A&A 413, 525-534 (2004)
DOI: 10.1051/0004-6361:20031549
A. Begum - J. N. Chengalur
National Centre for Radio Astrophysics, Post Bag 3, Ganeshkhind, Pune 411 007, India
Received 16 July 2003 / Accepted 29 September 2003
Abstract
We present deep, high velocity resolution (1.6 km s-1)
Giant Meterwave Radio Telescope (GMRT) HI 21 cm synthesis images of the
faint (
)
local group dwarf galaxy DDO210.
We find that the HI distribution in the galaxy is not axi-symmetric,
but shows density enhancements in the eastern and southern halves of
the galaxy. The optical emission is lopsided with respect to the HI,
most of the bright optical emission arises from the eastern half of
the HI disk. The velocity field of the galaxy is however quite regular
and shows a systematic large scale pattern, consistent with the rotational
motion. The rotation curve for the galaxy shows a peak (inclination corrected)
rotation velocity of only
8 km s-1, comparable to the
random motions in the HI gas. After correcting for the
dynamical support provided by random motions (the "asymmetric drift''
correction), we find the corrected peak rotation velocity of
16.0 km s-1. Mass modeling of the corrected rotation curve shows
that the kinematics of DDO210 can be well fit with either a modified isothermal
halo (with a central density
pc-3
for a stellar mass to light ratio of 3.4) or an NFW halo. In the case of the NFW halo however, a good fit is obtained for a wide range of parameters; the halo
parameters could not be uniquely determined from the fit. Density profiles
with inner slope steeper than
1.2 however provide a poor fit to the data.
Finally, the rotation curve derived using MOND also provides a reasonable fit to
the observed rotation curve.
Key words: galaxies: evolution - galaxies: dwarf - galaxies: kinematics and dynamics - galaxies: individual: DDO210 - radio lines: galaxies
Numerical simulations of hierarchical galaxy formation models such as
the CDM model predict a "universal'' cusped density core for the dark matter halos
of galaxies (e.g. Navarro et al. 1996). A cusped density core corresponds to a steeply
rising rotation curve. The observed kinematics of galaxies can hence be used to test
such numerical models of galaxy formation. Dwarf low surface brightness (LSB), galaxies
are best suited for such a test, since they, unlike larger galaxies, are known to
be dark matter dominant. In large spiral galaxies, both gas and stars make significant
contributions to the total mass, particularly in the inner regions of the galaxy.
Since the exact contribution of the baryonic material to the total mass of the
galaxy depends on the unknown mass to light ratio of the stellar disk, it is
generally difficult to unambiguously determine the density profile of the dark matter
halo in the central regions of large spirals. In dwarf LSB galaxies on the other hand,
since the stellar disk is generally dynamically unimportant, the central halo density
can be much better constrained. Interestingly, the observed rotation curves of dwarf
galaxies generally indicate that their dark matter halos have constant density
cores (e.g. Weldrake et al. 2003) unlike the cusped density cores predicted in
numerical simulations. Another prediction of the numerical simulations is that the
density of the dark matter halo is related to the background density at the time of
the halo formation. Since the smallest galaxies form first in such models, these galaxies
are expected to have the largest halo densities. The determination of the shapes
and characteristic densities of the dark matter halos of the faintest dwarf galaxies
is hence a particularly interesting problem. However, a major stumbling block
in such programs is that it is currently controversial whether very faint
dwarf irregular galaxies show systematic rotation or not. Lo et al. (1993),
in a study of the kinematics of a sample of nine faint dwarfs (with
to
)
found that most of them were characterized by chaotic
velocity fields. However, as pointed out by Skillman (1996), Lo et al.'s observations
had limited sensitivity to faint extended emission which is likely to have led to
an underestimation of the rotation velocities. Further, from a recent high sensitivity and
high velocity resolution study of the dwarf irregular galaxy, Camelopardalis B
(Cam B), Begum et al. (2003) found that inspite of being very faint (
), the
galaxy shows systematic rotation. Do all faint dwarf irregular galaxies have a
rotating HI disk or is Cam B a special case? What is the dark matter distribution in
these very faint galaxies? In this paper we discuss these questions in the specific
context of the local group dwarf galaxy DDO210.
