Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Inferring redshift and galaxy properties via a multi-task neural net with probabilistic outputs

Michele Ginolfi, Filippo Mannucci, Francesco Belfiore, Alessandro Marconi, Nicholas Boardman, Lucia Pozzetti, Micol Bolzonella, Enrico Di Teodoro, Giovanni Cresci, Vivienne Wild, Myriam Rodrigues, Roberto Maiolino, Michele Cirasuolo and Ernesto Oliva
Astronomy & Astrophysics 693 A73 (2025)
https://doi.org/10.1051/0004-6361/202452799

GAINN: The Galaxy Assembly and Interaction Neural Networks for High-redshift JWST Observations

Lillian Santos-Olmsted, Kirk S. S. Barrow and Tilman Hartwig
The Astrophysical Journal 969 (2) 144 (2024)
https://doi.org/10.3847/1538-4357/ad46fd

Galaxy Spectra neural Network (GaSNet). II. Using deep learning for spectral classification and redshift predictions

Fucheng Zhong, Nicola R Napolitano, Caroline Heneka, Rui Li, Franz Erik Bauer, Nicolas Bouche, Johan Comparat, Young-Lo Kim, Jens-Kristian Krogager, Marcella Longhetti, Jonathan Loveday, Boudewijn F Roukema, Benedict L Rouse, Mara Salvato, Crescenzo Tortora, Roberto J Assef, Letizia P Cassarà, Luca Costantin, Scott M Croom, Luke J M Davies, Alexander Fritz, Guillaume Guiglion, Andrew Humphrey, Emanuela Pompei, Claudio Ricci, et al.
Monthly Notices of the Royal Astronomical Society 532 (1) 643 (2024)
https://doi.org/10.1093/mnras/stae1461

Estimation of stellar mass and star formation rate based on galaxy images

Jing Zhong, Zhijie Deng, Xiangru Li, Lili Wang, Haifeng Yang, Hui Li and Xirong Zhao
Monthly Notices of the Royal Astronomical Society 531 (1) 2011 (2024)
https://doi.org/10.1093/mnras/stae1271

Euclid: Identifying the reddest high-redshift galaxies in the Euclid Deep Fields with gradient-boosted trees

T. Signor, G. Rodighiero, L. Bisigello, M. Bolzonella, K. I. Caputi, E. Daddi, G. De Lucia, A. Enia, L. Gabarra, C. Gruppioni, A. Humphrey, F. La Franca, C. Mancini, L. Pozzetti, S. Serjeant, L. Spinoglio, S. E. van Mierlo, S. Andreon, N. Auricchio, M. Baldi, S. Bardelli, P. Battaglia, R. Bender, C. Bodendorf, D. Bonino, et al.
Astronomy & Astrophysics 685 A127 (2024)
https://doi.org/10.1051/0004-6361/202348737

Artificial Intelligence in Astronomical Optical Telescopes: Present Status and Future Perspectives

Kang Huang, Tianzhu Hu, Jingyi Cai, Xiushan Pan, Yonghui Hou, Lingzhe Xu, Huaiqing Wang, Yong Zhang and Xiangqun Cui
Universe 10 (5) 210 (2024)
https://doi.org/10.3390/universe10050210

hayate: photometric redshift estimation by hybridizing machine learning with template fitting

Shingo Tanigawa, K Glazebrook, C Jacobs, I Labbe and A K Qin
Monthly Notices of the Royal Astronomical Society 530 (2) 2012 (2024)
https://doi.org/10.1093/mnras/stae411

PICZL: Image-based photometric redshifts for AGN

W. Roster, M. Salvato, S. Krippendorf, A. Saxena, R. Shirley, J. Buchner, J. Wolf, T. Dwelly, F. E. Bauer, J. Aird, C. Ricci, R. J. Assef, S. F. Anderson, X. Liu, A. Merloni, J. Weller and K. Nandra
Astronomy & Astrophysics 692 A260 (2024)
https://doi.org/10.1051/0004-6361/202452361

