The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Galaxy Spectra neural Network (GaSNet). II. Using deep learning for spectral classification and redshift predictions
Fucheng Zhong, Nicola R Napolitano, Caroline Heneka, Rui Li, Franz Erik Bauer, Nicolas Bouche, Johan Comparat, Young-Lo Kim, Jens-Kristian Krogager, Marcella Longhetti, Jonathan Loveday, Boudewijn F Roukema, Benedict L Rouse, Mara Salvato, Crescenzo Tortora, Roberto J Assef, Letizia P Cassarà, Luca Costantin, Scott M Croom, Luke J M Davies, Alexander Fritz, Guillaume Guiglion, Andrew Humphrey, Emanuela Pompei, Claudio Ricci, et al. Monthly Notices of the Royal Astronomical Society 532(1) 643 (2024) https://doi.org/10.1093/mnras/stae1461
Estimation of stellar mass and star formation rate based on galaxy images
Jing Zhong, Zhijie Deng, Xiangru Li, Lili Wang, Haifeng Yang, Hui Li and Xirong Zhao Monthly Notices of the Royal Astronomical Society 531(1) 2011 (2024) https://doi.org/10.1093/mnras/stae1271
Euclid: Identifying the reddest high-redshift galaxies in the Euclid Deep Fields with gradient-boosted trees
T. Signor, G. Rodighiero, L. Bisigello, M. Bolzonella, K. I. Caputi, E. Daddi, G. De Lucia, A. Enia, L. Gabarra, C. Gruppioni, A. Humphrey, F. La Franca, C. Mancini, L. Pozzetti, S. Serjeant, L. Spinoglio, S. E. van Mierlo, S. Andreon, N. Auricchio, M. Baldi, S. Bardelli, P. Battaglia, R. Bender, C. Bodendorf, D. Bonino, et al. Astronomy & Astrophysics 685 A127 (2024) https://doi.org/10.1051/0004-6361/202348737
Artificial Intelligence in Astronomical Optical Telescopes: Present Status and Future Perspectives
Kang Huang, Tianzhu Hu, Jingyi Cai, Xiushan Pan, Yonghui Hou, Lingzhe Xu, Huaiqing Wang, Yong Zhang and Xiangqun Cui Universe 10(5) 210 (2024) https://doi.org/10.3390/universe10050210
hayate: photometric redshift estimation by hybridizing machine learning with template fitting
Shingo Tanigawa, K Glazebrook, C Jacobs, I Labbe and A K Qin Monthly Notices of the Royal Astronomical Society 530(2) 2012 (2024) https://doi.org/10.1093/mnras/stae411
PICZL: Image-based photometric redshifts for AGN
W. Roster, M. Salvato, S. Krippendorf, A. Saxena, R. Shirley, J. Buchner, J. Wolf, T. Dwelly, F. E. Bauer, J. Aird, C. Ricci, R. J. Assef, S. F. Anderson, X. Liu, A. Merloni, J. Weller and K. Nandra Astronomy & Astrophysics 692 A260 (2024) https://doi.org/10.1051/0004-6361/202452361
Euclid preparation
L. Leuzzi, M. Meneghetti, G. Angora, R. B. Metcalf, L. Moscardini, P. Rosati, P. Bergamini, F. Calura, B. Clément, R. Gavazzi, F. Gentile, M. Lochner, C. Grillo, G. Vernardos, N. Aghanim, A. Amara, L. Amendola, N. Auricchio, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, et al. Astronomy & Astrophysics 681 A68 (2024) https://doi.org/10.1051/0004-6361/202347244
Improving Photometric Redshift Estimation for Cosmology with LSST Using Bayesian Neural Networks
Evan Jones, Tuan Do, Bernie Boscoe, Jack Singal, Yujie Wan and Zooey Nguyen The Astrophysical Journal 964(2) 130 (2024) https://doi.org/10.3847/1538-4357/ad2070
Redshift Prediction with Images for Cosmology Using a Bayesian Convolutional Neural Network with Conformal Predictions
