Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Fast emulation of cosmological density fields based on dimensionality reduction and supervised machine learning

Miguel Conceição, Alberto Krone-Martins, Antonio da Silva and Ángeles Moliné
Astronomy & Astrophysics 681 A123 (2024)
https://doi.org/10.1051/0004-6361/202346734

A post-merger enhancement only in star-forming Type 2 Seyfert galaxies: the deep learning view

M S Avirett-Mackenzie, C Villforth, M Huertas-Company, S Wuyts, D M Alexander, S Bonoli, A Lapi, I E Lopez, C Ramos Almeida and F Shankar
Monthly Notices of the Royal Astronomical Society 528 (4) 6915 (2024)
https://doi.org/10.1093/mnras/stae183

Advanced classification of hot subdwarf binaries using artificial intelligence techniques and Gaia DR3 data

C. Viscasillas Vázquez, E. Solano, A. Ulla, M. Ambrosch, M. A. Álvarez, M. Manteiga, L. Magrini, R. Santoveña-Gómez, C. Dafonte, E. Pérez-Fernández, A. Aller, A. Drazdauskas, Š. Mikolaitis and C. Rodrigo
Astronomy & Astrophysics 691 A223 (2024)
https://doi.org/10.1051/0004-6361/202451247

Inclination angles for Be stars determined using machine learning

B D Lailey and T A A Sigut
Monthly Notices of the Royal Astronomical Society 527 (2) 2585 (2023)
https://doi.org/10.1093/mnras/stad3321

Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys

Mike Walmsley, Tobias Géron, Sandor Kruk, Anna M M Scaife, Chris Lintott, Karen L Masters, James M Dawson, Hugh Dickinson, Lucy Fortson, Izzy L Garland, Kameswara Mantha, David O’Ryan, Jürgen Popp, Brooke Simmons, Elisabeth M Baeten and Christine Macmillan
Monthly Notices of the Royal Astronomical Society 526 (3) 4768 (2023)
https://doi.org/10.1093/mnras/stad2919

Machine Learning Detects Multiplicity of the First Stars in Stellar Archaeology Data

Tilman Hartwig, Miho N. Ishigaki, Chiaki Kobayashi, Nozomu Tominaga and Ken’ichi Nomoto
The Astrophysical Journal 946 (1) 20 (2023)
https://doi.org/10.3847/1538-4357/acbcc6

A quantum-enhanced support vector machine for galaxy classification

Mohammad Hassan Hassanshahi, Marcin Jastrzebski, Sarah Malik and Ofer Lahav
RAS Techniques and Instruments 2 (1) 752 (2023)
https://doi.org/10.1093/rasti/rzad052

Similar Image Retrieval using Autoencoder. I. Automatic Morphology Classification of Galaxies

Eunsuk Seo, Suk Kim, Youngdae Lee, Sang-Il Han, Hak-Sub Kim, Soo-Chang Rey and Hyunmi Song
Publications of the Astronomical Society of the Pacific 135 (1050) 084101 (2023)
https://doi.org/10.1088/1538-3873/ace851

Automatic Classification of Galaxy Morphology: A Rotationally-invariant Supervised Machine-learning Method Based on the Unsupervised Machine-learning Data Set

GuanWen Fang, Shuo Ba, Yizhou Gu, Zesen Lin, Yuejie Hou, Chenxin Qin, Chichun Zhou, Jun Xu, Yao Dai, Jie Song and Xu Kong
The Astronomical Journal 165 (2) 35 (2023)
https://doi.org/10.3847/1538-3881/aca1a6

Searching for Barium Stars from the LAMOST Spectra Using the Machine-learning Method: I

Fengyue Guo, Zhongding Cheng, Xiaoming Kong, Yatao Zhang, Yude Bu, Zhenping Yi, Bing Du and Jingchang Pan
The Astronomical Journal 165 (2) 40 (2023)
https://doi.org/10.3847/1538-3881/aca323

The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys

M. Huertas-Company and F. Lanusse
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2022.55

Automatic Morphological Classification of Galaxies: Convolutional Autoencoder and Bagging-based Multiclustering Model

ChiChun Zhou, Yizhou Gu, Guanwen Fang and Zesen Lin
The Astronomical Journal 163 (2) 86 (2022)
https://doi.org/10.3847/1538-3881/ac4245