Euclid preparation

L. Leuzzi, M. Meneghetti, G. Angora, R. B. Metcalf, L. Moscardini, P. Rosati, P. Bergamini, F. Calura, B. Clément, R. Gavazzi, F. Gentile, M. Lochner, C. Grillo, G. Vernardos, N. Aghanim, A. Amara, L. Amendola, N. Auricchio, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, et al.
Astronomy & Astrophysics 681 A68 (2024)
https://doi.org/10.1051/0004-6361/202347244

Improving Photometric Redshift Estimation for Cosmology with LSST Using Bayesian Neural Networks

Evan Jones, Tuan Do, Bernie Boscoe, Jack Singal, Yujie Wan and Zooey Nguyen
The Astrophysical Journal 964 (2) 130 (2024)
https://doi.org/10.3847/1538-4357/ad2070

Redshift Prediction with Images for Cosmology Using a Bayesian Convolutional Neural Network with Conformal Predictions

Evan Jones, Tuan Do, Yun Qi Li, Kevin Alfaro, Jack Singal and Bernie Boscoe
The Astrophysical Journal 974 (2) 159 (2024)
https://doi.org/10.3847/1538-4357/ad6d5a

Euclid preparation

A. Enia, M. Bolzonella, L. Pozzetti, A. Humphrey, P. A. C. Cunha, W. G. Hartley, F. Dubath, S. Paltani, X. Lopez Lopez, S. Quai, S. Bardelli, L. Bisigello, S. Cavuoti, G. De Lucia, M. Ginolfi, A. Grazian, M. Siudek, C. Tortora, G. Zamorani, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, et al.
Astronomy & Astrophysics 691 A175 (2024)
https://doi.org/10.1051/0004-6361/202451425

CLAP

Qiufan Lin, Hengxin Ruan, Dominique Fouchez, Shupei Chen, Rui Li, Paulo Montero-Camacho, Nicola R. Napolitano, Yuan-Sen Ting and Wei Zhang
Astronomy & Astrophysics 691 A331 (2024)
https://doi.org/10.1051/0004-6361/202349113

Estimating photometric redshifts for galaxies from the DESI Legacy Imaging Surveys with Bayesian neural networks trained by DESI EDR

Xingchen Zhou, Nan Li, Hu Zou, Yan Gong, Furen Deng, Xuelei Chen, Qian Yu, Zizhao He and Boyi Ding
Monthly Notices of the Royal Astronomical Society 536 (3) 2260 (2024)
https://doi.org/10.1093/mnras/stae2713

Galaxy Spectroscopy without Spectra: Galaxy Properties from Photometric Images with Conditional Diffusion Models

Lars Doorenbos, Eva Sextl, Kevin Heng, Stefano Cavuoti, Massimo Brescia, Olena Torbaniuk, Giuseppe Longo, Raphael Sznitman and Pablo Márquez-Neila
The Astrophysical Journal 977 (1) 131 (2024)
https://doi.org/10.3847/1538-4357/ad8bbe

Recovered supernova Ia rate from simulated LSST images

V. Petrecca, M. T. Botticella, E. Cappellaro, L. Greggio, B. O. Sánchez, A. Möller, M. Sako, M. L. Graham, M. Paolillo and F. Bianco
Astronomy & Astrophysics 686 A11 (2024)
https://doi.org/10.1051/0004-6361/202349012

Photometric redshift estimation for CSST survey with LSTM neural networks

Zhijian Luo, Yicheng Li, Junhao Lu, Zhu Chen, Liping Fu, Shaohua Zhang, Hubing Xiao, Wei Du, Yan Gong, Chenggang Shu, Wenwen Ma, Xianmin Meng, Xingchen Zhou and Zuhui Fan
Monthly Notices of the Royal Astronomical Society 535 (2) 1844 (2024)
https://doi.org/10.1093/mnras/stae2446

