The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Euclid preparation
L. Leuzzi, M. Meneghetti, G. Angora, R. B. Metcalf, L. Moscardini, P. Rosati, P. Bergamini, F. Calura, B. Clément, R. Gavazzi, F. Gentile, M. Lochner, C. Grillo, G. Vernardos, N. Aghanim, A. Amara, L. Amendola, N. Auricchio, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, et al. Astronomy & Astrophysics 681 A68 (2024) https://doi.org/10.1051/0004-6361/202347244
Photometric Redshift Estimation of Quasars by a Cross-modal Contrast Learning Method
Photometric redshift estimation of galaxies in the DESI Legacy Imaging Surveys
Changhua Li, Yanxia Zhang, Chenzhou Cui, Dongwei Fan, Yongheng Zhao, Xue-Bing Wu, Jing-Yi Zhang, Yihan Tao, Jun Han, Yunfei Xu, Shanshan Li, Linying Mi, Boliang He, Zihan Kang, Youfen Wang, Hanxi Yang and Sisi Yang Monthly Notices of the Royal Astronomical Society 518(1) 513 (2022) https://doi.org/10.1093/mnras/stac3037
Galaxy correlation function and local density from photometric redshifts using the stochastic order redshift technique (SORT)
James Kakos, Joel R Primack, Aldo Rodríguez-Puebla, et al. Monthly Notices of the Royal Astronomical Society 514(2) 1857 (2022) https://doi.org/10.1093/mnras/stac1307
Mapping variations of redshift distributions with probability integral transforms
J Myles, D Gruen, A Amon, A Alarcon, J DeRose, S Everett, S Dodelson, G M Bernstein, A Campos, I Harrison, N MacCrann, J McCullough, M Raveri, C Sánchez, M A Troxel, B Yin, T M C Abbott, S Allam, O Alves, F Andrade-Oliveira, E Bertin, D Brooks, D L Burke, A Carnero Rosell, M Carrasco Kind, et al. Monthly Notices of the Royal Astronomical Society 519(2) 1792 (2022) https://doi.org/10.1093/mnras/stac3585
Photometric redshift estimation with convolutional neural networks and galaxy images: Case study of resolving biases in data-driven methods