Evan Jones, Tuan Do, Yun Qi Li, Kevin Alfaro, Jack Singal and Bernie Boscoe The Astrophysical Journal 974(2) 159 (2024) https://doi.org/10.3847/1538-4357/ad6d5a
Euclid preparation
A. Enia, M. Bolzonella, L. Pozzetti, A. Humphrey, P. A. C. Cunha, W. G. Hartley, F. Dubath, S. Paltani, X. Lopez Lopez, S. Quai, S. Bardelli, L. Bisigello, S. Cavuoti, G. De Lucia, M. Ginolfi, A. Grazian, M. Siudek, C. Tortora, G. Zamorani, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, et al. Astronomy & Astrophysics 691 A175 (2024) https://doi.org/10.1051/0004-6361/202451425
CLAP
Qiufan Lin, Hengxin Ruan, Dominique Fouchez, Shupei Chen, Rui Li, Paulo Montero-Camacho, Nicola R. Napolitano, Yuan-Sen Ting and Wei Zhang Astronomy & Astrophysics 691 A331 (2024) https://doi.org/10.1051/0004-6361/202349113
Estimating photometric redshifts for galaxies from the DESI Legacy Imaging Surveys with Bayesian neural networks trained by DESI EDR
Xingchen Zhou, Nan Li, Hu Zou, Yan Gong, Furen Deng, Xuelei Chen, Qian Yu, Zizhao He and Boyi Ding Monthly Notices of the Royal Astronomical Society 536(3) 2260 (2024) https://doi.org/10.1093/mnras/stae2713
Galaxy Spectroscopy without Spectra: Galaxy Properties from Photometric Images with Conditional Diffusion Models
Lars Doorenbos, Eva Sextl, Kevin Heng, Stefano Cavuoti, Massimo Brescia, Olena Torbaniuk, Giuseppe Longo, Raphael Sznitman and Pablo Márquez-Neila The Astrophysical Journal 977(1) 131 (2024) https://doi.org/10.3847/1538-4357/ad8bbe
Recovered supernova Ia rate from simulated LSST images
V. Petrecca, M. T. Botticella, E. Cappellaro, L. Greggio, B. O. Sánchez, A. Möller, M. Sako, M. L. Graham, M. Paolillo and F. Bianco Astronomy & Astrophysics 686 A11 (2024) https://doi.org/10.1051/0004-6361/202349012
Photometric redshift estimation for CSST survey with LSTM neural networks
Zhijian Luo, Yicheng Li, Junhao Lu, Zhu Chen, Liping Fu, Shaohua Zhang, Hubing Xiao, Wei Du, Yan Gong, Chenggang Shu, Wenwen Ma, Xianmin Meng, Xingchen Zhou and Zuhui Fan Monthly Notices of the Royal Astronomical Society 535(2) 1844 (2024) https://doi.org/10.1093/mnras/stae2446
AstroCLIP: a cross-modal foundation model for galaxies
Liam Parker, Francois Lanusse, Siavash Golkar, Leopoldo Sarra, Miles Cranmer, Alberto Bietti, Michael Eickenberg, Geraud Krawezik, Michael McCabe, Rudy Morel, Ruben Ohana, Mariel Pettee, Bruno Régaldo-Saint Blancard, Kyunghyun Cho and Shirley Ho Monthly Notices of the Royal Astronomical Society 531(4) 4990 (2024) https://doi.org/10.1093/mnras/stae1450
Photometry of Saturated Stars with Neural Networks
Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning
Xingchen Zhou, Yan Gong, Xin Zhang, Nan Li, Xian-Min Meng, Xuelei Chen, Run Wen, Yunkun Han, Hu Zou, Xian Zhong Zheng, Xiaohu Yang, Hong Guo and Pengjie Zhang The Astrophysical Journal 977(1) 69 (2024) https://doi.org/10.3847/1538-4357/ad8bbf
Multimodality for improved CNN photometric redshifts
SAGAbg. II. The Low-mass Star-forming Sequence Evolves Significantly between 0.05 < z < 0.21
Erin Kado-Fong, Marla Geha, Yao-Yuan Mao, Mithi A. C. de los Reyes, Risa H. Wechsler, Benjamin Weiner, Yasmeen Asali, Nitya Kallivayalil, Ethan O. Nadler, Erik J. Tollerud and Yunchong Wang The Astrophysical Journal 976(1) 83 (2024) https://doi.org/10.3847/1538-4357/ad8137