AstroCLIP: a cross-modal foundation model for galaxies

Liam Parker, Francois Lanusse, Siavash Golkar, Leopoldo Sarra, Miles Cranmer, Alberto Bietti, Michael Eickenberg, Geraud Krawezik, Michael McCabe, Rudy Morel, Ruben Ohana, Mariel Pettee, Bruno Régaldo-Saint Blancard, Kyunghyun Cho and Shirley Ho
Monthly Notices of the Royal Astronomical Society 531 (4) 4990 (2024)
https://doi.org/10.1093/mnras/stae1450

Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning

Xingchen Zhou, Yan Gong, Xin Zhang, Nan Li, Xian-Min Meng, Xuelei Chen, Run Wen, Yunkun Han, Hu Zou, Xian Zhong Zheng, Xiaohu Yang, Hong Guo and Pengjie Zhang
The Astrophysical Journal 977 (1) 69 (2024)
https://doi.org/10.3847/1538-4357/ad8bbf

SAGAbg. II. The Low-mass Star-forming Sequence Evolves Significantly between 0.05 < z < 0.21

Erin Kado-Fong, Marla Geha, Yao-Yuan Mao, Mithi A. C. de los Reyes, Risa H. Wechsler, Benjamin Weiner, Yasmeen Asali, Nitya Kallivayalil, Ethan O. Nadler, Erik J. Tollerud and Yunchong Wang
The Astrophysical Journal 976 (1) 83 (2024)
https://doi.org/10.3847/1538-4357/ad8137

Photometric Redshift Estimation of Quasars by a Cross-modal Contrast Learning Method

Chen Zhang, Wenyu Wang, Meixia Qu, Bin Jiang and YanXia Zhang
The Astronomical Journal 168 (6) 244 (2024)
https://doi.org/10.3847/1538-3881/ad79f9

The Zwicky Transient Facility Bright Transient Survey. III. BTSbot: Automated Identification and Follow-up of Bright Transients with Deep Learning

Nabeel Rehemtulla, Adam A. Miller, Theophile Jegou Du Laz, Michael W. Coughlin, Christoffer Fremling, Daniel A. Perley, Yu-Jing Qin, Jesper Sollerman, Ashish A. Mahabal, Russ R. Laher, Reed Riddle, Ben Rusholme and Shrinivas R. Kulkarni
The Astrophysical Journal 972 (1) 7 (2024)
https://doi.org/10.3847/1538-4357/ad5666

Photometric redshifts probability density estimation from recurrent neural networks in the DECam local volume exploration survey data release 2

G. Teixeira, C.R. Bom, L. Santana-Silva, B.M.O. Fraga, P. Darc, R. Teixeira, J.F. Wu, P.S. Ferguson, C.E. Martínez-Vázquez, A.H. Riley, A. Drlica-Wagner, Y. Choi, B. Mutlu-Pakdil, A.B. Pace, J.D. Sakowska and G.S. Stringfellow
Astronomy and Computing 49 100886 (2024)
https://doi.org/10.1016/j.ascom.2024.100886

Enhanced astronomical source classification with integration of attention mechanisms and vision transformers

Srinadh Reddy Bhavanam, Sumohana S. Channappayya, Srijith P. K and Shantanu Desai
Astrophysics and Space Science 369 (8) (2024)
https://doi.org/10.1007/s10509-024-04357-9

Stellar Karaoke: deep blind separation of terrestrial atmospheric effects out of stellar spectra by velocity whitening

Nima Sedaghat, Brianna M Smart, J Bryce Kalmbach, Erin L Howard and Hamidreza Amindavar
Monthly Notices of the Royal Astronomical Society 526 (1) 1559 (2023)
https://doi.org/10.1093/mnras/stad2686

Preliminary Study of Photometric Redshifts Based on the Wide Field Survey Telescope