DDO210, the faintest known (
)
gas rich dwarf galaxy in our local
group, was discovered by van den Bergh (1959) and later detected in an HI 21 cm survey
by Fisher & Tully (1975). Fisher & Tully (1979) assigned a distance of 0.7 Mpc to it,
based on its proximity to NGC 6822 both on the sky and in velocity. On the other hand,
Greggio et al. (1993), based on the colour-magnitude (C-M) diagram of DDO210, estimated its
distance to be 2.5 Mpc. However, recent distance estimates for DDO210 give distances
closer to the original estimate of Fisher & Tully (1979). Lee et al. (1999), based on the
I magnitude of the tip of the red giant branch, estimated the distance to DD210 to be
kpc. This estimate is in excellent agreement with the value of
kpc
derived recently by Karachentsev et al. (2002) using HST observations. At this distance,
DDO210 would be a member of the local group.
DDO210 is classified as a dIr/dSph or "transition galaxy'', with properties intermediate
between dwarf irregulars and dwarf spheroidals (Mateo 1998). For example, in spite of
containing a significant amount of neutral gas, DDO210 shows no signs of ongoing star
formation. H imaging detected a single source of line emission in the galaxy;
however follow up observations of this emission suggests that it does not arise in a
normal HII region, but probably comes from dense outflowing material from an evolved star
(van Zee et al. 1997). Consistent with the lack of ongoing starformation, the CM diagram
of DDO210 shows that the brightest stars in the galaxy are the faintest among the
brightest stars in all known dwarf irregular galaxies of our local group (Lee et al. 1999).
Prior to this work, there have been two HI interferometric studies of DDO210, both of which used the VLA. This galaxy was a part of the sample of Lo et al. (1993) discussed above, and has also been recently re-observed with a high velocity resolution in the Cs array (Young et al. 2003). Although Young et al. (2003) noted that DD210 showed a systematic large scale velocity gradient, no attempt was made to derive a rotation curve for the galaxy, since their study focused mainly on the local connection between the ISM and star formation.
We present here deep, high velocity resolution (1.6 km s-1) Giant Meterwave
Radio Telescope (GMRT) observations of the HI emission from DDO210 and use them to study
the kinematics of the neutral gas in this galaxy. The rest of the paper is divided as
follows. The GMRT observations are detailed in Sect. 2, while the results are
presented and discussed in Sect. 3. Throughout this paper we take the distance
to DDO210 to be 1.0 Mpc, and hence its absolute magnitude to be
.
The GMRT observations of DDO210 were conducted from 13-15 July 2002. The setup for the observations is given in Table 1. Absolute flux calibration was done using scans on the standard calibrators 3C 48 and 3C 286, one of which was observed at the start and end of each observing run. Phase calibration was done using the VLA calibrator source 2008-068 which was observed once every 30 min. Bandpass calibration was done in the standard way using 3C 286.
The data were reduced using standard tasks in classic AIPS. For each run, bad visibility points were edited out, after which the data were calibrated. Calibrated data for all runs was combined using DBCON. The GMRT does not do online doppler tracking - any required doppler shifts have to be applied during the offline analysis. However since the differential doppler shift over our observing interval is much less than the channel width, there was no need to apply an offline correction.
The GMRT has a hybrid configuration (Swarup et al. 1991) with 14 of its 30 antennas located in a central compact array with size 1 km
(
5 k
at 21 cm) and the remaining antennas distributed
in a roughly "Y'' shaped configuration, giving a maximum baseline length
of
25 km (
120 k
at 21 cm). The baselines
obtained from antennas in the central square are similar in length to
those of the "D'' array of the VLA while the baselines between the arm
antennas are comparable in length to the "B'' array of the VLA. A single
observation with the GMRT hence yields information on both large and small
angular scales. Data cubes were therefore made at various (u,v) ranges,
including 0-5 k
,
0-10 k
,
0-15 k
and 0-20 k
using uniform weighting. At each (u,v) range,
a circularly symmetric Gaussian taper with a FWHM equal to 80%
of the (u,v) range was applied inorder to reduce the sidelobes of
the synthesized beam. The angular resolutions obtained for the various
(u,v) ranges listed above were 44
,
29
,
20
and 12
respectively.
All the data cubes were deconvolved using the the AIPS task IMAGR.
