mapping mode, the telescope is scanned continuously in azimuth along each row while wobbling. For each channel, the raw data corresponding to a single on-the-fly coverage consist of several rows taken at a series of elevations. We used a scanning velocity of 4 $\hbox{$^{\prime\prime}$ }$/s or 8 $\hbox{$^{\prime\prime}$ }$/s, and a sampling of 2 $\hbox{$^{\prime\prime}$ }$ (resp. 4 $\hbox{$^{\prime\prime}$ }$) in azimuth and 4 $\hbox{$^{\prime\prime}$ }$ in elevation. The wobbler frequency was set to 2 Hz and the wobbler throw (in azimuth) was typically 32 $\hbox{$^{\prime\prime}$ }$. The typical size of the maps depends on the bolometer array used: $\sim$ $1\hbox{$^\prime$ }\times 1\hbox{$^\prime$ }$, $\sim$ $3\hbox{$^\prime$ }\times 2\hbox{$^\prime$ }$, and $\sim$ $4\hbox{$^\prime$ }\times 3\hbox{$^\prime$ }$for the 7-channel, 19-channel, and 37-channel arrays, respectively.

The dual-beam maps were reduced with the IRAM software for bolometer-array data ("NIC''; cf. Broguière et al. 1995) which uses the EKH restoration algorithm (Emerson et al. 1979).

The FWHM size of the main beam was measured to be $HPBW \sim
11\hbox{$^{\prime\prime}$ }-12\hbox{$^{\prime\prime}$ }$ using Uranus, Mars, and other strong point-like sources such as quasars[*]. The absolute pointing of the telescope was checked every $\sim$1 hr and found to be accurate to better than $\sim$ $3\hbox{$^{\prime\prime}$ }$- $5\hbox{$^{\prime\prime}$ }$(maximum deviation in both coordinates).

Most of the data benefited from good weather conditions. The zenith atmospheric optical depth, monitored by "skydips'' every 1-2 hr, was between $\sim$0.1 and $\sim$0.4. Calibration was achieved through on-the-fly mapping and on-off observations of the primary calibrators Uranus and Mars (e.g. Griffin & Orton 1993 and references therein). In addition, L1551-IRS5 and L1448-N were used as secondary calibrators in Taurus and Perseus, respectively. The 1.3 mm flux densities adopted for L1551-IRS5 are $\sim$1.5 Jy in an $11\hbox{$^{\prime\prime}$ }$ beam and $\sim$3.4 Jy integrated over a $60\hbox{$^{\prime\prime}$ }$ diameter aperture. L1551-IRS5 was mapped once a day and observed in the on-off mode before and after each YSO map in Taurus. Likewise, L1448-N whose adopted 1.3 mm peak flux is $\sim$4.1 Jy/beam was observed before and after each map in Perseus. The relative calibration accuracy was found to be better than $\sim$10% in Taurus by comparing independent observations of sources mapped several times. Within the subsample of isolated IRAS globules and Perseus protostars, the relative calibration accuracy is slightly worse, i.e., $\sim$20%. The overall, absolute calibration uncertainty is estimated to be $\sim$20%.


next previous
Up: The circumstellar environment of survey

Copyright ESO 2001