Yu Liu, Xiao-Zhi Lin, Yong-Quan Xue and Huynh Anh N. Le
Research in Astronomy and Astrophysics 23 (12) 125011 (2023)
https://doi.org/10.1088/1674-4527/acf544

CNN photometric redshifts in the SDSS at r ≤ 20

M Treyer, R Ait Ouahmed, J Pasquet, S Arnouts, E Bertin and D Fouchez
Monthly Notices of the Royal Astronomical Society 527 (1) 651 (2023)
https://doi.org/10.1093/mnras/stad3171

Identification of Blue Horizontal Branch Stars with Multimodal Fusion

Jiaqi Wei, Bin Jiang and Yanxia Zhang
Publications of the Astronomical Society of the Pacific 135 (1050) 084501 (2023)
https://doi.org/10.1088/1538-3873/acea43

Data-driven templates with dictionary learning and sparse representations for photometric redshift estimation

J. Frontera-Pons, F. Sureau, J. Bobin and M. Kilbinger
Astronomy and Computing 44 100735 (2023)
https://doi.org/10.1016/j.ascom.2023.100735

Target Selection and Sample Characterization for the DESI LOW-Z Secondary Target Program

Elise Darragh-Ford, John F. Wu, Yao-Yuan Mao, Risa H. Wechsler, Marla Geha, Jaime E. Forero-Romero, ChangHoon Hahn, Nitya Kallivayalil, John Moustakas, Ethan O. Nadler, Marta Nowotka, J. E. G. Peek, Erik J. Tollerud, Benjamin Weiner, J. Aguilar, S. Ahlen, D. Brooks, A. P. Cooper, A. de la Macorra, A. Dey, K. Fanning, A. Font-Ribera, S. Gontcho A Gontcho, K. Honscheid, T. Kisner, et al.
The Astrophysical Journal 954 (2) 149 (2023)
https://doi.org/10.3847/1538-4357/ace902

AutoSourceID-FeatureExtractor

F. Stoppa, R. Ruiz de Austri, P. Vreeswijk, S. Bhattacharyya, S. Caron, S. Bloemen, G. Zaharijas, G. Principe, V. Vodeb, P. J. Groot, E. Cator and G. Nelemans
Astronomy & Astrophysics 680 A108 (2023)
https://doi.org/10.1051/0004-6361/202346983

Photo-zSNthesis: Converting Type Ia Supernova Lightcurves to Redshift Estimates via Deep Learning

Helen Qu and Masao Sako
The Astrophysical Journal 954 (2) 201 (2023)
https://doi.org/10.3847/1538-4357/aceafa

Photometric redshift estimation of quasars with fused features from photometric data and images

Lin Yao, Bo Qiu, A-Li Luo, Jianwei Zhou, Kuang Wu, Xiao Kong, Yuanbo Liu, Guiyu Zhao and Kun Wang
Monthly Notices of the Royal Astronomical Society 523 (4) 5799 (2023)
https://doi.org/10.1093/mnras/stad1842

Searching for Dwarf Hα Emission-line Galaxies within Voids. I. Survey Methods and First Observations

Christian D. Draper, J. Ward Moody, Stephen R. McNeil, Michael D. Joner, Rochelle Steele and Jackson Steele
The Astrophysical Journal 950 (2) 189 (2023)
https://doi.org/10.3847/1538-4357/acd10c

Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations

A Humphrey, P A C Cunha, A Paulino-Afonso, et al.
Monthly Notices of the Royal Astronomical Society 520 (1) 305 (2023)
https://doi.org/10.1093/mnras/stac3596

The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning

L. Cabayol, M. Eriksen, J. Carretero, et al.
Astronomy & Astrophysics 671 A153 (2023)
https://doi.org/10.1051/0004-6361/202245027

Augmenting photometric redshift estimates using spectroscopic nearest neighbours

F. Tosone, M. S. Cagliari, L. Guzzo, B. R. Granett and A. Crespi
Astronomy & Astrophysics 672 A150 (2023)
https://doi.org/10.1051/0004-6361/202245369