Photometric Redshift Estimation of Quasars by a Cross-modal Contrast Learning Method
The Zwicky Transient Facility Bright Transient Survey. III. BTSbot: Automated Identification and Follow-up of Bright Transients with Deep Learning
Nabeel Rehemtulla, Adam A. Miller, Theophile Jegou Du Laz, Michael W. Coughlin, Christoffer Fremling, Daniel A. Perley, Yu-Jing Qin, Jesper Sollerman, Ashish A. Mahabal, Russ R. Laher, Reed Riddle, Ben Rusholme and Shrinivas R. Kulkarni The Astrophysical Journal 972(1) 7 (2024) https://doi.org/10.3847/1538-4357/ad5666
Photometric redshifts probability density estimation from recurrent neural networks in the DECam local volume exploration survey data release 2
G. Teixeira, C.R. Bom, L. Santana-Silva, B.M.O. Fraga, P. Darc, R. Teixeira, J.F. Wu, P.S. Ferguson, C.E. Martínez-Vázquez, A.H. Riley, A. Drlica-Wagner, Y. Choi, B. Mutlu-Pakdil, A.B. Pace, J.D. Sakowska and G.S. Stringfellow Astronomy and Computing 49 100886 (2024) https://doi.org/10.1016/j.ascom.2024.100886
Enhanced astronomical source classification with integration of attention mechanisms and vision transformers
Srinadh Reddy Bhavanam, Sumohana S. Channappayya, Srijith P. K and Shantanu Desai Astrophysics and Space Science 369(8) (2024) https://doi.org/10.1007/s10509-024-04357-9
Applications of artificial intelligence/machine learning to high-performance composites
Stellar Karaoke: deep blind separation of terrestrial atmospheric effects out of stellar spectra by velocity whitening
Nima Sedaghat, Brianna M Smart, J Bryce Kalmbach, Erin L Howard and Hamidreza Amindavar Monthly Notices of the Royal Astronomical Society 526(1) 1559 (2023) https://doi.org/10.1093/mnras/stad2686
Preliminary Study of Photometric Redshifts Based on the Wide Field Survey Telescope
M Treyer, R Ait Ouahmed, J Pasquet, S Arnouts, E Bertin and D Fouchez Monthly Notices of the Royal Astronomical Society 527(1) 651 (2023) https://doi.org/10.1093/mnras/stad3171
Identification of Blue Horizontal Branch Stars with Multimodal Fusion
Target Selection and Sample Characterization for the DESI LOW-Z Secondary Target Program
Elise Darragh-Ford, John F. Wu, Yao-Yuan Mao, Risa H. Wechsler, Marla Geha, Jaime E. Forero-Romero, ChangHoon Hahn, Nitya Kallivayalil, John Moustakas, Ethan O. Nadler, Marta Nowotka, J. E. G. Peek, Erik J. Tollerud, Benjamin Weiner, J. Aguilar, S. Ahlen, D. Brooks, A. P. Cooper, A. de la Macorra, A. Dey, K. Fanning, A. Font-Ribera, S. Gontcho A Gontcho, K. Honscheid, T. Kisner, et al. The Astrophysical Journal 954(2) 149 (2023) https://doi.org/10.3847/1538-4357/ace902
AutoSourceID-FeatureExtractor
F. Stoppa, R. Ruiz de Austri, P. Vreeswijk, S. Bhattacharyya, S. Caron, S. Bloemen, G. Zaharijas, G. Principe, V. Vodeb, P. J. Groot, E. Cator and G. Nelemans Astronomy & Astrophysics 680 A108 (2023) https://doi.org/10.1051/0004-6361/202346983
Photo-zSNthesis: Converting Type Ia Supernova Lightcurves to Redshift Estimates via Deep Learning
Photometric redshift estimation of quasars with fused features from photometric data and images
