Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

COOL-LAMPS. VII. Quantifying Strong-lens Scaling Relations with 177 Cluster-scale Strong Gravitational Lenses in DECaLS

Simon D. Mork, Michael D. Gladders, Gourav Khullar, Keren Sharon, Nathalie Chicoine, Aidan P. Cloonan, Håkon Dahle, Diego Garza, Rowen Glusman, Katya Gozman, Gabriela Horwath, Benjamin C. Levine, Olina Liang, Daniel Mahronic, Viraj Manwadkar, Michael N. Martinez, Alexandra Masegian, Owen S. Matthews Acuña, Kaiya Merz, Yue Pan, Jorge A. Sanchez, Isaac Sierra, Daniel J. Kavin Stein, Ezra Sukay, Marcos Tamargo-Arizmendi, et al.
The Astrophysical Journal 979 (2) 184 (2025)
https://doi.org/10.3847/1538-4357/ada24c

Euclid preparation

L. Leuzzi, M. Meneghetti, G. Angora, R. B. Metcalf, L. Moscardini, P. Rosati, P. Bergamini, F. Calura, B. Clément, R. Gavazzi, F. Gentile, M. Lochner, C. Grillo, G. Vernardos, N. Aghanim, A. Amara, L. Amendola, N. Auricchio, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, et al.
Astronomy & Astrophysics 681 A68 (2024)
https://doi.org/10.1051/0004-6361/202347244

Searching for Strong Gravitational Lenses

Cameron Lemon, Frédéric Courbin, Anupreeta More, Paul Schechter, Raoul Cañameras, Ludovic Delchambre, Calvin Leung, Yiping Shu, Chiara Spiniello, Yashar Hezaveh, Jonas Klüter and Richard McMahon
Space Science Reviews 220 (2) (2024)
https://doi.org/10.1007/s11214-024-01042-9

CSST Strong-lensing Preparation: A Framework for Detecting Strong Lenses in the Multicolor Imaging Survey by the China Survey Space Telescope (CSST)

Xu Li, Ruiqi Sun, Jiameng Lv, Peng Jia, Nan Li, Chengliang Wei, Hu Zou, Xinzhong Er, Yun Chen, Zhang Ban, Yuedong Fang, Qi Guo, Dezi Liu, Guoliang Li, Lin Lin, Ming Li, Ran Li, Xiaobo Li, Yu Luo, Xianmin Meng, Jundan Nie, Zhaoxiang Qi, Yisheng Qiu, Li Shao, Hao Tian, et al.
The Astronomical Journal 167 (6) 264 (2024)
https://doi.org/10.3847/1538-3881/ad395e

TEGLIE: Transformer encoders as strong gravitational lens finders in KiDS

M. Grespan, H. Thuruthipilly, A. Pollo, M. Lochner, M. Biesiada and V. Etsebeth
Astronomy & Astrophysics 688 A34 (2024)
https://doi.org/10.1051/0004-6361/202449929

A Bayesian approach to strong lens finding in the era of wide-area surveys

Philip Holloway, Philip J Marshall, Aprajita Verma, Anupreeta More, Raoul Cañameras, Anton T Jaelani, Yuichiro Ishida and Kenneth C Wong
Monthly Notices of the Royal Astronomical Society 530 (2) 1297 (2024)
https://doi.org/10.1093/mnras/stae875

Detection of Strongly Lensed Arcs in Galaxy Clusters with Transformers

Peng Jia, Ruiqi Sun, Nan Li, Yu Song, Runyu Ning, Hongyan Wei and Rui Luo
The Astronomical Journal 165 (1) 26 (2023)
https://doi.org/10.3847/1538-3881/aca1c2

Optimizing machine learning methods to discover strong gravitational lenses in the deep lens survey

G C Keerthi Vasan, Stephen Sheng, Tucker Jones, Chi Po Choi and James Sharpnack
Monthly Notices of the Royal Astronomical Society 524 (4) 5368 (2023)
https://doi.org/10.1093/mnras/stad1709

The Dark Energy Survey Bright Arcs Survey: Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey 5000 Square Degree Footprint