Optimized Photometric Redshifts for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)

Dritan Kodra, Brett H. Andrews, Jeffrey A. Newman, Steven L. Finkelstein, Adriano Fontana, Nimish Hathi, Mara Salvato, Tommy Wiklind, Stijn Wuyts, Adam Broussard, Nima Chartab, Christopher Conselice, M. C. Cooper, Avishai Dekel, Mark Dickinson, Henry C. Ferguson, Eric Gawiser, Norman A. Grogin, Kartheik Iyer, Jeyhan Kartaltepe, Susan Kassin, Anton M. Koekemoer, David C. Koo, Ray A. Lucas, Kameswara Bharadwaj Mantha, et al.
The Astrophysical Journal 942 (1) 36 (2023)
https://doi.org/10.3847/1538-4357/ac9f12

High-fidelity reproduction of central galaxy joint distributions with neural networks

Natália V N Rodrigues, Natalí S M de Santi, Antonio D Montero-Dorta and L Raul Abramo
Monthly Notices of the Royal Astronomical Society 522 (3) 3236 (2023)
https://doi.org/10.1093/mnras/stad1186

The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys

M. Huertas-Company and F. Lanusse
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2022.55

Wasserstein distance as a new tool for discriminating cosmologies through the topology of large-scale structure

Maksym Tsizh, Vitalii Tymchyshyn and Franco Vazza
Monthly Notices of the Royal Astronomical Society 522 (2) 2697 (2023)
https://doi.org/10.1093/mnras/stad1121

Identification of Galaxy–Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning

E. A. Zaborowski, A. Drlica-Wagner, F. Ashmead, J. F. Wu, R. Morgan, C. R. Bom, A. J. Shajib, S. Birrer, W. Cerny, E. J. Buckley-Geer, B. Mutlu-Pakdil, P. S. Ferguson, K. Glazebrook, S. J. Gonzalez Lozano, Y. Gordon, M. Martinez, V. Manwadkar, J. O’Donnell, J. Poh, A. Riley, J. D. Sakowska, L. Santana-Silva, B. X. Santiago, D. Sluse, C. Y. Tan, et al.
The Astrophysical Journal 954 (1) 68 (2023)
https://doi.org/10.3847/1538-4357/ace4ba

The Young Supernova Experiment Data Release 1 (YSE DR1): Light Curves and Photometric Classification of 1975 Supernovae

P. D. Aleo, K. Malanchev, S. Sharief, D. O. Jones, G. Narayan, R. J. Foley, V. A. Villar, C. R. Angus, V. F. Baldassare, M. J. Bustamante-Rosell, D. Chatterjee, C. Cold, D. A. Coulter, K. W. Davis, S. Dhawan, M. R. Drout, A. Engel, K. D. French, A. Gagliano, C. Gall, J. Hjorth, M. E. Huber, W. V. Jacobson-Galán, C. D. Kilpatrick, D. Langeroodi, et al.
The Astrophysical Journal Supplement Series 266 (1) 9 (2023)
https://doi.org/10.3847/1538-4365/acbfba

Automatic detection of low surface brightness galaxies from Sloan Digital Sky Survey images

Zhenping Yi, Jia Li, Wei Du, Meng Liu, Zengxu Liang, Yongguang Xing, Jingchang Pan, Yude Bu, Xiaoming Kong and Hong Wu
Monthly Notices of the Royal Astronomical Society 513 (3) 3972 (2022)
https://doi.org/10.1093/mnras/stac775

Photometric identification of compact galaxies, stars, and quasars using multiple neural networks

Siddharth Chaini, Atharva Bagul, Anish Deshpande, Rishi Gondkar, Kaushal Sharma, M Vivek and Ajit Kembhavi
Monthly Notices of the Royal Astronomical Society 518 (2) 3123 (2022)
https://doi.org/10.1093/mnras/stac3336