Lin Yao, Bo Qiu, A-Li Luo, Jianwei Zhou, Kuang Wu, Xiao Kong, Yuanbo Liu, Guiyu Zhao and Kun Wang Monthly Notices of the Royal Astronomical Society 523(4) 5799 (2023) https://doi.org/10.1093/mnras/stad1842
Searching for Dwarf Hα Emission-line Galaxies within Voids. I. Survey Methods and First Observations
Christian D. Draper, J. Ward Moody, Stephen R. McNeil, Michael D. Joner, Rochelle Steele and Jackson Steele The Astrophysical Journal 950(2) 189 (2023) https://doi.org/10.3847/1538-4357/acd10c
Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations
A Humphrey, P A C Cunha, A Paulino-Afonso, et al. Monthly Notices of the Royal Astronomical Society 520(1) 305 (2023) https://doi.org/10.1093/mnras/stac3596
The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning
Optimized Photometric Redshifts for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)
Dritan Kodra, Brett H. Andrews, Jeffrey A. Newman, Steven L. Finkelstein, Adriano Fontana, Nimish Hathi, Mara Salvato, Tommy Wiklind, Stijn Wuyts, Adam Broussard, Nima Chartab, Christopher Conselice, M. C. Cooper, Avishai Dekel, Mark Dickinson, Henry C. Ferguson, Eric Gawiser, Norman A. Grogin, Kartheik Iyer, Jeyhan Kartaltepe, Susan Kassin, Anton M. Koekemoer, David C. Koo, Ray A. Lucas, Kameswara Bharadwaj Mantha, et al. The Astrophysical Journal 942(1) 36 (2023) https://doi.org/10.3847/1538-4357/ac9f12
High-fidelity reproduction of central galaxy joint distributions with neural networks
Natália V N Rodrigues, Natalí S M de Santi, Antonio D Montero-Dorta and L Raul Abramo Monthly Notices of the Royal Astronomical Society 522(3) 3236 (2023) https://doi.org/10.1093/mnras/stad1186
The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys
Wasserstein distance as a new tool for discriminating cosmologies through the topology of large-scale structure
Maksym Tsizh, Vitalii Tymchyshyn and Franco Vazza Monthly Notices of the Royal Astronomical Society 522(2) 2697 (2023) https://doi.org/10.1093/mnras/stad1121
Identification of Galaxy–Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning
E. A. Zaborowski, A. Drlica-Wagner, F. Ashmead, J. F. Wu, R. Morgan, C. R. Bom, A. J. Shajib, S. Birrer, W. Cerny, E. J. Buckley-Geer, B. Mutlu-Pakdil, P. S. Ferguson, K. Glazebrook, S. J. Gonzalez Lozano, Y. Gordon, M. Martinez, V. Manwadkar, J. O’Donnell, J. Poh, A. Riley, J. D. Sakowska, L. Santana-Silva, B. X. Santiago, D. Sluse, C. Y. Tan, et al. The Astrophysical Journal 954(1) 68 (2023) https://doi.org/10.3847/1538-4357/ace4ba
The Young Supernova Experiment Data Release 1 (YSE DR1): Light Curves and Photometric Classification of 1975 Supernovae
P. D. Aleo, K. Malanchev, S. Sharief, D. O. Jones, G. Narayan, R. J. Foley, V. A. Villar, C. R. Angus, V. F. Baldassare, M. J. Bustamante-Rosell, D. Chatterjee, C. Cold, D. A. Coulter, K. W. Davis, S. Dhawan, M. R. Drout, A. Engel, K. D. French, A. Gagliano, C. Gall, J. Hjorth, M. E. Huber, W. V. Jacobson-Galán, C. D. Kilpatrick, D. Langeroodi, et al. The Astrophysical Journal Supplement Series 266(1) 9 (2023) https://doi.org/10.3847/1538-4365/acbfba
Automatic detection of low surface brightness galaxies from Sloan Digital Sky Survey images
