Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Detection of Exoplanets in Transit Light Curves with Conditional Flow Matching and XGBoost

Stefano Fiscale, Alessio Ferone, Angelo Ciaramella, Laura Inno, Massimiliano Giordano Orsini, Giovanni Covone and Alessandra Rotundi
Electronics 14 (9) 1738 (2025)
https://doi.org/10.3390/electronics14091738

Exoplanet transit candidate identification in TESS full-frame images via a transformer-based algorithm

Helem Salinas, Rafael Brahm, Greg Olmschenk, Richard K Barry, Karim Pichara, Stela Ishitani Silva and Vladimir Araujo
Monthly Notices of the Royal Astronomical Society 538 (3) 2031 (2025)
https://doi.org/10.1093/mnras/staf347

Identifying Eclipsing Binary Stars with TESS Data Based on a New Hybrid Deep Learning Model

Ying Shan, Jing Chen, Zichong Zhang, Liang Wang, Zhiqiang Zou and Min Li
Publications of the Astronomical Society of the Pacific 137 (4) 044503 (2025)
https://doi.org/10.1088/1538-3873/adc5a2

The GPU phase folding and deep learning method for detecting exoplanet transits

Kaitlyn Wang, Jian Ge, Kevin Willis, Kevin Wang and Yinan Zhao
Monthly Notices of the Royal Astronomical Society 528 (3) 4053 (2024)
https://doi.org/10.1093/mnras/stae245

DIAmante TESS AutoRegressive Planet Search (DTARPS). I. Analysis of 0.9 Million Light Curves

Elizabeth J. Melton, Eric D. Feigelson, Marco Montalto, Gabriel A. Caceres, Andrew W. Rosenswie and Cullen S. Abelson
The Astronomical Journal 167 (5) 202 (2024)
https://doi.org/10.3847/1538-3881/ad29f0

Identifying Exoplanet Candidates Using WaveCeptionNet

Huiping Liao, Guangyue Ren, Xinghao Chen, Yuxiang Li and Guangwei Li
The Astronomical Journal 167 (4) 180 (2024)
https://doi.org/10.3847/1538-3881/ad298f

AI-ready data in space science and solar physics: problems, mitigation and action plan

Bala Poduval, R. L. McPherron, R. Walker, M. D. Himes, K. M. Pitman, A. R. Azari, C. Shneider, A. K. Tiwari, S. Kapali, G. Bruno, M. K. Georgoulis, O. Verkhoglyadova, J. E. Borovsky, G. Lapenta, J. Liu, T. Alberti, P. Wintoft and S. Wing
Frontiers in Astronomy and Space Sciences 10 (2023)
https://doi.org/10.3389/fspas.2023.1203598

Lessons learned from the 1st Ariel Machine Learning Challenge: Correcting transiting exoplanet light curves for stellar spots

Nikolaos Nikolaou, Ingo P Waldmann, Angelos Tsiaras, Mario Morvan, Billy Edwards, Kai Hou Yip, Alexandra Thompson, Giovanna Tinetti, Subhajit Sarkar, James M Dawson, Vadim Borisov, Gjergji Kasneci, Matej Petković, Tomaž Stepišnik, Tarek Al-Ubaidi, Rachel Louise Bailey, Michael Granitzer, Sahib Julka, Roman Kern, Patrick Ofner, Stefan Wagner, Lukas Heppe, Mirko Bunse, Katharina Morik and Luís F Simões
RAS Techniques and Instruments 2 (1) 695 (2023)
https://doi.org/10.1093/rasti/rzad050

ExoplANNET: A deep learning algorithm to detect and identify planetary signals in radial velocity data

L. A. Nieto and R. F. Díaz
Astronomy & Astrophysics 677 A48 (2023)
https://doi.org/10.1051/0004-6361/202346417

Stellar classification with convolutional neural networks and photometric images: a new catalogue of 50 million SDSS stars without spectra

