The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
A post-merger enhancement only in star-forming Type 2 Seyfert galaxies: the deep learning view
M S Avirett-Mackenzie, C Villforth, M Huertas-Company, S Wuyts, D M Alexander, S Bonoli, A Lapi, I E Lopez, C Ramos Almeida and F Shankar Monthly Notices of the Royal Astronomical Society 528(4) 6915 (2024) https://doi.org/10.1093/mnras/stae183
Advanced classification of hot subdwarf binaries using artificial intelligence techniques and Gaia DR3 data
C. Viscasillas Vázquez, E. Solano, A. Ulla, M. Ambrosch, M. A. Álvarez, M. Manteiga, L. Magrini, R. Santoveña-Gómez, C. Dafonte, E. Pérez-Fernández, A. Aller, A. Drazdauskas, Š. Mikolaitis and C. Rodrigo Astronomy & Astrophysics 691 A223 (2024) https://doi.org/10.1051/0004-6361/202451247
Inclination angles for Be stars determined using machine learning
Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys
Mike Walmsley, Tobias Géron, Sandor Kruk, Anna M M Scaife, Chris Lintott, Karen L Masters, James M Dawson, Hugh Dickinson, Lucy Fortson, Izzy L Garland, Kameswara Mantha, David O’Ryan, Jürgen Popp, Brooke Simmons, Elisabeth M Baeten and Christine Macmillan Monthly Notices of the Royal Astronomical Society 526(3) 4768 (2023) https://doi.org/10.1093/mnras/stad2919
Machine Learning Detects Multiplicity of the First Stars in Stellar Archaeology Data
Tilman Hartwig, Miho N. Ishigaki, Chiaki Kobayashi, Nozomu Tominaga and Ken’ichi Nomoto The Astrophysical Journal 946(1) 20 (2023) https://doi.org/10.3847/1538-4357/acbcc6
A quantum-enhanced support vector machine for galaxy classification
Mohammad Hassan Hassanshahi, Marcin Jastrzebski, Sarah Malik and Ofer Lahav RAS Techniques and Instruments 2(1) 752 (2023) https://doi.org/10.1093/rasti/rzad052
Similar Image Retrieval using Autoencoder. I. Automatic Morphology Classification of Galaxies
Eunsuk Seo, Suk Kim, Youngdae Lee, Sang-Il Han, Hak-Sub Kim, Soo-Chang Rey and Hyunmi Song Publications of the Astronomical Society of the Pacific 135(1050) 084101 (2023) https://doi.org/10.1088/1538-3873/ace851
Automatic Classification of Galaxy Morphology: A Rotationally-invariant Supervised Machine-learning Method Based on the Unsupervised Machine-learning Data Set
GuanWen Fang, Shuo Ba, Yizhou Gu, Zesen Lin, Yuejie Hou, Chenxin Qin, Chichun Zhou, Jun Xu, Yao Dai, Jie Song and Xu Kong The Astronomical Journal 165(2) 35 (2023) https://doi.org/10.3847/1538-3881/aca1a6
Searching for Barium Stars from the LAMOST Spectra Using the Machine-learning Method: I
Fengyue Guo, Zhongding Cheng, Xiaoming Kong, Yatao Zhang, Yude Bu, Zhenping Yi, Bing Du and Jingchang Pan The Astronomical Journal 165(2) 40 (2023) https://doi.org/10.3847/1538-3881/aca323
The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys
Pattern Recognition Using SVM for the Classification of the Size and Distance of Trans-Neptunian Objects Detected by Serendipitous Stellar Occultations
B. Hernández-Valencia, J. H. Castro-Chacón, M. Reyes-Ruiz, et al. Publications of the Astronomical Society of the Pacific 134(1038) 084501 (2022) https://doi.org/10.1088/1538-3873/ac7f5c
Effect of AGN on the morphological properties of their host galaxies in the local Universe
Tilahun Getachew-Woreta, Mirjana Pović, Josefa Masegosa, et al. Monthly Notices of the Royal Astronomical Society 514(1) 607 (2022) https://doi.org/10.1093/mnras/stac851
Lessons learned from the two largest Galaxy morphological classification catalogues built by convolutional neural networks
T-Y Cheng, H Domínguez Sánchez, J Vega-Ferrero, et al. Monthly Notices of the Royal Astronomical Society 518(2) 2794 (2022) https://doi.org/10.1093/mnras/stac3228
