Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Potential Field Source Surface and Non-linear Force-Free Field Extrapolation to Model Magnetic Field Structure for a Giant Solar Filament

Abbi S. Demissie, Tilaye Tadesse, Araya Asfaw and Tong Shi
Solar Physics 300 (5) (2025)
https://doi.org/10.1007/s11207-025-02474-4

Unveiling the True Nature of Plasma Dynamics from the Reference Frame of a Superpenumbral Fibril

W. Bate, D. B. Jess, S. D. T. Grant, A. Hillier, S. J. Skirvin, T. Van Doorsselaere, S. Jafarzadeh, T. Wiegelmann, T. Duckenfield, C. Beck, T. Moore, M. Stangalini, P. H. Keys and D. J. Christian
The Astrophysical Journal 970 (1) 66 (2024)
https://doi.org/10.3847/1538-4357/ad4d97

CME propagation through the heliosphere: Status and future of observations and model development

Manuela Temmer, Camilla Scolini, Ian G. Richardson, Stephan G. Heinemann, Evangelos Paouris, Angelos Vourlidas, Mario M. Bisi, N. Al-Haddad, T. Amerstorfer, L. Barnard, D. Burešová, S.J. Hofmeister, K. Iwai, B.V. Jackson, R. Jarolim, L.K. Jian, J.A. Linker, N. Lugaz, P.K. Manoharan, M.L. Mays, W. Mishra, M.J. Owens, E. Palmerio, B. Perri, J. Pomoell, et al.
Advances in Space Research (2023)
https://doi.org/10.1016/j.asr.2023.07.003

An overall view of temperature oscillations in the solar chromosphere with ALMA

S. Jafarzadeh, S. Wedemeyer, B. Fleck, et al.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379 (2190) (2021)
https://doi.org/10.1098/rsta.2020.0174

The diagnostic potential of the weak field approximation for investigating the quiet Sun magnetism: the Si I 10 827 Å line

N. G. Shchukina and J. Trujillo Bueno
Astronomy & Astrophysics 628 A47 (2019)
https://doi.org/10.1051/0004-6361/201935510

Three-dimensional magnetic field structure of a flux-emerging region in the solar atmosphere

Rahul Yadav, Jaime de la Cruz Rodríguez, Carlos José Díaz Baso, et al.
Astronomy & Astrophysics 632 A112 (2019)
https://doi.org/10.1051/0004-6361/201936790

Multiband Study of a Bidirectional Jet Occurred in the Upper Chromosphere

Qiangwei Cai, Chengcai Shen, Lei Ni, Katharine K. Reeves, Kaifeng Kang and Jun Lin
Journal of Geophysical Research: Space Physics 124 (12) 9824 (2019)
https://doi.org/10.1029/2019JA027017

Preprocessing photospheric vector magnetograms for nonlinear force-free field extrapolation of the global corona

Ai-Ying Duan and Huai Zhang
Research in Astronomy and Astrophysics 18 (7) 085 (2018)
https://doi.org/10.1088/1674-4527/18/7/85

Formation of an Active Region Filament Driven By a Series of Jets

Jincheng Wang, Xiaoli Yan, Zhongquan Qu, Satoru UeNo, Kiyoshi Ichimoto, Linhua Deng, Wenda Cao and Zhong Liu
The Astrophysical Journal 863 (2) 180 (2018)
https://doi.org/10.3847/1538-4357/aad187

Assessing the Quality of Models of the Ambient Solar Wind

P. MacNeice, L. K. Jian, S. K. Antiochos, C. N. Arge, C. D. Bussy‐Virat, M. L. DeRosa, B. V. Jackson, J. A. Linker, Z. Mikic, M. J. Owens, A. J. Ridley, P. Riley, N. Savani and I. Sokolov
Space Weather 16 (11) 1644 (2018)
https://doi.org/10.1029/2018SW002040