Table 1: Parameters of the GMRT observations.
The HI emission from DDO210 spanned 22 channels of the spectral cube. A continuum image was made using the average of remaining line free channels. No continuum was detected from the disk of DDO210 to a
The line profiles were examined at various locations in the galaxy and were found
(to zeroth order) to be symmetric and single peaked. Although double Gaussians or
Gauss-Hermite polynomials provide a better fit to the data (particularly in the higher
column density regions), the peak velocity of the profile in these regions matches
(within the errorbars) with the intensity weighted mean velocity.
Since we are interested here mainly in the systematic velocities, moment
maps provide an adequate description of the data. Moment maps were
therefore made from the data cubes using the AIPS task MOMNT. To obtain the moment
maps, lines of sight with a low signal to noise ratio were excluded by
applying a cutoff at the level, (
being the rms noise level
in a line free channel), after smoothing in velocity (using boxcar
smoothing three channels wide) and position (using a Gaussian with
times that of the synthesized beam). Maps of the velocity
field and velocity dispersion were also made in GIPSY using single Gaussian
fits to the individual profiles. The velocity field produced by Gaussian
fitting is in reasonable agreement with that obtained from moment analysis.
However, the moment2 map systematically underestimates the velocity dispersion.
This can be understood as the effect of the thresholding algorithm used by the MOMNT
task to identify the regions with signal. The velocity dispersion from Gaussian
fitting to the lines profiles was found to be
6.5 km s-1 and
showed no measurable variation across the galaxy. This lack of substantial
variation of
across DDO210 is typical of dwarf irregular galaxies,
although the observed velocity dispersion for DDO210 is lower than the typical
value observed in dwarf irregular galaxies (e.g. Lake et al. 1990; Skillman et al. 1988).
A lower value of HI dispersion for DDO210 was also noted by Young et al. (2003).
![]() |
Figure 1:
HI profile for DDO210 obtained from 44
![]() ![]() |
Open with DEXTER |
![]() |
Figure 2:
The optical DSS image of DDO210 (greyscales) with
the GMRT 44
![]() |
Open with DEXTER |
The global HI emission profile of DDO210, obtained from
data cube, is shown in Fig. 1. A Gaussian fit to the
profile gives a central velocity (heliocentric) of
km s-1.
The integrated flux is
Jy km s-1. These are in good agreement
with the values of
km s-1 and
Jy km s-1 obtained
from single dish observations (Huchtmeier & Richter 1986). A good agreement
between the GMRT flux and the single dish flux shows that no flux was
missed because of the missing short spacings in the interferometric
observations. The velocity width at 50% level of peak emission
(
)
is found to be
km s-1, which again
is in excellent agreement with the
value of 19.0 km s-1 from
the single dish observations. The HI mass obtained from the integrated profile
(taking the distance to the galaxy to be 1.0 Mpc) is
,
and the
ratio is found to be
1.0 in solar units.
Figure 2 shows the integrated HI emission from DDO210 at
resolution, overlayed on the digitised sky survey (DSS)
image. The HI isodensity contours are elongated in eastern and
southern half of the galaxy i.e. the density is enhanced in
these directions. These density enhancements are highlighted
in Fig. 4 which shows the integrated HI emission at high resolution
(
). Note that the faint extended emission seen in the low resolution
map is resolved out in this image.
The optical emission in the galaxy shows two components, a central bright
compact component and an outer faint extended component; both elongated in the
east-west direction (Lee et al. 1999). However, the centers for the two components do not
overlap; the bright component lies more eastwards than the center of extended component.
From a deep C-M diagram of DDO210, Tolstoy et al. (2000) found a number of faint stars older
than several Gyr in the galaxy. Van Zee (2000) estimated an inclination of 68 degrees
for DDO210 from her observations. Lee et al. (1999), based on deeper observations, estimated
the inclination of the faint extended component to be 60 degrees, but noted that
the presence of several bright foreground stars makes this estimate of inclination very
uncertain.
From a visual inspection of the overlay (Fig. 2), the eastern HI density enhancements seem to correlate with the optical emission in the galaxy. As can be seen the bright component of the optical emission is not centered on the HI emission, but is instead offset to the east. On the other hand, no optical emission is seen along the southern HI density enhancement. As a further check for optical emission associated with the southern HI density enhancement, we computed number counts of stars in that region using the deep optical image obtained by Tolstoy et al. (2000). No significant increase in the star counts from the background was detected.