J. H. O’Donnell, R. D. Wilkinson, H. T. Diehl, C. Aros-Bunster, K. Bechtol, S. Birrer, E. J. Buckley-Geer, A. Carnero Rosell, M. Carrasco Kind, L. N. da Costa, S. J. Gonzalez Lozano, R. A. Gruendl, M. Hilton, H. Lin, K. A. Lindgren, J. Martin, A. Pieres, E. S. Rykoff, I. Sevilla-Noarbe, E. Sheldon, C. Sifón, D. L. Tucker, B. Yanny, T. M. C. Abbott, M. Aguena, et al.
The Astrophysical Journal Supplement Series 259 (1) 27 (2022)
https://doi.org/10.3847/1538-4365/ac470b

Exploring the interpretability of deep neural networks used for gravitational lens finding with a sensitivity probe

C. Jacobs, K. Glazebrook, A.K. Qin and T. Collett
Astronomy and Computing 38 100535 (2022)
https://doi.org/10.1016/j.ascom.2021.100535

Auto-identification of unphysical source reconstructions in strong gravitational lens modelling

Jacob Maresca, Simon Dye and Nan Li
Monthly Notices of the Royal Astronomical Society 503 (2) 2229 (2021)
https://doi.org/10.1093/mnras/stab387

New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey

R. Li, N. R. Napolitano, C. Tortora, C. Spiniello, L. V. E. Koopmans, Z. Huang, N. Roy, G. Vernardos, S. Chatterjee, B. Giblin, F. Getman, M. Radovich, G. Covone and K. Kuijken
The Astrophysical Journal 899 (1) 30 (2020)
https://doi.org/10.3847/1538-4357/ab9dfa

MIFAL: fully automated Multiple-Image Finder ALgorithm for strong-lens modelling – proof of concept

Mauricio Carrasco, Adi Zitrin and Gregor Seidel
Monthly Notices of the Royal Astronomical Society 491 (3) 3778 (2020)
https://doi.org/10.1093/mnras/stz3040

Automated Lensing Learner: Automated Strong Lensing Identification with a Computer Vision Technique

Camille Avestruz, Nan Li, Hanjue 涵珏 Zhu 朱, Matthew Lightman, Thomas E. Collett and Wentao Luo
The Astrophysical Journal 877 (1) 58 (2019)
https://doi.org/10.3847/1538-4357/ab16d9

The use of convolutional neural networks for modelling large optically-selected strong galaxy-lens samples

James Pearson, Nan Li and Simon Dye
Monthly Notices of the Royal Astronomical Society 488 (1) 991 (2019)
https://doi.org/10.1093/mnras/stz1750

LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks

C E Petrillo, C Tortora, G Vernardos, et al.
Monthly Notices of the Royal Astronomical Society 484 (3) 3879 (2019)
https://doi.org/10.1093/mnras/stz189

Using deep Residual Networks to search for galaxy-Ly α emitter lens candidates based on spectroscopic selection

Rui Li, Yiping Shu, Jianlin Su, et al.
Monthly Notices of the Royal Astronomical Society 482 (1) 313 (2019)
https://doi.org/10.1093/mnras/sty2708

Machine learning and Kolmogorov analysis to reveal gravitational lenses

S S Mirzoyan, H Khachatryan, G Yegorian and V G Gurzadyan
Monthly Notices of the Royal Astronomical Society: Letters 489 (1) L32 (2019)
https://doi.org/10.1093/mnrasl/slz125

EasyCritics – I. Efficient detection of strongly lensing galaxy groups and clusters in wide-field surveys

Sebastian Stapelberg, Mauricio Carrasco and Matteo Maturi
Monthly Notices of the Royal Astronomical Society 482 (2) 1824 (2019)
https://doi.org/10.1093/mnras/sty2784

Finding high-redshift strong lenses in DES using convolutional neural networks

C Jacobs, T Collett, K Glazebrook, et al.
Monthly Notices of the Royal Astronomical Society 484 (4) 5330 (2019)
https://doi.org/10.1093/mnras/stz272

Image simulations for gravitational lensing withskylens

A A Plazas, M Meneghetti, M Maturi and J Rhodes
Monthly Notices of the Royal Astronomical Society 482 (2) 2823 (2019)
https://doi.org/10.1093/mnras/sty2737

Using convolutional neural networks to identify gravitational lenses in astronomical images