The Tully-Fisher relation in dense groups at z ∼ 0.7 in the MAGIC survey
Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks
Ting-Yun Cheng, Christopher J Conselice, Alfonso Aragón-Salamanca, et al. Monthly Notices of the Royal Astronomical Society 507(3) 4425 (2021) https://doi.org/10.1093/mnras/stab2142
GLACE survey: Galaxy activity in ZwCl0024+1652 cluster from strong optical emission lines
Zeleke Beyoro-Amado, Miguel Sánchez-Portal, Ángel Bongiovanni, et al. Monthly Notices of the Royal Astronomical Society 501(2) 2430 (2021) https://doi.org/10.1093/mnras/staa3812
Quantifying Non-parametric Structure of High-redshift Galaxies with Deep Learning
GalaxyNet: connecting galaxies and dark matter haloes with deep neural networks and reinforcement learning in large volumes
Benjamin P Moster, Thorsten Naab, Magnus Lindström and Joseph A O’Leary Monthly Notices of the Royal Astronomical Society 507(2) 2115 (2021) https://doi.org/10.1093/mnras/stab1449
Optimizing automatic morphological classification of galaxies with machine learning and deep learning using Dark Energy Survey imaging
Ting-Yun Cheng, Christopher J Conselice, Alfonso Aragón-Salamanca, et al. Monthly Notices of the Royal Astronomical Society 493(3) 4209 (2020) https://doi.org/10.1093/mnras/staa501
Reliable photometric membership (RPM) of galaxies in clusters – I. A machine learning method and its performance in the local universe
Predicting star formation properties of galaxies using deep learning
Shraddha Surana, Yogesh Wadadekar, Omkar Bait and Hrushikesh Bhosale Monthly Notices of the Royal Astronomical Society 493(4) 4808 (2020) https://doi.org/10.1093/mnras/staa537
Galaxy classification: deep learning on the OTELO and COSMOS databases
Large-scale structures in the ΛCDM Universe: network analysis and machine learning
Noam I Libeskind, Yurij Holovatch, Bohdan Novosyadlyj and Maksym Tsizh Monthly Notices of the Royal Astronomical Society 495(1) 1311 (2020) https://doi.org/10.1093/mnras/staa1030
Multiband Galaxy Morphologies for CLASH: A Convolutional Neural Network Transferred from CANDELS
M. Pérez-Carrasco, G. Cabrera-Vives, M. Martinez-Marin, et al. Publications of the Astronomical Society of the Pacific 131(1004) 108002 (2019) https://doi.org/10.1088/1538-3873/aaeeb4
Galaxies image classification using artificial bee colony based on orthogonal Gegenbauer moments
A morphological study of galaxies in ZwCl0024+1652, a galaxy cluster at redshift z ∼ 0.4
Zeleke Beyoro Amado, Mirjana Pović, Miguel Sánchez-Portal, et al. Monthly Notices of the Royal Astronomical Society 485(2) 1528 (2019) https://doi.org/10.1093/mnras/stz427
Reproducible k-means clustering in galaxy feature data from the GAMA survey
Sebastian Turner, Lee S Kelvin, Ivan K Baldry, et al. Monthly Notices of the Royal Astronomical Society 482(1) 126 (2019) https://doi.org/10.1093/mnras/sty2690
Star formation in far-IR AGN and non-AGN galaxies in the green valley – II. Morphological analysis
Antoine Mahoro, Mirjana Pović, Pheneas Nkundabakura, Beatrice Nyiransengiyumva and Petri Väisänen Monthly Notices of the Royal Astronomical Society 485(1) 452 (2019) https://doi.org/10.1093/mnras/stz434
What shapes a galaxy? – unraveling the role of mass, environment, and star formation in forming galactic structure
Asa F L Bluck, Connor Bottrell, Hossen Teimoorinia, et al. Monthly Notices of the Royal Astronomical Society 485(1) 666 (2019) https://doi.org/10.1093/mnras/stz363