As seen in Fig. 2, the faint extended emission in the lower
resolution HI distribution is less distorted by the presence of the HI density
enhancements. Hence, an estimate of the morphological center, position angle (PA)
and inclination of the galaxy was obtained by fitting elliptical annuli to
the
resolution HI distribution. The estimated HI
morphological center lies close to the center of the faint extended optical
component (but as noted above is offset from the center of the bright optical
emission). The variation of the fitted morphological PA with the
galactocentric radius is given in Fig. 5. The inclination
estimated from the outer HI contours (assuming the intrinsic shape
of the HI disk to be circular) is
degrees. The
inclination in the inner regions of the galaxy could not be constrained
reliably due to the significant distortion in the HI contours. For the same
reason, ellipse fitting to the higher resolution HI data (where the smooth emission
is resolved out) is not reliable.
![]() |
Figure 3:
The HI surface density profile derived from the HI distribution
at 29
![]() ![]() ![]() |
Open with DEXTER |
The inclination derived from the HI distribution is significantly different from the
optical inclination of the galaxy. It is likely that the optical emission does not
arise from an axi-symmetric disk, but instead that the stars are concentrated in
a patchy elongated region in DDO210. Hence, in the absence of any other reliable estimate,
the value of inclination obtained from the outer HI contours was assigned to the whole
galaxy. The deprojected HI radial surface density profiles were then obtained by
averaging over elliptical annuli in the plane of the galaxy. The profiles derived from
the
and
resolution HI distributions are given
in Fig. 3. As can be seen, the two distributions are in reasonable
agreement. The flux integral estimated from the
resolution HI moment 0 map was found to be
11% smaller than that estimated from the
resolution HI distribution. For the rest of the analysis, we will
use the 44
HI profile. This profile is well represented by a
Gaussian, i.e. we have
![]() |
Figure 4:
Integrated HI emission map of DDO210 (grey scale and contours) at 12
![]() |
Open with DEXTER |
![]() |
Figure 5:
The variation of position angle (PA) with the galactocentric
distance. Circles represent the morphological PA obtained from ellipse fit
to the HI distribution at 44
![]() ![]() |
Open with DEXTER |
The velocity field of DDO210 derived from the moment analysis
of
resolution data cube is shown in Fig. 6.
The velocity field is regular and a systematic velocity gradient is seen
across the galaxy. Our velocity field differs significantly from the velocity field
derived by Lo et al. (1993). The systematic pattern seen in our velocity field is, to
zeroth order, consistent with that expected from rotation. On the other hand, the
velocity field derived by Lo et al. (1993) (based on a coarser velocity resolution of
6 km s-1) is chaotic. This difference in the observed kinematics
suggests that high velocity resolution and high sensitivity is crucial in
determining the systematic gradients in the velocity field of faint galaxies
like DDO210. A similar systematic velocity pattern was also found in the recent
high velocity resolution study of DDO210 by Young et al. (2003), however, those
authors concentrated on trying to determine the physical conditions of the
emitting gas and not the large scale kinematics of the galaxy.
The velocity field in Fig. 6 also shows signatures of both
warping and kinematical lopsidedness (Swaters et al. 1999), i.e. the kinematical major axis
is not a straight line but shows twists and the isovelocity contours in the eastern half
of the galaxy are more closed than those in the western half. Both of these kinematical
peculiarities become more prominent in the higher spatial resolution velocity field
(see Fig. 8). While the density enhancements in the HI also become more
prominent at higher spatial resolutions, there does not seem to be any particular
correlation between the HI density enhancements and these kinematical peculiarities.
![]() |
Figure 6:
The HI velocity field of DDO210 at 29
![]() |
Open with DEXTER |
Given the lack of correlation between the density enhancements in the HI distribution
and the global kinematical peculiarities in DDO210, it would be reasonable to assume
that these density enhancements follow the same kinematics as that of the more diffuse
extended emission. Under the further assumption that the kinematical peculiarities
noted above are not important (to the zeroth order; see also Sect. 3.5),
rotation curves were derived by fitting the usual tilted ring model to the HI velocity
fields at various resolutions (including
,
,
and
)
using the GIPSY task ROTCUR.