Jing-Hang Shi, Bo Qiu, A-Li Luo, et al.
Monthly Notices of the Royal Astronomical Society 520 (2) 2269 (2023)
https://doi.org/10.1093/mnras/stad255

Identifying Exoplanets with Deep Learning. V. Improved Light-curve Classification for TESS Full-frame Image Observations

Evan Tey, Dan Moldovan, Michelle Kunimoto, Chelsea X. Huang, Avi Shporer, Tansu Daylan, Daniel Muthukrishna, Andrew Vanderburg, Anne Dattilo, George R. Ricker and S. Seager
The Astronomical Journal 165 (3) 95 (2023)
https://doi.org/10.3847/1538-3881/acad85

Hunting for exocomet transits in the TESS database using the Random Forest method

D. V. DOBRYCHEVA, M. YU. VASYLENKO, I. V. KULYK, YA. V. PAVLENKO, O. S. SHUBINA, I. V. LUK’YANYK and P. P. KORSUN
Kosmìčna nauka ì tehnologìâ 29 (6) 68 (2023)
https://doi.org/10.15407/knit2023.06.068

Distinguishing a planetary transit from false positives: a Transformer-based classification for planetary transit signals

Helem Salinas, Karim Pichara, Rafael Brahm, Francisco Pérez-Galarce and Domingo Mery
Monthly Notices of the Royal Astronomical Society 522 (3) 3201 (2023)
https://doi.org/10.1093/mnras/stad1173

Identifying Exoplanets with Deep Learning. IV. Removing Stellar Activity Signals from Radial Velocity Measurements Using Neural Networks

Zoe. L. de Beurs, Andrew Vanderburg, Christopher J. Shallue, Xavier Dumusque, Andrew Collier Cameron, Christopher Leet, Lars A. Buchhave, Rosario Cosentino, Adriano Ghedina, Raphaëlle D. Haywood, Nicholas Langellier, David W. Latham, Mercedes López-Morales, Michel Mayor, Giusi Micela, Timothy W. Milbourne, Annelies Mortier, Emilio Molinari, Francesco Pepe, David F. Phillips, Matteo Pinamonti, Giampaolo Piotto, Ken Rice, Dimitar Sasselov, Alessandro Sozzetti, et al.
The Astronomical Journal 164 (2) 49 (2022)
https://doi.org/10.3847/1538-3881/ac738e

The evolution of barred galaxies in the EAGLE simulations

Mitchell K Cavanagh, Kenji Bekki, Brent A Groves and Joel Pfeffer
Monthly Notices of the Royal Astronomical Society 510 (4) 5164 (2022)
https://doi.org/10.1093/mnras/stab3786

Companion mass limits for 17 binary systems obtained with binary differential imaging and MagAO/Clio

Logan A Pearce, Jared R Males, Alycia J Weinberger, Joseph D Long, Katie M Morzinski, Laird M Close and Philip M Hinz
Monthly Notices of the Royal Astronomical Society 515 (3) 4487 (2022)
https://doi.org/10.1093/mnras/stac2056

Automated identification of transiting exoplanet candidates in NASA Transiting Exoplanets Survey Satellite (TESS) data with machine learning methods

Leon Ofman, Amir Averbuch, Adi Shliselberg, et al.
New Astronomy 91 101693 (2022)
https://doi.org/10.1016/j.newast.2021.101693

Shallow Transits—Deep Learning. II. Identify Individual Exoplanetary Transits in Red Noise using Deep Learning

Elad Dvash, Yam Peleg, Shay Zucker and Raja Giryes
The Astronomical Journal 163 (5) 237 (2022)
https://doi.org/10.3847/1538-3881/ac5ea2

Radio Galaxy Zoo: giant radio galaxy classification using multidomain deep learning