Pattern Recognition Using SVM for the Classification of the Size and Distance of Trans-Neptunian Objects Detected by Serendipitous Stellar Occultations

B. Hernández-Valencia, J. H. Castro-Chacón, M. Reyes-Ruiz, et al.
Publications of the Astronomical Society of the Pacific 134 (1038) 084501 (2022)
https://doi.org/10.1088/1538-3873/ac7f5c

Effect of AGN on the morphological properties of their host galaxies in the local Universe

Tilahun Getachew-Woreta, Mirjana Pović, Josefa Masegosa, et al.
Monthly Notices of the Royal Astronomical Society 514 (1) 607 (2022)
https://doi.org/10.1093/mnras/stac851

Lessons learned from the two largest Galaxy morphological classification catalogues built by convolutional neural networks

T-Y Cheng, H Domínguez Sánchez, J Vega-Ferrero, et al.
Monthly Notices of the Royal Astronomical Society 518 (2) 2794 (2022)
https://doi.org/10.1093/mnras/stac3228

The Tully-Fisher relation in dense groups at z ∼ 0.7 in the MAGIC survey

Valentina Abril-Melgarejo, Benoît Epinat, Wilfried Mercier, et al.
Astronomy & Astrophysics 647 A152 (2021)
https://doi.org/10.1051/0004-6361/202038818

Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks

Ting-Yun Cheng, Christopher J Conselice, Alfonso Aragón-Salamanca, et al.
Monthly Notices of the Royal Astronomical Society 507 (3) 4425 (2021)
https://doi.org/10.1093/mnras/stab2142

GLACE survey: Galaxy activity in ZwCl0024+1652 cluster from strong optical emission lines

Zeleke Beyoro-Amado, Miguel Sánchez-Portal, Ángel Bongiovanni, et al.
Monthly Notices of the Royal Astronomical Society 501 (2) 2430 (2021)
https://doi.org/10.1093/mnras/staa3812

Quantifying Non-parametric Structure of High-redshift Galaxies with Deep Learning

C. Tohill, L. Ferreira, C. J. Conselice, S. P. Bamford and F. Ferrari
The Astrophysical Journal 916 (1) 4 (2021)
https://doi.org/10.3847/1538-4357/ac033c

Nonsequential neural network for simultaneous, consistent classification, and photometric redshifts of OTELO galaxies

J. A. de Diego, J. Nadolny, Á. Bongiovanni, et al.
Astronomy & Astrophysics 655 A56 (2021)
https://doi.org/10.1051/0004-6361/202141360

The OTELO survey as a morphological probe. Last ten Gyr of galaxy evolution

Jakub Nadolny, Ángel Bongiovanni, Jordi Cepa, et al.
Astronomy & Astrophysics 647 A89 (2021)
https://doi.org/10.1051/0004-6361/202037861

Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1

C R Bom, A Cortesi, G Lucatelli, et al.
Monthly Notices of the Royal Astronomical Society 507 (2) 1937 (2021)
https://doi.org/10.1093/mnras/stab1981

GalaxyNet: connecting galaxies and dark matter haloes with deep neural networks and reinforcement learning in large volumes

Benjamin P Moster, Thorsten Naab, Magnus Lindström and Joseph A O’Leary
Monthly Notices of the Royal Astronomical Society 507 (2) 2115 (2021)
https://doi.org/10.1093/mnras/stab1449

Optimizing automatic morphological classification of galaxies with machine learning and deep learning using Dark Energy Survey imaging

Ting-Yun Cheng, Christopher J Conselice, Alfonso Aragón-Salamanca, et al.
Monthly Notices of the Royal Astronomical Society 493 (3) 4209 (2020)
https://doi.org/10.1093/mnras/staa501

Reliable photometric membership (RPM) of galaxies in clusters – I. A machine learning method and its performance in the local universe

Paulo A A Lopes and André L B Ribeiro
Monthly Notices of the Royal Astronomical Society 493 (3) 3429 (2020)
https://doi.org/10.1093/mnras/staa486

Predicting star formation properties of galaxies using deep learning

Shraddha Surana, Yogesh Wadadekar, Omkar Bait and Hrushikesh Bhosale
Monthly Notices of the Royal Astronomical Society 493 (4) 4808 (2020)
https://doi.org/10.1093/mnras/staa537