First, the kinematical center and the systemic velocity (
)
of DDO210 were
obtained from a global fit to the velocity fields at various resolutions. The values
of
derived from the velocity fields matched within the errorbars and also
matched with the value obtained from a Gaussian fit to the global HI profile. The
kinematical center derived from a global fit to the velocity fields at
and
resolution matched within the
errorbars and also matched with the morphological center derived from the
resolution HI distribution. However, because of distorted
morphology of DDO210 at high spatial resolutions, an attempt to derive the kinematical
center from a global fit to the velocity fields at these resolutions did not yield
reliable results. Hence, the center for the higher resolution velocity fields was
fixed to a value obtained from the lower resolution velocity fields.
Keeping
and the kinematical center fixed to the values obtained from the
global fit, the position angle (PA) of the galaxy was derived, using tilted ring model,
by breaking up the galaxy into elliptical annuli (each of width half that of the
synthesized beam). The variation of the derived kinematical PA with the galactocentric
radius for the 44
resolution velocity field is given in the
Fig. 5. The value of kinematical PA at all galactocentric radii matched
with the morphological PA estimated from the 44
resolution HI distribution. Attempts to derive the kinematical position angle at the higher
spatial resolutions did not yield reliable estimates. Similarly, attempts to derive
the kinematical inclination of DDO210 did not give reliable results at any spatial
resolution. Hence, in the absence of any other reliable estimate, the kinematical
inclination of the HI disk was fixed to the value obtained from the HI morphology.
Finally, the rotation curve of the galaxy was computed keeping all parameters, except
the circular velocity Vc, in each elliptical annuli fixed.
![]() |
Figure 7:
The rotation curves derived from the intensity
weighted velocity field at various resolutions.
Crosses, triangles, circles and squares
show the rotation velocity derived from the 12
![]() ![]() ![]() ![]() |
Open with DEXTER |
Figure 7 shows the rotation curves derived from the different
spatial resolution velocity fields. As can be seen, the 20
and 12
resolution velocity fields lead to the rotation curves that are
significantly steeper in the inner regions of the galaxy than those computed from
the lower resolution 44
and 29
velocity fields;
this could be a result of beam smearing. On the other hand, the rotation curves from
each resolution agree in the outer regions of the galaxy. This suggests that the
effect of beam smearing is significant only in the inner regions of the galaxy, where
the rotation velocity is increasing with the galactocentric radius. Further, the rotation
curves derived from the 12
resolution velocity field agrees with that
obtained from the 20
resolution data suggesting that beam smearing
effects are no longer significant at such high resolutions (which corresponding to
a linear scale of
70 pc). The final rotation curve that we adopt for the
rest of the analysis is shown as a solid line in Fig. 7. The
rotation velocities derived from the 20
resolution velocity
field are used in the inner regions of the galaxy (upto
50''),
while, the outer points are taken from the 29
and the
44
resolution data.
As discussed above, the rotation curves have been derived under the assumption that
the HI density enhancements follow the same kinematics as that of the extended emission.
The validity of this assumption could be tested by checking whether the derived
rotation curves can reproduce the observed kinematics in the galaxy. Hence, model
velocity fields were made at 44
,
29
and
20
resolutions using the rotation curves and other kinematical
parameters, derived from each resolution with a tilted ring model, using the task
VELFI in GIPSY. The model velocity field at 20
resolution is shown
in Fig. 8. As can be seen from the figure,
the model provides a reasonable match to the observed velocity field. Note however
that the model fails to reproduce the kinematical lopsidedness and the twist in the
kinematical major axis. This is to be expected, since neither of these two features
was incorporated in the model. A similar match between the observed and the model
velocity fields was also found for the two lower resolution velocity fields.