H Tang, A M M Scaife, O I Wong and S S Shabala
Monthly Notices of the Royal Astronomical Society 510 (3) 4504 (2022)
https://doi.org/10.1093/mnras/stab3553

Identify Light-curve Signals with Deep Learning Based Object Detection Algorithm. I. Transit Detection

Kaiming Cui, Junjie Liu, Fabo Feng and Jifeng Liu
The Astronomical Journal 163 (1) 23 (2022)
https://doi.org/10.3847/1538-3881/ac3482

ExoMiner: A Highly Accurate and Explainable Deep Learning Classifier That Validates 301 New Exoplanets

Hamed Valizadegan, Miguel J. S. Martinho, Laurent S. Wilkens, Jon M. Jenkins, Jeffrey C. Smith, Douglas A. Caldwell, Joseph D. Twicken, Pedro C. L. Gerum, Nikash Walia, Kaylie Hausknecht, Noa Y. Lubin, Stephen T. Bryson and Nikunj C. Oza
The Astrophysical Journal 926 (2) 120 (2022)
https://doi.org/10.3847/1538-4357/ac4399

A survey on machine learning based light curve analysis for variable astronomical sources

Ce Yu, Kun Li, Yanxia Zhang, Jian Xiao, Chenzhou Cui, Yihan Tao, Shanjiang Tang, Chao Sun and Chongke Bi
WIREs Data Mining and Knowledge Discovery 11 (5) (2021)
https://doi.org/10.1002/widm.1425

Harnessing the power of CNNs for unevenly-sampled light-curves using Markov Transition Field

M. Bugueño, G. Molina, F. Mena, P. Olivares and M. Araya
Astronomy and Computing 35 100461 (2021)
https://doi.org/10.1016/j.ascom.2021.100461

Computational Science – ICCS 2021

Stefano Fiscale, Pasquale De Luca, Laura Inno, et al.
Lecture Notes in Computer Science, Computational Science – ICCS 2021 12746 420 (2021)
https://doi.org/10.1007/978-3-030-77977-1_34

Identifying potential exomoon signals with convolutional neural networks

Alex Teachey and David Kipping
Monthly Notices of the Royal Astronomical Society 508 (2) 2620 (2021)
https://doi.org/10.1093/mnras/stab2694

Peeking inside the Black Box: Interpreting Deep-learning Models for Exoplanet Atmospheric Retrievals

Kai Hou Yip, Quentin Changeat, Nikolaos Nikolaou, Mario Morvan, Billy Edwards, Ingo P. Waldmann and Giovanna Tinetti
The Astronomical Journal 162 (5) 195 (2021)
https://doi.org/10.3847/1538-3881/ac1744

Exoplanet validation with machine learning: 50 new validated Kepler planets

David J Armstrong, Jevgenij Gamper and Theodoros Damoulas
Monthly Notices of the Royal Astronomical Society 504 (4) 5327 (2021)
https://doi.org/10.1093/mnras/staa2498

Nigraha: Machine-learning-based pipeline to identify and evaluate planet candidates from TESS

Sriram Rao, Ashish Mahabal, Niyanth Rao and Cauligi Raghavendra
Monthly Notices of the Royal Astronomical Society 502 (2) 2845 (2021)
https://doi.org/10.1093/mnras/stab203

Detrending Exoplanetary Transit Light Curves with Long Short-term Memory Networks

Mario Morvan, Nikolaos Nikolaou, Angelos Tsiaras and Ingo P. Waldmann
The Astronomical Journal 159 (3) 109 (2020)
https://doi.org/10.3847/1538-3881/ab6aa7

Image-based Classification of Variable Stars: First Results from Optical Gravitational Lensing Experiment Data

T. Szklenár, A. Bódi, D. Tarczay-Nehéz, K. Vida, G. Marton, Gy. Mező, A. Forró and R. Szabó
The Astrophysical Journal Letters 897 (1) L12 (2020)
https://doi.org/10.3847/2041-8213/ab9ca4