Galaxy classification: deep learning on the OTELO and COSMOS databases

José A. de Diego, Jakub Nadolny, Ángel Bongiovanni, et al.
Astronomy & Astrophysics 638 A134 (2020)
https://doi.org/10.1051/0004-6361/202037697

Galaxy Image Classification Based on Citizen Science Data: A Comparative Study

Manuel Jimenez, Mercedes Torres Torres, Robert John and Isaac Triguero
IEEE Access 8 47232 (2020)
https://doi.org/10.1109/ACCESS.2020.2978804

Large-scale structures in the ΛCDM Universe: network analysis and machine learning

Noam I Libeskind, Yurij Holovatch, Bohdan Novosyadlyj and Maksym Tsizh
Monthly Notices of the Royal Astronomical Society 495 (1) 1311 (2020)
https://doi.org/10.1093/mnras/staa1030

Multiband Galaxy Morphologies for CLASH: A Convolutional Neural Network Transferred from CANDELS

M. Pérez-Carrasco, G. Cabrera-Vives, M. Martinez-Marin, et al.
Publications of the Astronomical Society of the Pacific 131 (1004) 108002 (2019)
https://doi.org/10.1088/1538-3873/aaeeb4

Galaxies image classification using artificial bee colony based on orthogonal Gegenbauer moments

Mohamed Abd Elaziz, Khalid M. Hosny and I. M. Selim
Soft Computing 23 (19) 9573 (2019)
https://doi.org/10.1007/s00500-018-3521-2

A morphological study of galaxies in ZwCl0024+1652, a galaxy cluster at redshift z ∼ 0.4

Zeleke Beyoro Amado, Mirjana Pović, Miguel Sánchez-Portal, et al.
Monthly Notices of the Royal Astronomical Society 485 (2) 1528 (2019)
https://doi.org/10.1093/mnras/stz427

Reproducible k-means clustering in galaxy feature data from the GAMA survey

Sebastian Turner, Lee S Kelvin, Ivan K Baldry, et al.
Monthly Notices of the Royal Astronomical Society 482 (1) 126 (2019)
https://doi.org/10.1093/mnras/sty2690

Star formation in far-IR AGN and non-AGN galaxies in the green valley – II. Morphological analysis

Antoine Mahoro, Mirjana Pović, Pheneas Nkundabakura, Beatrice Nyiransengiyumva and Petri Väisänen
Monthly Notices of the Royal Astronomical Society 485 (1) 452 (2019)
https://doi.org/10.1093/mnras/stz434

What shapes a galaxy? – unraveling the role of mass, environment, and star formation in forming galactic structure

Asa F L Bluck, Connor Bottrell, Hossen Teimoorinia, et al.
Monthly Notices of the Royal Astronomical Society 485 (1) 666 (2019)
https://doi.org/10.1093/mnras/stz363

Searching for Hot Subdwarf Stars from the LAMOST Spectra. III. Classification of Hot Subdwarf Stars in the Fourth Data Release of LAMOST Using a Deep Learning Method

Yude Bu, Jingjing Zeng, Zhenxin Lei and Zhenping Yi
The Astrophysical Journal 886 (2) 128 (2019)
https://doi.org/10.3847/1538-4357/ab4c47

Machine Learning Applied to Star–Galaxy–QSO Classification and Stellar Effective Temperature Regression

Yu Bai, JiFeng Liu, Song Wang and Fan Yang
The Astronomical Journal 157 (1) 9 (2019)
https://doi.org/10.3847/1538-3881/aaf009

A machine-learning approach for identifying the counterparts of submillimetre galaxies and applications to the GOODS-North field

Ruihan Henry Liu, Ryley Hill, Douglas Scott, et al.
Monthly Notices of the Royal Astronomical Society 489 (2) 1770 (2019)
https://doi.org/10.1093/mnras/stz2228

Effect of richness on AGN and star formation activities in SDSS galaxy groups

Feng Li, Yi-Zhou Gu, Qi-Rong Yuan, et al.
Monthly Notices of the Royal Astronomical Society 484 (3) 3806 (2019)
https://doi.org/10.1093/mnras/stz267

An automatic taxonomy of galaxy morphology using unsupervised machine learning

Alex Hocking, James E. Geach, Yi Sun and Neil Davey
Monthly Notices of the Royal Astronomical Society 473 (1) 1108 (2018)
https://doi.org/10.1093/mnras/stx2351

Integrating human and machine intelligence in galaxy morphology classification tasks