Three-dimensional magnetic reconnection in a collapsing coronal loop system

Aidan M. O’Flannagain, Shane A. Maloney, Peter T. Gallagher, Philippa Browning and Jose Refojo
Astronomy & Astrophysics 617 A9 (2018)
https://doi.org/10.1051/0004-6361/201732122

Formation and Eruption Process of a Filament in Active Region NOAA 12241

Jincheng Wang, Xiaoli Yan, ZhongQuan Qu, Zhike Xue and Liheng Yang
The Astrophysical Journal 839 (2) 128 (2017)
https://doi.org/10.3847/1538-4357/aa6bf3

A Si I atomic model for NLTE spectropolarimetric diagnostics of the 10 827 Å line

N. G. Shchukina, A. V. Sukhorukov and J. Trujillo Bueno
Astronomy & Astrophysics 603 A98 (2017)
https://doi.org/10.1051/0004-6361/201630236

THREE-DIMENSIONAL RADIO AND X-RAY MODELING AND DATA ANALYSIS SOFTWARE: REVEALING FLARE COMPLEXITY

Gelu M. Nita, Gregory D. Fleishman, Alexey A. Kuznetsov, Eduard P. Kontar and Dale E. Gary
The Astrophysical Journal 799 (2) 236 (2015)
https://doi.org/10.1088/0004-637X/799/2/236

The role of turbulence in coronal heating and solar wind expansion

Steven R. Cranmer, Mahboubeh Asgari-Targhi, Mari Paz Miralles, et al.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373 (2041) 20140148 (2015)
https://doi.org/10.1098/rsta.2014.0148

3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum

M. Kramar, V. Airapetian, Z. Mikić and J. Davila
Solar Physics 289 (8) 2927 (2014)
https://doi.org/10.1007/s11207-014-0525-7

A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. I. Theory

Markus J. Aschwanden
Solar Physics 287 (1-2) 323 (2013)
https://doi.org/10.1007/s11207-012-0069-7

Evidence for partial Taylor relaxation from changes in magnetic geometry and energy during a solar flare

S. A. Murray, D. S. Bloomfield and P. T. Gallagher
Astronomy & Astrophysics 550 A119 (2013)
https://doi.org/10.1051/0004-6361/201219964

A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. II. Numeric Code and Tests

Markus J. Aschwanden and Anna Malanushenko
Solar Physics 287 (1-2) 345 (2013)
https://doi.org/10.1007/s11207-012-0070-1

FIRST THREE-DIMENSIONAL RECONSTRUCTIONS OF CORONAL LOOPS WITH THESTEREOA+BSPACECRAFT. IV. MAGNETIC MODELING WITH TWISTED FORCE-FREE FIELDS

Markus J. Aschwanden, Jean-Pierre Wuelser, Nariaki V. Nitta, et al.
The Astrophysical Journal 756 (2) 124 (2012)
https://doi.org/10.1088/0004-637X/756/2/124

How Should One Optimize Nonlinear Force-Free Coronal Magnetic Field Extrapolations from SDO/HMI Vector Magnetograms?

T. Wiegelmann, J. K. Thalmann, B. Inhester, et al.
Solar Physics (2012)
https://doi.org/10.1007/s11207-012-9966-z

Nonlinear force-free modelling: influence of inaccuracies in the measured magnetic vector

T. Wiegelmann, L. Yelles Chaouche, S. K. Solanki and A. Lagg
Astronomy and Astrophysics 511 A4 (2010)
https://doi.org/10.1051/0004-6361/200912812

Simulation of a flux emergence event and comparison with observations by Hinode

L. Yelles Chaouche, M. C. M. Cheung, S. K. Solanki, M. Schüssler and A. Lagg
Astronomy & Astrophysics 507 (3) L53 (2009)
https://doi.org/10.1051/0004-6361/200913181

Source region of the 18 November 2003 coronal mass ejection that led to the strongest magnetic storm of cycle 23

Nandita Srivastava, Shibu K. Mathew, Rohan E. Louis and Thomas Wiegelmann
Journal of Geophysical Research: Space Physics 114 (A3) (2009)
https://doi.org/10.1029/2008JA013845

