The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Detection of Exoplanets in Transit Light Curves with Conditional Flow Matching and XGBoost
Stefano Fiscale, Alessio Ferone, Angelo Ciaramella, Laura Inno, Massimiliano Giordano Orsini, Giovanni Covone and Alessandra Rotundi Electronics 14(9) 1738 (2025) https://doi.org/10.3390/electronics14091738
Exoplanet transit candidate identification in TESS full-frame images via a transformer-based algorithm
Helem Salinas, Rafael Brahm, Greg Olmschenk, Richard K Barry, Karim Pichara, Stela Ishitani Silva and Vladimir Araujo Monthly Notices of the Royal Astronomical Society 538(3) 2031 (2025) https://doi.org/10.1093/mnras/staf347
Identifying Eclipsing Binary Stars with TESS Data Based on a New Hybrid Deep Learning Model
Ying Shan, Jing Chen, Zichong Zhang, Liang Wang, Zhiqiang Zou and Min Li Publications of the Astronomical Society of the Pacific 137(4) 044503 (2025) https://doi.org/10.1088/1538-3873/adc5a2
Stellar Classification with Vision Transformer and SDSS Photometric Images
The GPU phase folding and deep learning method for detecting exoplanet transits
Kaitlyn Wang, Jian Ge, Kevin Willis, Kevin Wang and Yinan Zhao Monthly Notices of the Royal Astronomical Society 528(3) 4053 (2024) https://doi.org/10.1093/mnras/stae245
DIAmante TESS AutoRegressive Planet Search (DTARPS). I. Analysis of 0.9 Million Light Curves
Elizabeth J. Melton, Eric D. Feigelson, Marco Montalto, Gabriel A. Caceres, Andrew W. Rosenswie and Cullen S. Abelson The Astronomical Journal 167(5) 202 (2024) https://doi.org/10.3847/1538-3881/ad29f0
Identifying Exoplanet Candidates Using WaveCeptionNet
AI-ready data in space science and solar physics: problems, mitigation and action plan
Bala Poduval, R. L. McPherron, R. Walker, M. D. Himes, K. M. Pitman, A. R. Azari, C. Shneider, A. K. Tiwari, S. Kapali, G. Bruno, M. K. Georgoulis, O. Verkhoglyadova, J. E. Borovsky, G. Lapenta, J. Liu, T. Alberti, P. Wintoft and S. Wing Frontiers in Astronomy and Space Sciences 10 (2023) https://doi.org/10.3389/fspas.2023.1203598
Stefano Fiscale, Laura Inno, Angelo Ciaramella, Alessio Ferone, Alessandra Rotundi, Pasquale De Luca, Ardelio Galletti, Livia Marcellino and Giovanni Covone 360 127 (2023) https://doi.org/10.1007/978-981-99-3592-5_12
Lessons learned from the 1st Ariel Machine Learning Challenge: Correcting transiting exoplanet light curves for stellar spots
Nikolaos Nikolaou, Ingo P Waldmann, Angelos Tsiaras, Mario Morvan, Billy Edwards, Kai Hou Yip, Alexandra Thompson, Giovanna Tinetti, Subhajit Sarkar, James M Dawson, Vadim Borisov, Gjergji Kasneci, Matej Petković, Tomaž Stepišnik, Tarek Al-Ubaidi, Rachel Louise Bailey, Michael Granitzer, Sahib Julka, Roman Kern, Patrick Ofner, Stefan Wagner, Lukas Heppe, Mirko Bunse, Katharina Morik and Luís F Simões RAS Techniques and Instruments 2(1) 695 (2023) https://doi.org/10.1093/rasti/rzad050
ExoplANNET: A deep learning algorithm to detect and identify planetary signals in radial velocity data
Identifying Exoplanets with Deep Learning. V. Improved Light-curve Classification for TESS Full-frame Image Observations
Evan Tey, Dan Moldovan, Michelle Kunimoto, Chelsea X. Huang, Avi Shporer, Tansu Daylan, Daniel Muthukrishna, Andrew Vanderburg, Anne Dattilo, George R. Ricker and S. Seager The Astronomical Journal 165(3) 95 (2023) https://doi.org/10.3847/1538-3881/acad85
Hunting for exocomet transits in the TESS database using the Random Forest method
D. V. DOBRYCHEVA, M. YU. VASYLENKO, I. V. KULYK, YA. V. PAVLENKO, O. S. SHUBINA, I. V. LUK’YANYK and P. P. KORSUN Kosmìčna nauka ì tehnologìâ 29(6) 68 (2023) https://doi.org/10.15407/knit2023.06.068
Distinguishing a planetary transit from false positives: a Transformer-based classification for planetary transit signals
Helem Salinas, Karim Pichara, Rafael Brahm, Francisco Pérez-Galarce and Domingo Mery Monthly Notices of the Royal Astronomical Society 522(3) 3201 (2023) https://doi.org/10.1093/mnras/stad1173