![]() |
Figure 8:
[A] The observed velocity field of DDO210 at 20
![]() ![]() |
Open with DEXTER |
The maximum rotation velocity (inclination corrected) of DDO210 is 8.0 km s-1,
which is comparable to the velocity dispersion observed in the HI gas, i.e. random
motion in the gas provides significant dynamical support to the HI disk. Since the
pressure support contributes significantly to the dynamics of DDO210, the observed
rotation velocities underestimate the total dynamical mass. The rotation velocity
hence has to be corrected for the pressure support before one can derive a mass model
for the galaxy; this correction (generally called the "asymmetric drift'' correction)
is given by:
As discussed above, the "asymmetric drift'' correction was derived under the assumption that the disk scale height of DDO210 does not change with radius. To quantify the effect of this assumption, the correction was recalculated assuming a linear increase of 100% in the scale height, from q0=0.25 at the center to q0=0.5 at the edge of the galaxy. The change in the asymmetric drift correction was found to be <1%. The assumption that the scale height is constant hence has a negligible effect on the derived halo parameters.
![]() |
Figure 9: The hybrid rotation curve (dashes) and the rotation curve after applying the asymmetric drift correction (dots). |
Open with DEXTER |
In this section we use the "asymmetric drift" corrected rotation curve derived in the last section to derive mass models for DDO210.
As discussed in Sect. 3.1 the optical emission is not axi-symmetric but
is instead patchy and elongated. For the purpose of mass modeling however, we approximate
the optical emission to be axi-symmetric, but we return to this issue in
Sect. 3.5. Assuming that the optical emission was axi-symmetric, Lee et al. (1999)
estimate the B band scale length ()
of DDO210 to be 35.0'' (
0.17 kpc).
This estimate of
agrees to within 10% with the value of 39'' estimated
by Van Zee (2000). Lee et al. (1999) also found the colours of the galaxy to
be nearly constant with the galactocentric radius. Hence, we computed the contribution
of the stellar mass to the observed rotation curve by assuming it to be an exponential
disk of constant M/LB ratio (
)
and with an intrinsic thickness ratio (q0) of 0.25. For the vertical density distribution of the stellar disk, we assumed a
sech2(z/z0) profile, with z0 independent of galactocentric radius. These are
reasonable assumptions for disk galaxies (e.g. van der Kruit & Searle 1981;
de Grijs & Peletier 1997). In the absence of any prior knowledge of
,
it was taken as a free parameter in the mass modelling.
The contribution of the HI mass to the observed rotation velocities was
calculated using the HI surface density profile derived from 44
HI distribution. To correct for the mass fraction of helium, the HI mass was scaled by a factor of 1.25. A search for molecular gas in DDO210
gave negative result (Taylor et al. 1998), hence, the contribution of molecular gas to
the rotation curve was ignored. We also neglected the contribution of ionized gas,
if any. Not much is known about the vertical distribution of gas in dwarf irregular
galaxies, however there is some evidence of similar vertical density distribution
of HI and stellar disk (Bottema et al. 1986). Hence, for the HI disk we again assumed q0 of 0.25, with a vertical density distribution profile of sech2(z/z0). The
rotation velocities for the HI and the stellar components were then computed using the
formulae given by Casertano (1983).
For the dark matter halo we considered two types of density
profiles, viz. the modified isothermal profile and the NFW profile. The modified isothermal
density profile is given by:
![]() |
Figure 10:
Mass models for DDO210 using the corrected rotation curve.
The points are the observed data. The total mass of gaseous disk (dashed line)
is
![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
First, we consider a modified isothermal dark halo mass model. Since the rotation curve
keeps on rising till the last measured point (see Fig. 9) , the core radius
could not be constrained. This essentially reduces a modified isothermal dark halo
fit into a constant density halo fit. The remaining free parameters are the central
density of the halo,
,
and the mass to light ratio of the stellar disk,
.
Figure 10 shows the best fit mass model for a constant density halo. The
best fit gave
of
and
pc-3. The observed B-V for DDO210 is
0.25 (Lee et al. 1999), which, (from the low metallicity Bruzual
Charlot SPS model using a modified Salpeter IMF, Bell
de Jong 2001), corresponds to a
of
0.5. If we adopt this value of
then the best fit
model has
pc-3. However, with this
,
the fit to the observed rotation curve is much poorer and the model curve
substantially underestimates the observed rotation velocities at small radii.
The best fit model (
)
gives the mass of stellar disk to be
.
The mass of the gas disk in DDO210 is
.
From the last measured point of the observed rotation
curve, we get a total dynamical mass of
,
i.e. at the
last measured point more than 63% of the mass of DDO210 is dark.