Computer Vision/Computer Graphics CollaborationTechniques

Jong Kwan Lee and G. Allen Gary
Lecture Notes in Computer Science, Computer Vision/Computer Graphics CollaborationTechniques 5496 172 (2009)
https://doi.org/10.1007/978-3-642-01811-4_16

A CRITICAL ASSESSMENT OF NONLINEAR FORCE-FREE FIELD MODELING OF THE SOLAR CORONA FOR ACTIVE REGION 10953

Marc L. DeRosa, Carolus J. Schrijver, Graham Barnes, et al.
The Astrophysical Journal 696 (2) 1780 (2009)
https://doi.org/10.1088/0004-637X/696/2/1780

A first step in reconstructing the solar corona self-consistently with a magnetohydrostatic model during solar activity minimum

P. Ruan, T. Wiegelmann, B. Inhester, et al.
Astronomy & Astrophysics 481 (3) 827 (2008)
https://doi.org/10.1051/0004-6361:20078834

3D Magnetic Field Configuration of the 2006 December 13 Flare Extrapolated with the Optimization Method

Y. Guo, M. D. Ding, T. Wiegelmann and H. Li
The Astrophysical Journal 679 (2) 1629 (2008)
https://doi.org/10.1086/587684

Evolution of the flaring active region NOAA 10540 as a sequence of nonlinear force-free field extrapolations

J. K. Thalmann and T. Wiegelmann
Astronomy & Astrophysics 484 (2) 495 (2008)
https://doi.org/10.1051/0004-6361:200809508

A 3D sunspot model derived from an inversion of spectropolarimetric observations and its implications for the penumbral heating

C. Beck
Astronomy & Astrophysics 480 (3) 825 (2008)
https://doi.org/10.1051/0004-6361:20078409

Nonlinear Force‐free Field Modeling of a Solar Active Region around the Time of a Major Flare and Coronal Mass Ejection

C. J. Schrijver, M. L. DeRosa, T. Metcalf, et al.
The Astrophysical Journal 675 (2) 1637 (2008)
https://doi.org/10.1086/527413

Nonlinear force‐free modeling of the solar coronal magnetic field

T. Wiegelmann
Journal of Geophysical Research: Space Physics 113 (A3) (2008)
https://doi.org/10.1029/2007JA012432

Milne-Eddington inversions of the He I10 830 Å Stokes profiles: influence of the Paschen-Back effect

C. Sasso, A. Lagg and S. K. Solanki
Astronomy & Astrophysics 456 (1) 367 (2006)
https://doi.org/10.1051/0004-6361:20065257

Testing non-linear force-free coronal magnetic field extrapolations with the Titov-Démoulin equilibrium

T. Wiegelmann, B. Inhester, B. Kliem, G. Valori and T. Neukirch
Astronomy & Astrophysics 453 (2) 737 (2006)
https://doi.org/10.1051/0004-6361:20054751

Preprocessing of Vector Magnetograph Data for a Nonlinear Force-Free Magnetic Field Reconstruction

T. Wiegelmann, B. Inhester and T. Sakurai
Solar Physics 233 (2) 215 (2006)
https://doi.org/10.1007/s11207-006-2092-z

Magnetoacoustic Portals and the Basal Heating of the Solar Chromosphere

Stuart M. Jefferies, Scott W. McIntosh, James D. Armstrong, et al.
The Astrophysical Journal 648 (2) L151 (2006)
https://doi.org/10.1086/508165

Astrophysics in 2005

Virginia Trimble, Markus J. Aschwanden and Carl J. Hansen
Publications of the Astronomical Society of the Pacific 118 (845) 947 (2006)
https://doi.org/10.1086/506157

Nonlinear Force-Free Modeling of Coronal Magnetic Fields Part I: A Quantitative Comparison of Methods

Carolus J. Schrijver, Marc L. Derosa, Thomas R. Metcalf, et al.
Solar Physics 235 (1-2) 161 (2006)
https://doi.org/10.1007/s11207-006-0068-7