Melanie R Beck, Claudia Scarlata, Lucy F Fortson, et al.
Monthly Notices of the Royal Astronomical Society 476 (4) 5516 (2018)
https://doi.org/10.1093/mnras/sty503

The impact of redshift on galaxy morphometric classification: case studies for SDSS, DES, LSST and HST with morfometryka

Leonardo de Albernaz Ferreira and Fabricio Ferrari
Monthly Notices of the Royal Astronomical Society 473 (2) 2701 (2018)
https://doi.org/10.1093/mnras/stx2266

A catalogue of structural and morphological measurements for DES Y1

F Tarsitano, W G Hartley, A Amara, et al.
Monthly Notices of the Royal Astronomical Society 481 (2) 2018 (2018)
https://doi.org/10.1093/mnras/sty1970

Bayesian bulge–disc decomposition of galaxy images

J J Argyle, J Méndez-Abreu, V Wild and D J Mortlock
Monthly Notices of the Royal Astronomical Society 479 (3) 3076 (2018)
https://doi.org/10.1093/mnras/sty1691

Support vector machine classification of strong gravitational lenses

P. Hartley, R. Flamary, N. Jackson, A. S. Tagore and R. B. Metcalf
Monthly Notices of the Royal Astronomical Society 471 (3) 3378 (2017)
https://doi.org/10.1093/mnras/stx1733

Star formation of far-IR AGN and non-AGN galaxies in the green valley: possible implication of AGN positive feedback

Antoine Mahoro, Mirjana Pović and Pheneas Nkundabakura
Monthly Notices of the Royal Astronomical Society 471 (3) 3226 (2017)
https://doi.org/10.1093/mnras/stx1762

Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS

B. D. Simmons, Chris Lintott, Kyle W. Willett, et al.
Monthly Notices of the Royal Astronomical Society 464 (4) 4420 (2017)
https://doi.org/10.1093/mnras/stw2587

The Extremely Luminous Quasar Survey in the SDSS Footprint. I. Infrared-based Candidate Selection

Jan-Torge Schindler, Xiaohui Fan, Ian D. McGreer, Qian Yang, Jin Wu, Linhua Jiang and Richard Green
The Astrophysical Journal 851 (1) 13 (2017)
https://doi.org/10.3847/1538-4357/aa9929

The morphological transformation of red sequence galaxies in clusters since z ∼ 1

P. Cerulo, W. J. Couch, C. Lidman, et al.
Monthly Notices of the Royal Astronomical Society 472 (1) 254 (2017)
https://doi.org/10.1093/mnras/stx1687

Classification of large-scale stellar spectra based on the non-linearly assembling learning machine

Zhongbao Liu, Lipeng Song and Wenjuan Zhao
Monthly Notices of the Royal Astronomical Society 455 (4) 4289 (2016)
https://doi.org/10.1093/mnras/stv2600

ASTErIsM: application of topometric clustering algorithms in automatic galaxy detection and classification

A. Tramacere, D. Paraficz, P. Dubath, J.-P. Kneib and F. Courbin
Monthly Notices of the Royal Astronomical Society 463 (3) 2939 (2016)
https://doi.org/10.1093/mnras/stw2103

Machine-learning identification of galaxies in the WISE × SuperCOSMOS all-sky catalogue

T. Krakowski, K. Małek, M. Bilicki, et al.
Astronomy & Astrophysics 596 A39 (2016)
https://doi.org/10.1051/0004-6361/201629165

Multi-wavelength landscape of the young galaxy cluster RXJ 1257.2+4738 atz= 0.866

I. Pintos-Castro, M. Pović, M. Sánchez-Portal, et al.
Astronomy & Astrophysics 592 A108 (2016)
https://doi.org/10.1051/0004-6361/201526744

Multivariate approaches to classification in extragalactic astronomy

Didier Fraix-Burnet, Marc Thuillard and Asis K. Chattopadhyay
Frontiers in Astronomy and Space Sciences 2 (2015)
https://doi.org/10.3389/fspas.2015.00003

A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S 4 G)

Ronald J. Buta, Kartik Sheth, E. Athanassoula, et al.
The Astrophysical Journal Supplement Series 217 (2) 32 (2015)
https://doi.org/10.1088/0067-0049/217/2/32

A CATALOG OF VISUALLY CLASSIFIED GALAXIES IN THE LOCAL ( z ∼ 0.01) UNIVERSE

H. B. Ann, Mira Seo and D. K. Ha
The Astrophysical Journal Supplement Series 217 (2) 27 (2015)
https://doi.org/10.1088/0067-0049/217/2/27

The impact from survey depth and resolution on the morphological classification of galaxies

M. Pović, I. Márquez, J. Masegosa, et al.
Monthly Notices of the Royal Astronomical Society 453 (2) 1644 (2015)
https://doi.org/10.1093/mnras/stv1663

A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey

Fei Shi, Yu-Yan Liu, Guang-Lan Sun, et al.
Monthly Notices of the Royal Astronomical Society 453 (1) 122 (2015)
https://doi.org/10.1093/mnras/stv1617

Stellar populations of galaxies in the ALHAMBRA survey up toz ~ 1

L. A. Díaz-García, A. J. Cenarro, C. López-Sanjuan, et al.
Astronomy & Astrophysics 582 A14 (2015)
https://doi.org/10.1051/0004-6361/201425582

A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING

M. Huertas-Company, R. Gravet, G. Cabrera-Vives, et al.
The Astrophysical Journal Supplement Series 221 (1) 8 (2015)
https://doi.org/10.1088/0067-0049/221/1/8

Gemini multiconjugate adaptive optics system review – II. Commissioning, operation and overall performance

Benoit Neichel, François Rigaut, Fabrice Vidal, et al.
Monthly Notices of the Royal Astronomical Society 440 (2) 1002 (2014)
https://doi.org/10.1093/mnras/stu403

Galaxy size trends as a consequence of cosmology

M. J. Stringer, F. Shankar, G. S. Novak, et al.
Monthly Notices of the Royal Astronomical Society 441 (2) 1570 (2014)
https://doi.org/10.1093/mnras/stu645

The morphological transformation of red sequence galaxies in the distant cluster XMMU J1229+0151

P. Cerulo, W. J. Couch, C. Lidman, et al.
Monthly Notices of the Royal Astronomical Society 439 (3) 2790 (2014)
https://doi.org/10.1093/mnras/stu135

Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 < z < 1.5

L. Delaye, M. Huertas-Company, S. Mei, et al.
Monthly Notices of the Royal Astronomical Society 441 (1) 203 (2014)
https://doi.org/10.1093/mnras/stu496

The evolution of the mass–size relation for early-type galaxies from z ∼ 1 to the present: dependence on environment, mass range and detailed morphology

M. Huertas-Company, S. Mei, F. Shankar, et al.
Monthly Notices of the Royal Astronomical Society 428 (2) 1715 (2013)
https://doi.org/10.1093/mnras/sts150

The merger rates and sizes of galaxies across the peak epoch of star formation from the HiZELS survey

John P. Stott, David Sobral, Ian Smail, et al.
Monthly Notices of the Royal Astronomical Society 430 (2) 1158 (2013)
https://doi.org/10.1093/mnras/sts684

X‐ray luminosity functions of different morphological and X‐ray type AGN populations

M. Pović, A.M. Pérez García, M. Sánchez‐Portal, A. Bongiovanni, J. Cepa, M. Fernández Lorenzo, M.A. Lara‐López, J. Gallego, A. Ederoclite, I. Márquez, J. Masegosa, E. Alfaro, H. Castañeda, J.I. González‐Serrano and J.J. González
Astronomische Nachrichten 334 (3) 288 (2013)
https://doi.org/10.1002/asna.201211840

The ALHAMBRA survey: reliable morphological catalogue of 22 051 early- and late-type galaxies

M. Pović, M. Huertas-Company, J. A. L. Aguerri, et al.
Monthly Notices of the Royal Astronomical Society 435 (4) 3444 (2013)
https://doi.org/10.1093/mnras/stt1538

PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES ATz⩾ 6. II. MORPHOLOGY OF THE REST-FRAME UV CONTINUUM AND Lyα EMISSION

Linhua Jiang, Eiichi Egami, Xiaohui Fan, et al.
The Astrophysical Journal 773 (2) 153 (2013)
https://doi.org/10.1088/0004-637X/773/2/153

Early-type galaxies have been the predominant morphological class for massive galaxies since only z ∼ 1

Fernando Buitrago, Ignacio Trujillo, Christopher J. Conselice and Boris Häußler
Monthly Notices of the Royal Astronomical Society 428 (2) 1460 (2013)
https://doi.org/10.1093/mnras/sts124

Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey

Kyle W. Willett, Chris J. Lintott, Steven P. Bamford, et al.
Monthly Notices of the Royal Astronomical Society 435 (4) 2835 (2013)
https://doi.org/10.1093/mnras/stt1458

Non-parametric cell-based photometric proxies for galaxy morphology: methodology and application to the morphologically defined star formation–stellar mass relation of spiral galaxies in the local universe

M. W. Grootes, R. J. Tuffs, C. C. Popescu, et al.
Monthly Notices of the Royal Astronomical Society 437 (4) 3883 (2013)
https://doi.org/10.1093/mnras/stt2184

ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION

Joseph W. Richards, Dan L. Starr, Henrik Brink, et al.
The Astrophysical Journal 744 (2) 192 (2012)
https://doi.org/10.1088/0004-637X/744/2/192

AGN-host galaxy connection: morphology and colours of X-ray selected AGN atz ≤  2

M. Pović, M. Sánchez-Portal, A. M. Pérez García, et al.
Astronomy & Astrophysics 541 A118 (2012)
https://doi.org/10.1051/0004-6361/201117314

EARLY-TYPE GALAXIES ATz= 1.3. I. THE LYNX SUPERCLUSTER: CLUSTER AND GROUPS ATz= 1.3. MORPHOLOGY AND COLOR-MAGNITUDE RELATION

Simona Mei, S. Adam Stanford, Brad P. Holden, et al.
The Astrophysical Journal 754 (2) 141 (2012)
https://doi.org/10.1088/0004-637X/754/2/141

ALHAMBRA survey: morphological classification

M. Pović, M. Huertas-Company, I. Márquez, et al.
Proceedings of the International Astronomical Union 10 (H16) 378 (2012)
https://doi.org/10.1017/S1743921314011508

Dissecting the morphological and spectroscopic properties of galaxies in the local Universe

J. A. L. Aguerri, M. Huertas-Company, J. Sánchez Almeida and C. Muñoz-Tuñón
Astronomy & Astrophysics 540 A136 (2012)
https://doi.org/10.1051/0004-6361/201117632

AGN-host galaxy connection: multiwavelength study

M. Pović, M. Sánchez-Portal, A. M. Pérez García, A. Bongiovanni and J. Cepa
Proceedings of the International Astronomical Union 8 (S290) 295 (2012)
https://doi.org/10.1017/S174392131202008X

Morphology and color indices of galaxies in Pairs: Criteria for the classification of galaxies

O. V. Melnyk, D. V. Dobrycheva and I. B. Vavilova
Astrophysics 55 (3) 293 (2012)
https://doi.org/10.1007/s10511-012-9236-7

THE NATURE AND NURTURE OF BARS AND DISKS

J. Méndez-Abreu, R. Sánchez-Janssen, J. A. L. Aguerri, E. M. Corsini and S. Zarattini
The Astrophysical Journal 761 (1) L6 (2012)
https://doi.org/10.1088/2041-8205/761/1/L6

QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE

Dae-Won Kim, Pavlos Protopapas, Yong-Ik Byun, et al.
The Astrophysical Journal 735 (2) 68 (2011)
https://doi.org/10.1088/0004-637X/735/2/68

Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available Bayesian automated classification

M. Huertas-Company, J. A. L. Aguerri, M. Bernardi, S. Mei and J. Sánchez Almeida
Astronomy & Astrophysics 525 A157 (2011)
https://doi.org/10.1051/0004-6361/201015735

RELATIONSHIP BETWEEN HUBBLE TYPE AND SPECTROSCOPIC CLASS IN LOCAL GALAXIES

J. Sánchez Almeida, J. A. L. Aguerri, C. Muñoz-Tuñón and M. Huertas-Company
The Astrophysical Journal 735 (2) 125 (2011)
https://doi.org/10.1088/0004-637X/735/2/125

CLASSIFYING STRUCTURES IN THE INTERSTELLAR MEDIUM WITH SUPPORT VECTOR MACHINES: THE G16.05-0.57 SUPERNOVA REMNANT

Christopher N. Beaumont, Jonathan P. Williams and Alyssa A. Goodman
The Astrophysical Journal 741 (1) 14 (2011)
https://doi.org/10.1088/0004-637X/741/1/14