Zhenping Yi, Jia Li, Wei Du, Meng Liu, Zengxu Liang, Yongguang Xing, Jingchang Pan, Yude Bu, Xiaoming Kong and Hong Wu Monthly Notices of the Royal Astronomical Society 513(3) 3972 (2022) https://doi.org/10.1093/mnras/stac775
Photometric identification of compact galaxies, stars, and quasars using multiple neural networks
Extending the SAGA Survey (xSAGA). I. Satellite Radial Profiles as a Function of Host-galaxy Properties
John F. Wu, J. E. G. Peek, Erik J. Tollerud, Yao-Yuan Mao, Ethan O. Nadler, Marla Geha, Risa H. Wechsler, Nitya Kallivayalil and Benjamin J. Weiner The Astrophysical Journal 927(1) 121 (2022) https://doi.org/10.3847/1538-4357/ac4eea
DeepForge for astronomy: Deep learning SDSS redshifts from images
B/PS bulges in DESI Legacy edge-on galaxies – I. Sample building
Alexander A Marchuk, Anton A Smirnov, Natalia Y Sotnikova, Dmitriy A Bunakalya, Sergey S Savchenko, Vladimir P Reshetnikov, Pavel A Usachev, Iliya S Tikhonenko, Viktor D Zozulia and Daria A Zakharova Monthly Notices of the Royal Astronomical Society 512(1) 1371 (2022) https://doi.org/10.1093/mnras/stac599
Data-driven photometric redshift estimation from type Ia supernovae light curves
Felipe M F de Oliveira, Marcelo Vargas dos Santos and Ribamar R R Reis Monthly Notices of the Royal Astronomical Society 518(2) 2385 (2022) https://doi.org/10.1093/mnras/stac3202
Extracting photometric redshift from galaxy flux and image data using neural networks in the CSST survey
Xingchen Zhou, Yan Gong, Xian-Min Meng, et al. Monthly Notices of the Royal Astronomical Society 512(3) 4593 (2022) https://doi.org/10.1093/mnras/stac786
ERGO-ML I: inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks
Lukas Eisert, Annalisa Pillepich, Dylan Nelson, et al. Monthly Notices of the Royal Astronomical Society 519(2) 2199 (2022) https://doi.org/10.1093/mnras/stac3295
Deep learning methods for obtaining photometric redshift estimations from images
Ben Henghes, Jeyan Thiyagalingam, Connor Pettitt, Tony Hey and Ofer Lahav Monthly Notices of the Royal Astronomical Society 512(2) 1696 (2022) https://doi.org/10.1093/mnras/stac480
PhotoRedshift-MML: A multimodal machine learning method for estimating photometric redshifts of quasars
Event Detection and Reconstruction Using Neural Networks in TES Devices: a Case Study for Athena/X-IFU
J. Vega-Ferrero, M. T. Ceballos, B. Cobo, et al. Publications of the Astronomical Society of the Pacific 134(1032) 024504 (2022) https://doi.org/10.1088/1538-3873/ac5159
Photometric redshifts from SDSS images with an interpretable deep capsule network
Biprateep Dey, Brett H Andrews, Jeffrey A Newman, Yao-Yuan Mao, Markus Michael Rau and Rongpu Zhou Monthly Notices of the Royal Astronomical Society 515(4) 5285 (2022) https://doi.org/10.1093/mnras/stac2105
Predicting the Spectrum of UGC 2885, Rubin’s Galaxy with Machine Learning
Benne W. Holwerda, John F. Wu, William C. Keel, Jason Young, Ren Mullins, Joannah Hinz, K. E. Saavik Ford, Pauline Barmby, Rupali Chandar, Jeremy Bailin, Josh Peek, Tim Pickering and Torsten Böker The Astrophysical Journal 914(2) 142 (2021) https://doi.org/10.3847/1538-4357/abffcc
SILVERRUSH X: Machine Learning-aided Selection of 9318 LAEs at z = 2.2, 3.3, 4.9, 5.7, 6.6, and 7.0 from the HSC SSP and CHORUS Survey Data