Andrew Davies, Stephen Serjeant and Jane M Bromley
Monthly Notices of the Royal Astronomical Society 487 (4) 5263 (2019)
https://doi.org/10.1093/mnras/stz1288

Auto-detection of strong gravitational lenses using convolutional neural networks

James Pearson, Clara Pennock and Tom Robinson
Emergent Scientist 2 1 (2018)
https://doi.org/10.1051/emsci/2017010

Galaxy–galaxy lensing in the outskirts of CLASH clusters: constraints on local shear and testing mass–luminosity scaling relation

Guillaume Desprez, Johan Richard, Mathilde Jauzac, et al.
Monthly Notices of the Royal Astronomical Society 479 (2) 2630 (2018)
https://doi.org/10.1093/mnras/sty1666

CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding

François Lanusse, Quanbin Ma, Nan Li, et al.
Monthly Notices of the Royal Astronomical Society 473 (3) 3895 (2018)
https://doi.org/10.1093/mnras/stx1665

Support vector machine classification of strong gravitational lenses

P. Hartley, R. Flamary, N. Jackson, A. S. Tagore and R. B. Metcalf
Monthly Notices of the Royal Astronomical Society 471 (3) 3378 (2017)
https://doi.org/10.1093/mnras/stx1733

The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

H. T. Diehl, E. J. Buckley-Geer, K. A. Lindgren, B. Nord, H. Gaitsch, S. Gaitsch, H. Lin, S. Allam, T. E. Collett, C. Furlanetto, M. S. S. Gill, A. More, J. Nightingale, C. Odden, A. Pellico, D. L. Tucker, L. N. da Costa, A. Fausti Neto, N. Kuropatkin, M. Soares-Santos, B. Welch, Y. Zhang, J. A. Frieman, F. B. Abdalla, J. Annis, et al.
The Astrophysical Journal Supplement Series 232 (1) 15 (2017)
https://doi.org/10.3847/1538-4365/aa8667

Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks

C. E. Petrillo, C. Tortora, S. Chatterjee, et al.
Monthly Notices of the Royal Astronomical Society 472 (1) 1129 (2017)
https://doi.org/10.1093/mnras/stx2052

A neural network gravitational arc finder based on the Mediatrix filamentation method

C. R. Bom, M. Makler, M. P. Albuquerque and C. H. Brandt
Astronomy & Astrophysics 597 A135 (2017)
https://doi.org/10.1051/0004-6361/201629159

Space Warps– II. New gravitational lens candidates from the CFHTLS discovered through citizen science

Anupreeta More, Aprajita Verma, Philip J. Marshall, et al.
Monthly Notices of the Royal Astronomical Society 455 (2) 1191 (2016)
https://doi.org/10.1093/mnras/stv1965

THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS

Bingxiao Xu, Marc Postman, Massimo Meneghetti, Stella Seitz, Adi Zitrin, Julian Merten, Dani Maoz, Brenda Frye, Keiichi Umetsu, Wei Zheng, Larry Bradley, Jesus Vega and Anton Koekemoer
The Astrophysical Journal 817 (2) 85 (2016)
https://doi.org/10.3847/0004-637X/817/2/85

PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

Nan Li, Michael D. Gladders, Esteban M. Rangel, Michael K. Florian, Lindsey E. Bleem, Katrin Heitmann, Salman Habib and Patricia Fasel
The Astrophysical Journal 828 (1) 54 (2016)
https://doi.org/10.3847/0004-637X/828/1/54

OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA*

B. Nord, E. Buckley-Geer, H. Lin, H. T. Diehl, J. Helsby, N. Kuropatkin, A. Amara, T. Collett, S. Allam, G. B. Caminha, C. De Bom, S. Desai, H. Dúmet-Montoya, M. Elidaiana da S. Pereira, D. A. Finley, B. Flaugher, C. Furlanetto, H. Gaitsch, M. Gill, K. W. Merritt, A. More, D. Tucker, A. Saro, E. S. Rykoff, E. Rozo, et al.
The Astrophysical Journal 827 (1) 51 (2016)
https://doi.org/10.3847/0004-637X/827/1/51

