Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

On quasi-periodic motions around the triangular libration points of the real Earth–Moon system

X. Y. Hou and L. Liu
Celestial Mechanics and Dynamical Astronomy 108 (3) 301 (2010)
DOI: 10.1007/s10569-010-9305-3
See this article

Modern Celestial Mechanics: From Theory to Applications

Ch. Skokos
Modern Celestial Mechanics: From Theory to Applications 447 (2002)
DOI: 10.1007/978-94-017-2304-6_39
See this article

Modern Celestial Mechanics: From Theory to Applications

R. Dvorak and Á. Süli
Modern Celestial Mechanics: From Theory to Applications 77 (2002)
DOI: 10.1007/978-94-017-2304-6_6
See this article

On the Stability Regions of the Trojan Asteroids

Rudolf Dvorak and Richard Schwarz
Celestial Mechanics and Dynamical Astronomy 92 (1-3) 19 (2005)
DOI: 10.1007/s10569-005-2630-2
See this article

Formal Integrals and Nekhoroshev Stability in a Mapping Model for the Trojan Asteroids

Christos Efthymiopoulos
Celestial Mechanics and Dynamical Astronomy 92 (1-3) 29 (2005)
DOI: 10.1007/s10569-004-4495-1
See this article

The size of the stability regions of Jupiter Trojans

F. Freistetter
Astronomy & Astrophysics 453 (1) 353 (2006)
DOI: 10.1051/0004-6361:20054689
See this article

Commission 7: Celestial Mechanics and Dynamical Astronomy: (Mecanique Celeste Et Astronomie Dynamique)

John Hadjidemetriou, Andrea Milani, Anne Lemaître, et al.
Transactions of the International Astronomical Union 25 (01) 15 (2002)
DOI: 10.1017/S0251107X00001243
See this article

Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion

C. Efthymiopoulos and Z. Sandor
Monthly Notices of the Royal Astronomical Society 364 (1) 253 (2005)
DOI: 10.1111/j.1365-2966.2005.09572.x
See this article

On the stability of the secular evolution of the planar Sun–Jupiter–Saturn–Uranus system

M. Sansottera, U. Locatelli and A. Giorgilli
Mathematics and Computers in Simulation 88 1 (2013)
DOI: 10.1016/j.matcom.2010.11.018
See this article

On the construction of the Kolmogorov normal form for the Trojan asteroids

Frederic Gabern, Àngel Jorba and Ugo Locatelli
Nonlinearity 18 (4) 1705 (2005)
DOI: 10.1088/0951-7715/18/4/017
See this article

Survey of the stability region of hypothetical habitable Trojan planets

R. Schwarz, R. Dvorak, Á. Süli and B. Érdi
Astronomy & Astrophysics 474 (3) 1023 (2007)
DOI: 10.1051/0004-6361:20077994
See this article

Dynamics of the Jupiter Trojans with Saturn’s perturbation in the present configuration of the two planets

Xiyun Hou, Daniel J. Scheeres and Lin Liu
Celestial Mechanics and Dynamical Astronomy 119 (2) 119 (2014)
DOI: 10.1007/s10569-014-9544-9
See this article

Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability in the light of Kolmogorov and Nekhoroshev theories

Antonio Giorgilli, Ugo Locatelli and Marco Sansottera
Regular and Chaotic Dynamics 22 (1) 54 (2017)
DOI: 10.1134/S156035471701004X
See this article

Generalizing the restricted three-body problem. The Bianular and Tricircular coherent problems

F. Gabern and À. Jorba
Astronomy & Astrophysics 420 (2) 751 (2004)
DOI: 10.1051/0004-6361:20035799
See this article

Non-convergence of formal integrals of motion

G Contopoulos, C Efthymiopoulos and A Giorgilli
Journal of Physics A: Mathematical and General 36 (32) 8639 (2003)
DOI: 10.1088/0305-4470/36/32/306
See this article

Chaos and Stability in Planetary Systems

Rudolf Dvorak and Florian Freistetter
Lecture Notes in Physics, Chaos and Stability in Planetary Systems 683 3 (2005)
DOI: 10.1007/10978337_1
See this article

Nekhoroshev stability atL4orL5in the elliptic-restricted three-body problem - application to Trojan asteroids

Ch. Lhotka, C. Efthymiopoulos and R. Dvorak
Monthly Notices of the Royal Astronomical Society 384 (3) 1165 (2008)
DOI: 10.1111/j.1365-2966.2007.12794.x
See this article

A Comparison of the Dynamical Evolution of Planetary Systems

Kleomenis Tsiganis, Harry Varvoglis and Rudolf Dvorak
A Comparison of the Dynamical Evolution of Planetary Systems 71 (2005)
DOI: 10.1007/1-4020-4466-6_5
See this article

A Comparison of the Dynamical Evolution of Planetary Systems

P. Robutel, F. Gabern and A. Jorba
A Comparison of the Dynamical Evolution of Planetary Systems 53 (2005)
DOI: 10.1007/1-4020-4466-6_4
See this article

A Comparison of the Dynamical Evolution of Planetary Systems

Christos Efthymiopoulos
A Comparison of the Dynamical Evolution of Planetary Systems 29 (2005)
DOI: 10.1007/1-4020-4466-6_3
See this article

A Comparison of the Dynamical Evolution of Planetary Systems

Rudolf Dvorak and Richard Schwarz
A Comparison of the Dynamical Evolution of Planetary Systems 19 (2005)
DOI: 10.1007/1-4020-4466-6_2
See this article

The resonant structure of Jupiter's Trojan asteroids - II. What happens for different configurations of the planetary system

P. Robutel and J. Bodossian
Monthly Notices of the Royal Astronomical Society 399 (1) 69 (2009)
DOI: 10.1111/j.1365-2966.2009.15280.x
See this article

Dynamics of Small Solar System Bodies and Exoplanets

P. Robutel and J. Souchay
Lecture Notes in Physics, Dynamics of Small Solar System Bodies and Exoplanets 790 195 (2010)
DOI: 10.1007/978-3-642-04458-8_4
See this article

Chaotic Diffusion And Effective Stability of Jupiter Trojans

Kleomenis Tsiganis, Harry Varvoglis and Rudolf Dvorak
Celestial Mechanics and Dynamical Astronomy 92 (1-3) 71 (2005)
DOI: 10.1007/s10569-004-3975-7
See this article

The Observed Trojans and the Global Dynamics Around The Lagrangian Points of the Sun–Jupiter System

P. Robutel, F. Gabern and A. Jorba
Celestial Mechanics and Dynamical Astronomy 92 (1-3) 53 (2005)
DOI: 10.1007/s10569-004-5976-y
See this article