Searching for Hot Subdwarf Stars from the LAMOST Spectra. III. Classification of Hot Subdwarf Stars in the Fourth Data Release of LAMOST Using a Deep Learning Method
A machine-learning approach for identifying the counterparts of submillimetre galaxies and applications to the GOODS-North field
Ruihan Henry Liu, Ryley Hill, Douglas Scott, et al. Monthly Notices of the Royal Astronomical Society 489(2) 1770 (2019) https://doi.org/10.1093/mnras/stz2228
Effect of richness on AGN and star formation activities in SDSS galaxy groups
Feng Li, Yi-Zhou Gu, Qi-Rong Yuan, et al. Monthly Notices of the Royal Astronomical Society 484(3) 3806 (2019) https://doi.org/10.1093/mnras/stz267
An automatic taxonomy of galaxy morphology using unsupervised machine learning
Alex Hocking, James E. Geach, Yi Sun and Neil Davey Monthly Notices of the Royal Astronomical Society 473(1) 1108 (2018) https://doi.org/10.1093/mnras/stx2351
Integrating human and machine intelligence in galaxy morphology classification tasks
Melanie R Beck, Claudia Scarlata, Lucy F Fortson, et al. Monthly Notices of the Royal Astronomical Society 476(4) 5516 (2018) https://doi.org/10.1093/mnras/sty503
The impact of redshift on galaxy morphometric classification: case studies for SDSS, DES, LSST and HST with morfometryka
Leonardo de Albernaz Ferreira and Fabricio Ferrari Monthly Notices of the Royal Astronomical Society 473(2) 2701 (2018) https://doi.org/10.1093/mnras/stx2266
A catalogue of structural and morphological measurements for DES Y1
F Tarsitano, W G Hartley, A Amara, et al. Monthly Notices of the Royal Astronomical Society 481(2) 2018 (2018) https://doi.org/10.1093/mnras/sty1970
Bayesian bulge–disc decomposition of galaxy images
J J Argyle, J Méndez-Abreu, V Wild and D J Mortlock Monthly Notices of the Royal Astronomical Society 479(3) 3076 (2018) https://doi.org/10.1093/mnras/sty1691
Support vector machine classification of strong gravitational lenses
P. Hartley, R. Flamary, N. Jackson, A. S. Tagore and R. B. Metcalf Monthly Notices of the Royal Astronomical Society 471(3) 3378 (2017) https://doi.org/10.1093/mnras/stx1733
Star formation of far-IR AGN and non-AGN galaxies in the green valley: possible implication of AGN positive feedback
Antoine Mahoro, Mirjana Pović and Pheneas Nkundabakura Monthly Notices of the Royal Astronomical Society 471(3) 3226 (2017) https://doi.org/10.1093/mnras/stx1762
Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS
The Extremely Luminous Quasar Survey in the SDSS Footprint. I. Infrared-based Candidate Selection
Jan-Torge Schindler, Xiaohui Fan, Ian D. McGreer, Qian Yang, Jin Wu, Linhua Jiang and Richard Green The Astrophysical Journal 851(1) 13 (2017) https://doi.org/10.3847/1538-4357/aa9929
The morphological transformation of red sequence galaxies in clusters since z ∼ 1
Classification of large-scale stellar spectra based on the non-linearly assembling learning machine
Zhongbao Liu, Lipeng Song and Wenjuan Zhao Monthly Notices of the Royal Astronomical Society 455(4) 4289 (2016) https://doi.org/10.1093/mnras/stv2600
ASTErIsM: application of topometric clustering algorithms in automatic galaxy detection and classification
A. Tramacere, D. Paraficz, P. Dubath, J.-P. Kneib and F. Courbin Monthly Notices of the Royal Astronomical Society 463(3) 2939 (2016) https://doi.org/10.1093/mnras/stw2103
Machine-learning identification of galaxies in the WISE × SuperCOSMOS all-sky catalogue
Gemini multiconjugate adaptive optics system review – II. Commissioning, operation and overall performance
Benoit Neichel, François Rigaut, Fabrice Vidal, et al. Monthly Notices of the Royal Astronomical Society 440(2) 1002 (2014) https://doi.org/10.1093/mnras/stu403