A similar procedure was also tried using a dark matter halo of the NFW type.
Keeping
as a free parameter in the fit gave unphysical results, hence,
it was kept fixed to a more likely value (viz.
). We found that an
NFW halo provides a good fit to the data, for a wide range of values of v200
and c. The range of parameters which provide acceptable fits are (
km s-1,
)
to (
km s-1,
). As an illustration we show in
Fig. 10 the best fit rotation curve for an NFW halo, using
km s-1. As can be seen clearly, the NFW halo also provides
a good fit to the data. However, the best fit values of the concentration parameter c,
at any given v200 was found to be consistently smaller than the value predicted by
numerical simulations for the
CDM universe (Marchesini et al. 2002).
As seen above, both isothermal and NFW halo provide a good fit to
the observed kinematics of DDO210. Profiles steeper than NFW have
also been proposed by some N-body simulations (e.g. Moore et al. 1999).
In order to check whether such steep profiles are also consistent
with the data, mass models were fit using a broader family
of density profiles, viz.
![]() |
(6) |
![]() |
Figure 11:
The best fit MOND rotation curve (solid line) to the
"asymmetric drift'' corrected rotation velocities (points).
Also shown in the figure is the best fit total rotation curve for a dark
halo with
![]() |
Open with DEXTER |
So far we have assumed that the discrepancy between the dynamical mass,
estimated from the "asymmetric drift'' corrected rotation curve, and
the luminous mass in DDO210 can be explained by considering
an extended dark halo around the galaxy. An alternate
explanation for this discrepancy is that the dynamics become non-Newtonian
in the limit of low acceleration, i.e. the MOND theory (Milgrom 1983).
We have also tried fitting the rotation curve using the MOND prescription.
In this fit,
and a0 (the critical acceleration
parameter) were taken as free parameters. Figure 11
shows the best fit MOND rotation curve. As can be seen, the
MOND rotation curve agrees well with the observed curve in the
inner regions of the galaxy, while it underestimates the
observed curve (by up to 2.0 km s-1) in the outer regions.
The best fit model gave
of
and a0
of
(in units of 10-8 cm s-2) with reduced
.
The best fit value of
agrees with the value
expected from the observed colours in DDO210. Also, the best fit
value of a0 is consistent with the mean value of a0
found for other, brighter galaxies (Kent 1987; see also Milgrom 1988).
DDO210 is the faintest known dwarf irregular galaxy for which the
MOND prescription provides a reasonably good fit to the observed kinematics.
Recall that all the above mass models have been derived by assigning an inclination of 30 degrees (obtained from the outer HI contours, as discuss in Sect. 3.1). In order to estimate the effect of using an erroneous inclination on the derived halo parameters, mass modeling was also tried with two other values of inclination viz. 60 degrees (i.e. that estimated from the optical isophotes) and 45 degrees (a value between the optical and HI inclination).
The best fit mass model for a constant density halo, using an
inclination of 60 degrees, gave
of
and
pc-3 with reduced
.
On the other hand, an inclination of 45 degrees gave the best fit model
with
of
and
pc-3
with reduced
.
Recall that an inclination of 30 degrees
gave the best fit with
of
and
pc-3 with
reduced
.
As can be seen, the central halo density is
relatively insensitive to the assumed inclination. However, the best
fit
changes significantly with the assumed inclination.
For the NFW halo fit, keeping
as a free parameter in the
fit gave unphysical results, hence, it was kept fixed to a value of 0.5, as suggested by the observed colours in the galaxy. The best fit NFW model with an inclination of 60 degrees gave a reduced
,
while for 45 degrees a reduced
was obtained from the best fit.
As can be seen, the NFW halo provides a poor fit to the data
for higher values of inclination (for comparison, an inclination
of 30 degrees gave the best fit NFW model with a reduced
). Hence, an NFW halo can be ruled out for DDO210,
if the inclination of the galaxy is higher than 30 degrees.