Yoshiaki Ono, Ryohei Itoh, Takatoshi Shibuya, Masami Ouchi, Yuichi Harikane, Satoshi Yamanaka, Akio K. Inoue, Toshiyuki Amagasa, Daichi Miura, Maiki Okura, Kazuhiro Shimasaku, Ikuru Iwata, Yoshiaki Taniguchi, Seiji Fujimoto, Masanori Iye, Anton T. Jaelani, Nobunari Kashikawa, Shotaro Kikuchihara, Satoshi Kikuta, Masakazu A. R. Kobayashi, Haruka Kusakabe, Chien-Hsiu Lee, Yongming Liang, Yoshiki Matsuoka, Rieko Momose, et al. The Astrophysical Journal 911(2) 78 (2021) https://doi.org/10.3847/1538-4357/abea15
The HectoMAP Redshift Survey: First Data Release
Jubee Sohn, Margaret J. Geller, Ho Seong Hwang, Daniel G. Fabricant, Sean M. Moran and Yousuke Utsumi The Astrophysical Journal 909(2) 129 (2021) https://doi.org/10.3847/1538-4357/abd9be
Twenty-First-Century Statistical and Computational Challenges in Astrophysics
Predicting bulge to total luminosity ratio of galaxies using deep learning
Harsh Grover, Omkar Bait, Yogesh Wadadekar and Preetish K Mishra Monthly Notices of the Royal Astronomical Society 506(3) 3313 (2021) https://doi.org/10.1093/mnras/stab1935
Benchmarking and scalability of machine-learning methods for photometric redshift estimation
Ben Henghes, Connor Pettitt, Jeyan Thiyagalingam, Tony Hey and Ofer Lahav Monthly Notices of the Royal Astronomical Society 505(4) 4847 (2021) https://doi.org/10.1093/mnras/stab1513
Pushing automated morphological classifications to their limits with the Dark Energy Survey
J Vega-Ferrero, H Domínguez Sánchez, M Bernardi, et al. Monthly Notices of the Royal Astronomical Society 506(2) 1927 (2021) https://doi.org/10.1093/mnras/stab594
Quantifying Non-parametric Structure of High-redshift Galaxies with Deep Learning
Construction of a far-ultraviolet all-sky map from an incomplete survey: application of a deep learning algorithm
Young-Soo Jo, Yeon-Ju Choi, Min-Gi Kim, et al. Monthly Notices of the Royal Astronomical Society 502(3) 3200 (2021) https://doi.org/10.1093/mnras/stab066
Improving the reliability of photometric redshift with machine learning
Oleksandra Razim, Stefano Cavuoti, Massimo Brescia, et al. Monthly Notices of the Royal Astronomical Society 507(4) 5034 (2021) https://doi.org/10.1093/mnras/stab2334
Z-Sequence: photometric redshift predictions for galaxy clusters with sequential random k-nearest neighbours
Weak-lensing Mass Reconstruction of Galaxy Clusters with a Convolutional Neural Network
Sungwook E. 성욱 Hong 홍, Sangnam Park, M. James Jee, Dongsu Bak and Sangjun Cha The Astrophysical Journal 923(2) 266 (2021) https://doi.org/10.3847/1538-4357/ac3090
Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case
Photometric Redshifts with the LSST. II. The Impact of Near-infrared and Near-ultraviolet Photometry
Melissa L. Graham, Andrew J. Connolly, Winnie Wang, Samuel J. Schmidt, Christopher B. Morrison, Željko Ivezić, Sébastien Fabbro, Patrick Côté, Scott F. Daniel, R. Lynne Jones, Mario Jurić, Peter Yoachim and J. Bryce Kalmbach The Astronomical Journal 159(6) 258 (2020) https://doi.org/10.3847/1538-3881/ab8a43
On Neural Architectures for Astronomical Time-series Classification with Application to Variable Stars