Photometric Redshift Estimates using Bayesian Neural Networks in the CSST Survey

Xingchen Zhou, Yan Gong, Xian-Min Meng, et al.
Research in Astronomy and Astrophysics 22 (11) 115017 (2022)
https://doi.org/10.1088/1674-4527/ac9578

Extending the SAGA Survey (xSAGA). I. Satellite Radial Profiles as a Function of Host-galaxy Properties

John F. Wu, J. E. G. Peek, Erik J. Tollerud, Yao-Yuan Mao, Ethan O. Nadler, Marla Geha, Risa H. Wechsler, Nitya Kallivayalil and Benjamin J. Weiner
The Astrophysical Journal 927 (1) 121 (2022)
https://doi.org/10.3847/1538-4357/ac4eea

DeepForge for astronomy: Deep learning SDSS redshifts from images

U. Timalsina, B. Broll, K. Moore, T. Budavári and Á. Lédeczi
Astronomy and Computing 40 100601 (2022)
https://doi.org/10.1016/j.ascom.2022.100601

B/PS bulges in DESI Legacy edge-on galaxies – I. Sample building

Alexander A Marchuk, Anton A Smirnov, Natalia Y Sotnikova, Dmitriy A Bunakalya, Sergey S Savchenko, Vladimir P Reshetnikov, Pavel A Usachev, Iliya S Tikhonenko, Viktor D Zozulia and Daria A Zakharova
Monthly Notices of the Royal Astronomical Society 512 (1) 1371 (2022)
https://doi.org/10.1093/mnras/stac599

Data-driven photometric redshift estimation from type Ia supernovae light curves

Felipe M F de Oliveira, Marcelo Vargas dos Santos and Ribamar R R Reis
Monthly Notices of the Royal Astronomical Society 518 (2) 2385 (2022)
https://doi.org/10.1093/mnras/stac3202

Extracting photometric redshift from galaxy flux and image data using neural networks in the CSST survey

Xingchen Zhou, Yan Gong, Xian-Min Meng, et al.
Monthly Notices of the Royal Astronomical Society 512 (3) 4593 (2022)
https://doi.org/10.1093/mnras/stac786

ERGO-ML I: inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks

Lukas Eisert, Annalisa Pillepich, Dylan Nelson, et al.
Monthly Notices of the Royal Astronomical Society 519 (2) 2199 (2022)
https://doi.org/10.1093/mnras/stac3295

Deep learning methods for obtaining photometric redshift estimations from images

Ben Henghes, Jeyan Thiyagalingam, Connor Pettitt, Tony Hey and Ofer Lahav
Monthly Notices of the Royal Astronomical Society 512 (2) 1696 (2022)
https://doi.org/10.1093/mnras/stac480

PhotoRedshift-MML: A multimodal machine learning method for estimating photometric redshifts of quasars

Shuxin Hong, Zhiqiang Zou, A-Li Luo, et al.
Monthly Notices of the Royal Astronomical Society 518 (4) 5049 (2022)
https://doi.org/10.1093/mnras/stac3259

Event Detection and Reconstruction Using Neural Networks in TES Devices: a Case Study for Athena/X-IFU

J. Vega-Ferrero, M. T. Ceballos, B. Cobo, et al.
Publications of the Astronomical Society of the Pacific 134 (1032) 024504 (2022)
https://doi.org/10.1088/1538-3873/ac5159

Photometric redshifts from SDSS images with an interpretable deep capsule network

Biprateep Dey, Brett H Andrews, Jeffrey A Newman, Yao-Yuan Mao, Markus Michael Rau and Rongpu Zhou
Monthly Notices of the Royal Astronomical Society 515 (4) 5285 (2022)
https://doi.org/10.1093/mnras/stac2105

Machine learning technique for morphological classification of galaxies from the SDSS. III. The CNN image-based inference of detailed features

V. KHRAMTSOV, I. B. VAVILOVA, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (5) 27 (2022)
https://doi.org/10.15407/knit2022.05.027

Photometric redshift estimation with convolutional neural networks and galaxy images: Case study of resolving biases in data-driven methods

Q. Lin, D. Fouchez, J. Pasquet, et al.
Astronomy & Astrophysics 662 A36 (2022)
https://doi.org/10.1051/0004-6361/202142751

Predicting the Spectrum of UGC 2885, Rubin’s Galaxy with Machine Learning

Benne W. Holwerda, John F. Wu, William C. Keel, Jason Young, Ren Mullins, Joannah Hinz, K. E. Saavik Ford, Pauline Barmby, Rupali Chandar, Jeremy Bailin, Josh Peek, Tim Pickering and Torsten Böker
The Astrophysical Journal 914 (2) 142 (2021)
https://doi.org/10.3847/1538-4357/abffcc

SILVERRUSH X: Machine Learning-aided Selection of 9318 LAEs at z = 2.2, 3.3, 4.9, 5.7, 6.6, and 7.0 from the HSC SSP and CHORUS Survey Data

Yoshiaki Ono, Ryohei Itoh, Takatoshi Shibuya, Masami Ouchi, Yuichi Harikane, Satoshi Yamanaka, Akio K. Inoue, Toshiyuki Amagasa, Daichi Miura, Maiki Okura, Kazuhiro Shimasaku, Ikuru Iwata, Yoshiaki Taniguchi, Seiji Fujimoto, Masanori Iye, Anton T. Jaelani, Nobunari Kashikawa, Shotaro Kikuchihara, Satoshi Kikuta, Masakazu A. R. Kobayashi, Haruka Kusakabe, Chien-Hsiu Lee, Yongming Liang, Yoshiki Matsuoka, Rieko Momose, et al.
The Astrophysical Journal 911 (2) 78 (2021)
https://doi.org/10.3847/1538-4357/abea15

The HectoMAP Redshift Survey: First Data Release

Jubee Sohn, Margaret J. Geller, Ho Seong Hwang, Daniel G. Fabricant, Sean M. Moran and Yousuke Utsumi
The Astrophysical Journal 909 (2) 129 (2021)
https://doi.org/10.3847/1538-4357/abd9be

Twenty-First-Century Statistical and Computational Challenges in Astrophysics

Eric D. Feigelson, Rafael S. de Souza, Emille E.O. Ishida and Gutti Jogesh Babu
Annual Review of Statistics and Its Application 8 (1) 493 (2021)
https://doi.org/10.1146/annurev-statistics-042720-112045

Predicting bulge to total luminosity ratio of galaxies using deep learning

Harsh Grover, Omkar Bait, Yogesh Wadadekar and Preetish K Mishra
Monthly Notices of the Royal Astronomical Society 506 (3) 3313 (2021)
https://doi.org/10.1093/mnras/stab1935

Benchmarking and scalability of machine-learning methods for photometric redshift estimation

Ben Henghes, Connor Pettitt, Jeyan Thiyagalingam, Tony Hey and Ofer Lahav
Monthly Notices of the Royal Astronomical Society 505 (4) 4847 (2021)
https://doi.org/10.1093/mnras/stab1513

Pushing automated morphological classifications to their limits with the Dark Energy Survey

J Vega-Ferrero, H Domínguez Sánchez, M Bernardi, et al.
Monthly Notices of the Royal Astronomical Society 506 (2) 1927 (2021)
https://doi.org/10.1093/mnras/stab594

Quantifying Non-parametric Structure of High-redshift Galaxies with Deep Learning

C. Tohill, L. Ferreira, C. J. Conselice, S. P. Bamford and F. Ferrari
The Astrophysical Journal 916 (1) 4 (2021)
https://doi.org/10.3847/1538-4357/ac033c

J-PAS: Measuring emission lines with artificial neural networks

G. Martínez-Solaeche, R. M. González Delgado, R. García-Benito, et al.
Astronomy & Astrophysics 647 A158 (2021)
https://doi.org/10.1051/0004-6361/202039146

Comparison of Observed Galaxy Properties with Semianalytic Model Predictions Using Machine Learning

Melanie Simet, Nima Chartab, Yu Lu and Bahram Mobasher
The Astrophysical Journal 908 (1) 47 (2021)
https://doi.org/10.3847/1538-4357/abd179

Construction of a far-ultraviolet all-sky map from an incomplete survey: application of a deep learning algorithm

Young-Soo Jo, Yeon-Ju Choi, Min-Gi Kim, et al.
Monthly Notices of the Royal Astronomical Society 502 (3) 3200 (2021)
https://doi.org/10.1093/mnras/stab066

Improving the reliability of photometric redshift with machine learning

Oleksandra Razim, Stefano Cavuoti, Massimo Brescia, et al.
Monthly Notices of the Royal Astronomical Society 507 (4) 5034 (2021)
https://doi.org/10.1093/mnras/stab2334

Z-Sequence: photometric redshift predictions for galaxy clusters with sequential random k-nearest neighbours

Matthew C Chan and John P Stott
Monthly Notices of the Royal Astronomical Society 503 (4) 6078 (2021)
https://doi.org/10.1093/mnras/stab858

A machine learning approach to galaxy properties: joint redshift–stellar mass probability distributions with Random Forest

S Mucesh, W G Hartley, A Palmese, et al.
Monthly Notices of the Royal Astronomical Society 502 (2) 2770 (2021)
https://doi.org/10.1093/mnras/stab164

Estimation of Photometric Redshifts. I. Machine-learning Inference for Pan-STARRS1 Galaxies Using Neural Networks

Joongoo Lee and Min-Su Shin
The Astronomical Journal 162 (6) 297 (2021)
https://doi.org/10.3847/1538-3881/ac2e96

Self-supervised Representation Learning for Astronomical Images

Md Abul Hayat, George Stein, Peter Harrington, Zarija Lukić and Mustafa Mustafa
The Astrophysical Journal Letters 911 (2) L33 (2021)
https://doi.org/10.3847/2041-8213/abf2c7

Weak-lensing Mass Reconstruction of Galaxy Clusters with a Convolutional Neural Network

Sungwook E. 성욱 Hong 홍, Sangnam Park, M. James Jee, Dongsu Bak and Sangjun Cha
The Astrophysical Journal 923 (2) 266 (2021)
https://doi.org/10.3847/1538-4357/ac3090

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

The optical luminosity function of LOFAR radio-selected quasars at 1.4 ≤ z ≤ 5.0 in the NDWFS-Boötes field

E. Retana-Montenegro and H. J. A. Röttgering
Astronomy & Astrophysics 636 A12 (2020)
https://doi.org/10.1051/0004-6361/201936577

Photometric Redshifts with the LSST. II. The Impact of Near-infrared and Near-ultraviolet Photometry

Melissa L. Graham, Andrew J. Connolly, Winnie Wang, Samuel J. Schmidt, Christopher B. Morrison, Željko Ivezić, Sébastien Fabbro, Patrick Côté, Scott F. Daniel, R. Lynne Jones, Mario Jurić, Peter Yoachim and J. Bryce Kalmbach
The Astronomical Journal 159 (6) 258 (2020)
https://doi.org/10.3847/1538-3881/ab8a43

On Neural Architectures for Astronomical Time-series Classification with Application to Variable Stars

Sara Jamal and Joshua S. Bloom
The Astrophysical Journal Supplement Series 250 (2) 30 (2020)
https://doi.org/10.3847/1538-4365/aba8ff

The Line-of-Sight Analysis of Spatial Distribution of Galaxies in the COSMOS2015 Catalogue

Maxim Nikonov, Mikhail Chekal, Stanislav Shirokov, Andrey Baryshev and Vladimir Gorokhov
Universe 6 (11) 215 (2020)
https://doi.org/10.3390/universe6110215