Identifying Exoplanets with Deep Learning. IV. Removing Stellar Activity Signals from Radial Velocity Measurements Using Neural Networks
Zoe. L. de Beurs, Andrew Vanderburg, Christopher J. Shallue, Xavier Dumusque, Andrew Collier Cameron, Christopher Leet, Lars A. Buchhave, Rosario Cosentino, Adriano Ghedina, Raphaëlle D. Haywood, Nicholas Langellier, David W. Latham, Mercedes López-Morales, Michel Mayor, Giusi Micela, Timothy W. Milbourne, Annelies Mortier, Emilio Molinari, Francesco Pepe, David F. Phillips, Matteo Pinamonti, Giampaolo Piotto, Ken Rice, Dimitar Sasselov, Alessandro Sozzetti, et al. The Astronomical Journal 164(2) 49 (2022) https://doi.org/10.3847/1538-3881/ac738e
The evolution of barred galaxies in the EAGLE simulations
Mitchell K Cavanagh, Kenji Bekki, Brent A Groves and Joel Pfeffer Monthly Notices of the Royal Astronomical Society 510(4) 5164 (2022) https://doi.org/10.1093/mnras/stab3786
Companion mass limits for 17 binary systems obtained with binary differential imaging and MagAO/Clio
Logan A Pearce, Jared R Males, Alycia J Weinberger, Joseph D Long, Katie M Morzinski, Laird M Close and Philip M Hinz Monthly Notices of the Royal Astronomical Society 515(3) 4487 (2022) https://doi.org/10.1093/mnras/stac2056
Automated identification of transiting exoplanet candidates in NASA Transiting Exoplanets Survey Satellite (TESS) data with machine learning methods
Radio Galaxy Zoo: giant radio galaxy classification using multidomain deep learning
H Tang, A M M Scaife, O I Wong and S S Shabala Monthly Notices of the Royal Astronomical Society 510(3) 4504 (2022) https://doi.org/10.1093/mnras/stab3553
Identify Light-curve Signals with Deep Learning Based Object Detection Algorithm. I. Transit Detection
ExoMiner: A Highly Accurate and Explainable Deep Learning Classifier That Validates 301 New Exoplanets
Hamed Valizadegan, Miguel J. S. Martinho, Laurent S. Wilkens, Jon M. Jenkins, Jeffrey C. Smith, Douglas A. Caldwell, Joseph D. Twicken, Pedro C. L. Gerum, Nikash Walia, Kaylie Hausknecht, Noa Y. Lubin, Stephen T. Bryson and Nikunj C. Oza The Astrophysical Journal 926(2) 120 (2022) https://doi.org/10.3847/1538-4357/ac4399
Photometric search for exomoons by using convolutional neural networks
A survey on machine learning based light curve analysis for variable astronomical sources
Ce Yu, Kun Li, Yanxia Zhang, Jian Xiao, Chenzhou Cui, Yihan Tao, Shanjiang Tang, Chao Sun and Chongke Bi WIREs Data Mining and Knowledge Discovery 11(5) (2021) https://doi.org/10.1002/widm.1425
Harnessing the power of CNNs for unevenly-sampled light-curves using Markov Transition Field
Peeking inside the Black Box: Interpreting Deep-learning Models for Exoplanet Atmospheric Retrievals
Kai Hou Yip, Quentin Changeat, Nikolaos Nikolaou, Mario Morvan, Billy Edwards, Ingo P. Waldmann and Giovanna Tinetti The Astronomical Journal 162(5) 195 (2021) https://doi.org/10.3847/1538-3881/ac1744
Exoplanet validation with machine learning: 50 new validated Kepler planets
David J Armstrong, Jevgenij Gamper and Theodoros Damoulas Monthly Notices of the Royal Astronomical Society 504(4) 5327 (2021) https://doi.org/10.1093/mnras/staa2498
Nigraha: Machine-learning-based pipeline to identify and evaluate planet candidates from TESS
Sriram Rao, Ashish Mahabal, Niyanth Rao and Cauligi Raghavendra Monthly Notices of the Royal Astronomical Society 502(2) 2845 (2021) https://doi.org/10.1093/mnras/stab203
Alleviating the transit timing variation bias in transit surveys
Image-based Classification of Variable Stars: First Results from Optical Gravitational Lensing Experiment Data
T. Szklenár, A. Bódi, D. Tarczay-Nehéz, K. Vida, G. Marton, Gy. Mező, A. Forró and R. Szabó The Astrophysical Journal Letters 897(1) L12 (2020) https://doi.org/10.3847/2041-8213/ab9ca4