Compound lensing: Einstein zig-zags and high-multiplicity lensed images

Thomas E. Collett and David J. Bacon
Monthly Notices of the Royal Astronomical Society 456 (2) 2210 (2016)
https://doi.org/10.1093/mnras/stv2791

A 7 deg2 survey for galaxy-scale gravitational lenses with the HST imaging archive★

R. S. Pawase, F. Courbin, C. Faure, R. Kokotanekova and G. Meylan
Monthly Notices of the Royal Astronomical Society 439 (4) 3392 (2014)
https://doi.org/10.1093/mnras/stu179

Predicting the number of giant arcs expected in the next-generation wide-field surveys from space

M. Boldrin, C. Giocoli, M. Meneghetti and L. Moscardini
Monthly Notices of the Royal Astronomical Society 427 (4) 3134 (2012)
https://doi.org/10.1111/j.1365-2966.2012.22120.x

THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW

Marc Postman, Dan Coe, Narciso Benítez, et al.
The Astrophysical Journal Supplement Series 199 (2) 25 (2012)
https://doi.org/10.1088/0067-0049/199/2/25

GALAXY SCALE LENSES IN THE RCS2. I. FIRST CATALOG OF CANDIDATE STRONG LENSES

T. Anguita, L. F. Barrientos, M. D. Gladders, et al.
The Astrophysical Journal 748 (2) 129 (2012)
https://doi.org/10.1088/0004-637X/748/2/129

THE CFHTLS-STRONG LENSING LEGACY SURVEY (SL2S): INVESTIGATING THE GROUP-SCALE LENSES WITH THE SARCS SAMPLE

A. More, R. Cabanac, S. More, et al.
The Astrophysical Journal 749 (1) 38 (2012)
https://doi.org/10.1088/0004-637X/749/1/38

Lensed arc statistics: comparison of Millennium simulation galaxy clusters to Hubble Space Telescope observations of an X-ray selected sample

Assaf Horesh, Dan Maoz, Stefan Hilbert and Matthias Bartelmann
Monthly Notices of the Royal Astronomical Society 418 (1) 54 (2011)
https://doi.org/10.1111/j.1365-2966.2011.19293.x

The lensing efficiencies of MACS X-ray-selected versus RCS optically selected galaxy clusters

Assaf Horesh, Dan Maoz, Harald Ebeling, Gregor Seidel and Matthias Bartelmann
Monthly Notices of the Royal Astronomical Society no (2010)
https://doi.org/10.1111/j.1365-2966.2010.16763.x

LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters atz= 0.2

Johan Richard, Graham P. Smith, Jean-Paul Kneib, et al.
Monthly Notices of the Royal Astronomical Society (2010)
https://doi.org/10.1111/j.1365-2966.2009.16274.x

AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA

Philip J. Marshall, David W. Hogg, Leonidas A. Moustakas, et al.
The Astrophysical Journal 694 (2) 924 (2009)
https://doi.org/10.1088/0004-637X/694/2/924

ENHANCED LENSING RATE BY CLUSTERING OF MASSIVE GALAXIES: NEWLY DISCOVERED SYSTEMS IN THE SLACS FIELDS

Elisabeth R. Newton, Philip J. Marshall and Tommaso Treu
The Astrophysical Journal 696 (2) 1125 (2009)
https://doi.org/10.1088/0004-637X/696/2/1125

THE SLOAN DIGITAL SKY SURVEY DISCOVERY OF A STRONGLY LENSED POST-STARBURST GALAXY ATz= 0.766

Min-Su Shin, Michael A. Strauss, Masamune Oguri, et al.
The Astronomical Journal 136 (1) 44 (2008)
https://doi.org/10.1088/0004-6256/136/1/44

Realistic simulations of gravitational lensing by galaxy clusters: extracting arc parameters from mock DUNE images

M. Meneghetti, P. Melchior, A. Grazian, et al.
Astronomy & Astrophysics 482 (2) 403 (2008)
https://doi.org/10.1051/0004-6361:20079119

First Catalog of Strong Lens Candidates in the COSMOS Field

Cecile Faure, Jean‐Paul Kneib, Giovanni Covone, et al.
The Astrophysical Journal Supplement Series 176 (1) 19 (2008)
https://doi.org/10.1086/526426