As discussed in Sect. 3.2, DDO210 shows signatures of twisting of
the kinematical major axis as well as of kinematical lopsidedness. This may be related
to the lopsidedness seen in the optical disk; the bulk of the optical emission (i.e.
the "bright component'' discussed in Sect. 3.1) lies in the eastern
half of the HI disk. A similar pattern of kinematical lopsidedness and
lopsidedness in the optical disk is also seen in other galaxies (e.g. M101,
Bosma et al. 1981). To quantify the kinematical lopsidedness in the galaxy, rotation
curves were derived at various spatial resolutions separately for the approaching and
receding halves of the galaxy. Figure 12 shows the hybrid rotation curves
for the approaching and receding sides as well as for the galaxy as a whole. The rotation
curves obtained from the two lowest resolution velocity fields
(44
and 29
)
matched within the errorbars
with the one derived from the whole galaxy. On the other hand, for the higher resolution
data, the rotation curves were found to be different (at
2.0 km s-1 level)
from the rotation curve derived from the whole galaxy. While part of this difference
may be due to the kinematical lopsidedness, it is also possible that part of it
arises as a result of the difference in the sampling of the velocity field between the
two sides of the galaxy. Because of the distorted morphology of the HI distribution, the
distribution of data points available to estimate rotation velocity are different for
the approaching and receding halves. This effect gets more important at the higher
spatial resolutions and could also contribute to the observed differences in the
rotation curves. Further, as can be seen in Fig. 12 the
difference between the rotation curve derived using the whole galaxy and the rotation curves
derived separately for the two halves are small compared to both the error bars on
the average curve as well as the magnitude of the asymmetric drift correction. Ignoring
the kinematical lopsidedness for the mass modeling is hence probably reasonable.
![]() |
Figure 12: Filled triangles show the rotation velocities derived from the whole galaxy while circles and squares represent the rotation velocities derived from the receding and the approaching side respectively. |
Open with DEXTER |
The derived rotation curve can also be used to put limits on the dynamical ages of the
density enhancements in the HI distribution. The derived rotation curve for the galaxy
(see Fig. 7) is flat from a galactocentric radii of 0.2 kpc to 0.5 kpc.
The time scales required for one rotation in the inner regions of the galaxy is 160 Myr, while the rotation period at the edge of the galaxy is
400 Myr.
Hence, this differential rotation will wind up these density enhancements on a time
scale of a few 100 Myrs. These density enhancements are hence likely to be recently
developed perturbations in the HI disk. The origin of these perturbations is unknown,
and it also surprising that despite their presence and relative dynamical youth there
is not much evidence for star formation in the galaxy.
To conclude, we have presented deep, high velocity resolution (1.6 km s-1)
GMRT HI 21cm synthesis images for the faint (
)
dwarf galaxy DDO210. We find that the HI distribution in the galaxy is not axi-symmetric, but shows
density enhancements in the eastern and southern parts of the galaxy. The velocity field
of the galaxy is however regular, and shows a systematic large scale pattern, consistent
with rotational motion. The high velocity resolution (
1.6 km s-1) and
sensitivity of our observations were crucial for determining the true velocity field of
the galaxy. The inclination angle for DDO210 is poorly known. From the observed
velocity field, we derive a rotation curve for DDO210 by assigning an inclination derived
from outer HI contours to the whole galaxy. The derived peak rotational velocity is
comparable to the random motions in the HI gas. After correcting for the dynamical
support provided by the random motion, we find that the rotation curve of DDO210 can
be well fit with either a modified isothermal halo (with a central density
pc-3) or an NFW halo. We find that for a constant
density halo, the central halo density is relatively insensitive to the assumed
value of inclination. However, the best fit
changes
significantly with the assumed inclination. On the other hand, an NFW halo can be
ruled out for DDO210, if the inclination of the galaxy is higher than
30 degrees.
Mass models are also derived for a family of density profiles steeper than NFW; we find that
density profiles with inner slopes steeper than
1.2 provide a poor fit to the data.
As an alternative to the dark matter hypothesis, we have derived MOND
fits to the rotation curve. We find that the rotation curve predicted by MOND
provides an acceptable fit to the observed rotation curve. Further, the value of the
critical acceleration a0 of
cm s-2 is consistent
with the earlier determinations of the value of this parameter.
Acknowledgements
The observations presented in this paper would not have been possible without the many years of dedicated effort put in by the GMRT staff in order to build the telescope. The GMRT is operated by the National Centerer for Radio Astrophysics of the Tata Institute of Fundamental Research. We are grateful to Dr E. Tolstoy for providing a reduced VLT image of DDO210.