Galaxy size trends as a consequence of cosmology
M. J. Stringer, F. Shankar, G. S. Novak, et al. Monthly Notices of the Royal Astronomical Society 441(2) 1570 (2014) https://doi.org/10.1093/mnras/stu645
The morphological transformation of red sequence galaxies in the distant cluster XMMU J1229+0151
P. Cerulo, W. J. Couch, C. Lidman, et al. Monthly Notices of the Royal Astronomical Society 439(3) 2790 (2014) https://doi.org/10.1093/mnras/stu135
Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 < z < 1.5
L. Delaye, M. Huertas-Company, S. Mei, et al. Monthly Notices of the Royal Astronomical Society 441(1) 203 (2014) https://doi.org/10.1093/mnras/stu496
The evolution of the mass–size relation for early-type galaxies from z ∼ 1 to the present: dependence on environment, mass range and detailed morphology
M. Huertas-Company, S. Mei, F. Shankar, et al. Monthly Notices of the Royal Astronomical Society 428(2) 1715 (2013) https://doi.org/10.1093/mnras/sts150
The merger rates and sizes of galaxies across the peak epoch of star formation from the HiZELS survey
John P. Stott, David Sobral, Ian Smail, et al. Monthly Notices of the Royal Astronomical Society 430(2) 1158 (2013) https://doi.org/10.1093/mnras/sts684
X‐ray luminosity functions of different morphological and X‐ray type AGN populations
M. Pović, A.M. Pérez García, M. Sánchez‐Portal, A. Bongiovanni, J. Cepa, M. Fernández Lorenzo, M.A. Lara‐López, J. Gallego, A. Ederoclite, I. Márquez, J. Masegosa, E. Alfaro, H. Castañeda, J.I. González‐Serrano and J.J. González Astronomische Nachrichten 334(3) 288 (2013) https://doi.org/10.1002/asna.201211840
The VIMOS Public Extragalactic Redshift Survey (VIPERS)
The ALHAMBRA survey: reliable morphological catalogue of 22 051 early- and late-type galaxies
M. Pović, M. Huertas-Company, J. A. L. Aguerri, et al. Monthly Notices of the Royal Astronomical Society 435(4) 3444 (2013) https://doi.org/10.1093/mnras/stt1538
PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES ATz⩾ 6. II. MORPHOLOGY OF THE REST-FRAME UV CONTINUUM AND Lyα EMISSION
Early-type galaxies have been the predominant morphological class for massive galaxies since only z ∼ 1
Fernando Buitrago, Ignacio Trujillo, Christopher J. Conselice and Boris Häußler Monthly Notices of the Royal Astronomical Society 428(2) 1460 (2013) https://doi.org/10.1093/mnras/sts124
Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey
Kyle W. Willett, Chris J. Lintott, Steven P. Bamford, et al. Monthly Notices of the Royal Astronomical Society 435(4) 2835 (2013) https://doi.org/10.1093/mnras/stt1458
Non-parametric cell-based photometric proxies for galaxy morphology: methodology and application to the morphologically defined star formation–stellar mass relation of spiral galaxies in the local universe
M. W. Grootes, R. J. Tuffs, C. C. Popescu, et al. Monthly Notices of the Royal Astronomical Society 437(4) 3883 (2013) https://doi.org/10.1093/mnras/stt2184
A Virtual Observatory Census to Address Dwarfs Origins (AVOCADO)
M. Pović, M. Sánchez-Portal, A. M. Pérez García, A. Bongiovanni and J. Cepa Proceedings of the International Astronomical Union 8(S290) 295 (2012) https://doi.org/10.1017/S174392131202008X
Morphology and color indices of galaxies in Pairs: Criteria for the classification of galaxies
J. Méndez-Abreu, R. Sánchez-Janssen, J. A. L. Aguerri, E. M. Corsini and S. Zarattini The Astrophysical Journal 761(1) L6 (2012) https://doi.org/10.1088/2041-8205/761/1/L6
QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE