Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Optimizing machine learning methods to discover strong gravitational lenses in the deep lens survey

G C Keerthi Vasan, Stephen Sheng, Tucker Jones, Chi Po Choi and James Sharpnack
Monthly Notices of the Royal Astronomical Society 524 (4) 5368 (2023)
https://doi.org/10.1093/mnras/stad1709

The Dark Energy Survey Bright Arcs Survey: Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey 5000 Square Degree Footprint

J. H. O’Donnell, R. D. Wilkinson, H. T. Diehl, et al.
The Astrophysical Journal Supplement Series 259 (1) 27 (2022)
https://doi.org/10.3847/1538-4365/ac470b

Exploring the interpretability of deep neural networks used for gravitational lens finding with a sensitivity probe

C. Jacobs, K. Glazebrook, A.K. Qin and T. Collett
Astronomy and Computing 38 100535 (2022)
https://doi.org/10.1016/j.ascom.2021.100535

Auto-identification of unphysical source reconstructions in strong gravitational lens modelling

Jacob Maresca, Simon Dye and Nan Li
Monthly Notices of the Royal Astronomical Society 503 (2) 2229 (2021)
https://doi.org/10.1093/mnras/stab387

New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey

R. Li, N. R. Napolitano, C. Tortora, et al.
The Astrophysical Journal 899 (1) 30 (2020)
https://doi.org/10.3847/1538-4357/ab9dfa

MIFAL: fully automated Multiple-Image Finder ALgorithm for strong-lens modelling – proof of concept

Mauricio Carrasco, Adi Zitrin and Gregor Seidel
Monthly Notices of the Royal Astronomical Society 491 (3) 3778 (2020)
https://doi.org/10.1093/mnras/stz3040

The use of convolutional neural networks for modelling large optically-selected strong galaxy-lens samples

James Pearson, Nan Li and Simon Dye
Monthly Notices of the Royal Astronomical Society 488 (1) 991 (2019)
https://doi.org/10.1093/mnras/stz1750

Image simulations for gravitational lensing withskylens

A A Plazas, M Meneghetti, M Maturi and J Rhodes
Monthly Notices of the Royal Astronomical Society 482 (2) 2823 (2019)
https://doi.org/10.1093/mnras/sty2737

Using deep Residual Networks to search for galaxy-Ly α emitter lens candidates based on spectroscopic selection

Rui Li, Yiping Shu, Jianlin Su, et al.
Monthly Notices of the Royal Astronomical Society 482 (1) 313 (2019)
https://doi.org/10.1093/mnras/sty2708

Machine learning and Kolmogorov analysis to reveal gravitational lenses

S S Mirzoyan, H Khachatryan, G Yegorian and V G Gurzadyan
Monthly Notices of the Royal Astronomical Society: Letters 489 (1) L32 (2019)
https://doi.org/10.1093/mnrasl/slz125

Automated Lensing Learner: Automated Strong Lensing Identification with a Computer Vision Technique

Camille Avestruz, Nan Li, Hanjue Zhu, et al.
The Astrophysical Journal 877 (1) 58 (2019)
https://doi.org/10.3847/1538-4357/ab16d9

LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks

C E Petrillo, C Tortora, G Vernardos, et al.
Monthly Notices of the Royal Astronomical Society 484 (3) 3879 (2019)
https://doi.org/10.1093/mnras/stz189

Using convolutional neural networks to identify gravitational lenses in astronomical images

Andrew Davies, Stephen Serjeant and Jane M Bromley
Monthly Notices of the Royal Astronomical Society 487 (4) 5263 (2019)
https://doi.org/10.1093/mnras/stz1288

EasyCritics – I. Efficient detection of strongly lensing galaxy groups and clusters in wide-field surveys

Sebastian Stapelberg, Mauricio Carrasco and Matteo Maturi
Monthly Notices of the Royal Astronomical Society 482 (2) 1824 (2019)
https://doi.org/10.1093/mnras/sty2784

Finding high-redshift strong lenses in DES using convolutional neural networks

C Jacobs, T Collett, K Glazebrook, et al.
Monthly Notices of the Royal Astronomical Society 484 (4) 5330 (2019)
https://doi.org/10.1093/mnras/stz272

CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding

François Lanusse, Quanbin Ma, Nan Li, et al.
Monthly Notices of the Royal Astronomical Society 473 (3) 3895 (2018)
https://doi.org/10.1093/mnras/stx1665

Galaxy–galaxy lensing in the outskirts of CLASH clusters: constraints on local shear and testing mass–luminosity scaling relation

Guillaume Desprez, Johan Richard, Mathilde Jauzac, et al.
Monthly Notices of the Royal Astronomical Society 479 (2) 2630 (2018)
https://doi.org/10.1093/mnras/sty1666

Auto-detection of strong gravitational lenses using convolutional neural networks

James Pearson, Clara Pennock and Tom Robinson
Emergent Scientist 2 1 (2018)
https://doi.org/10.1051/emsci/2017010

The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

H. T. Diehl, E. J. Buckley-Geer, K. A. Lindgren, et al.
The Astrophysical Journal Supplement Series 232 (1) 15 (2017)
https://doi.org/10.3847/1538-4365/aa8667

Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks

C. E. Petrillo, C. Tortora, S. Chatterjee, et al.
Monthly Notices of the Royal Astronomical Society 472 (1) 1129 (2017)
https://doi.org/10.1093/mnras/stx2052

Support vector machine classification of strong gravitational lenses

P. Hartley, R. Flamary, N. Jackson, A. S. Tagore and R. B. Metcalf
Monthly Notices of the Royal Astronomical Society 471 (3) 3378 (2017)
https://doi.org/10.1093/mnras/stx1733

A neural network gravitational arc finder based on the Mediatrix filamentation method

C. R. Bom, M. Makler, M. P. Albuquerque and C. H. Brandt
Astronomy & Astrophysics 597 A135 (2017)
https://doi.org/10.1051/0004-6361/201629159

Space Warps– II. New gravitational lens candidates from the CFHTLS discovered through citizen science

Anupreeta More, Aprajita Verma, Philip J. Marshall, et al.
Monthly Notices of the Royal Astronomical Society 455 (2) 1191 (2016)
https://doi.org/10.1093/mnras/stv1965

Compound lensing: Einstein zig-zags and high-multiplicity lensed images

Thomas E. Collett and David J. Bacon
Monthly Notices of the Royal Astronomical Society 456 (2) 2210 (2016)
https://doi.org/10.1093/mnras/stv2791

OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA

B. Nord, E. Buckley-Geer, H. Lin, et al.
The Astrophysical Journal 827 (1) 51 (2016)
https://doi.org/10.3847/0004-637X/827/1/51

PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

Nan Li, Michael D. Gladders, Esteban M. Rangel, et al.
The Astrophysical Journal 828 (1) 54 (2016)
https://doi.org/10.3847/0004-637X/828/1/54

A 7 deg2 survey for galaxy-scale gravitational lenses with the HST imaging archive★

R. S. Pawase, F. Courbin, C. Faure, R. Kokotanekova and G. Meylan
Monthly Notices of the Royal Astronomical Society 439 (4) 3392 (2014)
https://doi.org/10.1093/mnras/stu179

THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW

Marc Postman, Dan Coe, Narciso Benítez, et al.
The Astrophysical Journal Supplement Series 199 (2) 25 (2012)
https://doi.org/10.1088/0067-0049/199/2/25

THE CFHTLS-STRONG LENSING LEGACY SURVEY (SL2S): INVESTIGATING THE GROUP-SCALE LENSES WITH THE SARCS SAMPLE

A. More, R. Cabanac, S. More, et al.
The Astrophysical Journal 749 (1) 38 (2012)
https://doi.org/10.1088/0004-637X/749/1/38

Predicting the number of giant arcs expected in the next-generation wide-field surveys from space

M. Boldrin, C. Giocoli, M. Meneghetti and L. Moscardini
Monthly Notices of the Royal Astronomical Society 427 (4) 3134 (2012)
https://doi.org/10.1111/j.1365-2966.2012.22120.x

GALAXY SCALE LENSES IN THE RCS2. I. FIRST CATALOG OF CANDIDATE STRONG LENSES

T. Anguita, L. F. Barrientos, M. D. Gladders, et al.
The Astrophysical Journal 748 (2) 129 (2012)
https://doi.org/10.1088/0004-637X/748/2/129

Lensed arc statistics: comparison of Millennium simulation galaxy clusters to Hubble Space Telescope observations of an X-ray selected sample

Assaf Horesh, Dan Maoz, Stefan Hilbert and Matthias Bartelmann
Monthly Notices of the Royal Astronomical Society 418 (1) 54 (2011)
https://doi.org/10.1111/j.1365-2966.2011.19293.x

LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters atz= 0.2

Johan Richard, Graham P. Smith, Jean-Paul Kneib, et al.
Monthly Notices of the Royal Astronomical Society (2010)
https://doi.org/10.1111/j.1365-2966.2009.16274.x

The lensing efficiencies of MACS X-ray-selected versus RCS optically selected galaxy clusters

Assaf Horesh, Dan Maoz, Harald Ebeling, Gregor Seidel and Matthias Bartelmann
Monthly Notices of the Royal Astronomical Society no (2010)
https://doi.org/10.1111/j.1365-2966.2010.16763.x

AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA

Philip J. Marshall, David W. Hogg, Leonidas A. Moustakas, et al.
The Astrophysical Journal 694 (2) 924 (2009)
https://doi.org/10.1088/0004-637X/694/2/924

ENHANCED LENSING RATE BY CLUSTERING OF MASSIVE GALAXIES: NEWLY DISCOVERED SYSTEMS IN THE SLACS FIELDS

Elisabeth R. Newton, Philip J. Marshall and Tommaso Treu
The Astrophysical Journal 696 (2) 1125 (2009)
https://doi.org/10.1088/0004-637X/696/2/1125

THE SLOAN DIGITAL SKY SURVEY DISCOVERY OF A STRONGLY LENSED POST-STARBURST GALAXY ATz= 0.766

Min-Su Shin, Michael A. Strauss, Masamune Oguri, et al.
The Astronomical Journal 136 (1) 44 (2008)
https://doi.org/10.1088/0004-6256/136/1/44

First Catalog of Strong Lens Candidates in the COSMOS Field

Cecile Faure, Jean‐Paul Kneib, Giovanni Covone, et al.
The Astrophysical Journal Supplement Series 176 (1) 19 (2008)
https://doi.org/10.1086/526426

Realistic simulations of gravitational lensing by galaxy clusters: extracting arc parameters from mock DUNE images

M. Meneghetti, P. Melchior, A. Grazian, et al.
Astronomy & Astrophysics 482 (2) 403 (2008)
https://doi.org/10.1051/0004-6361:20079119