Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

FORSE+: Simulating non-Gaussian CMB foregrounds at 3 arcmin in a stochastic way based on a generative adversarial network

Jian Yao, Nicoletta Krachmalnicoff, Marianna Foschi, Giuseppe Puglisi and Carlo Baccigalupi
Astronomy & Astrophysics 686 A290 (2024)
https://doi.org/10.1051/0004-6361/202449827

Self-supervised component separation for the extragalactic submillimetre sky

V. Bonjean, H. Tanimura, N. Aghanim, T. Bonnaire and M. Douspis
Astronomy & Astrophysics 686 A91 (2024)
https://doi.org/10.1051/0004-6361/202245624

Inference of the optical depth to reionization τ from Planck CMB maps with convolutional neural networks

Kevin Wolz, Nicoletta Krachmalnicoff and Luca Pagano
Astronomy & Astrophysics 676 A30 (2023)
https://doi.org/10.1051/0004-6361/202345982

Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning

A. Amerio, A. Cuoco and N. Fornengo
Journal of Cosmology and Astroparticle Physics 2023 (09) 029 (2023)
https://doi.org/10.1088/1475-7516/2023/09/029

Constraining the polarisation flux density and angle of point sources by training a convolutional neural network

J. M. Casas, L. Bonavera, J. González-Nuevo, et al.
Astronomy & Astrophysics 670 A76 (2023)
https://doi.org/10.1051/0004-6361/202244424

Analysing arrival directions of ultra-high-energy cosmic rays with convolutional neural networks

Oleg Kalashev, Maxim Pshirkov and Mikhail Zotov
Journal of Physics: Conference Series 2438 (1) 012067 (2023)
https://doi.org/10.1088/1742-6596/2438/1/012067

A novel cosmic filament catalogue from SDSS data

Javier Carrón Duque, Marina Migliaccio, Domenico Marinucci and Nicola Vittorio
Astronomy & Astrophysics 659 A166 (2022)
https://doi.org/10.1051/0004-6361/202141538

OSLO: On-the-Sphere Learning for Omnidirectional Images and Its Application to 360-Degree Image Compression

Navid Mahmoudian Bidgoli, Roberto G. de A. Azevedo, Thomas Maugey, Aline Roumy and Pascal Frossard
IEEE Transactions on Image Processing 31 5813 (2022)
https://doi.org/10.1109/TIP.2022.3202357

CENN: A fully convolutional neural network for CMB recovery in realistic microwave sky simulations

J. M. Casas, L. Bonavera, J. González-Nuevo, et al.
Astronomy & Astrophysics 666 A89 (2022)
https://doi.org/10.1051/0004-6361/202243450

A generative model of galactic dust emission using variational autoencoders

Ben Thorne, Lloyd Knox and Karthik Prabhu
Monthly Notices of the Royal Astronomical Society 504 (2) 2603 (2021)
https://doi.org/10.1093/mnras/stab1011

DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning

Z Lin, N Huang, C Avestruz, et al.
Monthly Notices of the Royal Astronomical Society 507 (3) 4149 (2021)
https://doi.org/10.1093/mnras/stab2229

Computer Vision – ACCV 2020

Chao Zhang, Ignas Budvytis, Stephan Liwicki and Roberto Cipolla
Lecture Notes in Computer Science, Computer Vision – ACCV 2020 12625 334 (2021)
https://doi.org/10.1007/978-3-030-69538-5_21

A convolutional-neural-network estimator of CMB constraints on dark matter energy injection

Wei-Chih Huang, Jui-Lin Kuo and Yue-Lin Sming Tsai
Journal of Cosmology and Astroparticle Physics 2021 (06) 025 (2021)
https://doi.org/10.1088/1475-7516/2021/06/025

Emulation of Cosmological Mass Maps with Conditional Generative Adversarial Networks

Nathanaël Perraudin, Sandro Marcon, Aurelien Lucchi and Tomasz Kacprzak
Frontiers in Artificial Intelligence 4 (2021)
https://doi.org/10.3389/frai.2021.673062

ForSE: A GAN-based Algorithm for Extending CMB Foreground Models to Subdegree Angular Scales

Nicoletta Krachmalnicoff and Giuseppe Puglisi
The Astrophysical Journal 911 (1) 42 (2021)
https://doi.org/10.3847/1538-4357/abe71c

The First Application of Neural Networks to the Analysis of the TUS Orbital Detector Data

M. Yu. Zotov and D. B. Sokolinskiy
Moscow University Physics Bulletin 75 (6) 657 (2020)
https://doi.org/10.3103/S0027134920060235

Foreground model recognition through Neural Networks for CMB B-mode observations

F. Farsian, N. Krachmalnicoff and C. Baccigalupi
Journal of Cosmology and Astroparticle Physics 2020 (07) 017 (2020)
https://doi.org/10.1088/1475-7516/2020/07/017

Classifying CMB time-ordered data through deep neural networks

Karim Pichara, Rolando Dünner, Loïc Maurin and Felipe Rojas
Monthly Notices of the Royal Astronomical Society 494 (3) 3741 (2020)
https://doi.org/10.1093/mnras/staa1009

Identifying nearby sources of ultra-high-energy cosmic rays with deep learning

Oleg Kalashev, Maxim Pshirkov and Mikhail Zotov
Journal of Cosmology and Astroparticle Physics 2020 (11) 005 (2020)
https://doi.org/10.1088/1475-7516/2020/11/005

Full-sky Cosmic Microwave Background Foreground Cleaning Using Machine Learning

Matthew A. Petroff, Graeme E. Addison, Charles L. Bennett and Janet L. Weiland
The Astrophysical Journal 903 (2) 104 (2020)
https://doi.org/10.3847/1538-4357/abb9a7

Inpainting Galactic Foreground Intensity and Polarization Maps Using Convolutional Neural Networks

Giuseppe Puglisi and Xiran Bai
The Astrophysical Journal 905 (2) 143 (2020)
https://doi.org/10.3847/1538-4357/abc47c

Parameter estimation for the cosmic microwave background with Bayesian neural networks

Héctor J. Hortúa, Riccardo Volpi, Dimitri Marinelli and Luigi Malagò
Physical Review D 102 (10) (2020)
https://doi.org/10.1103/PhysRevD.102.103509

DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications

N. Perraudin, M. Defferrard, T. Kacprzak and R. Sgier
Astronomy and Computing 27 130 (2019)
https://doi.org/10.1016/j.ascom.2019.03.004