Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Influence of star-forming galaxy selection on the galaxy main sequence

W. J. Pearson, F. Pistis, M. Figueira, K. Małek, T. Moutard, D. Vergani and A. Pollo
Astronomy & Astrophysics 679 A35 (2023)
https://doi.org/10.1051/0004-6361/202346396

The PAU survey: classifying low-z SEDs using Machine Learning clustering

A L González-Morán, P Arrabal Haro, C Muñoz-Tuñón, J M Rodríguez-Espinosa, J Sánchez-Almeida, J Calhau, E Gaztañaga, F J Castander, P Renard, L Cabayol, E Fernandez, C Padilla, J Garcia-Bellido, R Miquel, J De Vicente, E Sanchez, I Sevilla-Noarbe and D Navarro-Gironés
Monthly Notices of the Royal Astronomical Society 524 (3) 3569 (2023)
https://doi.org/10.1093/mnras/stad2123

Characterizing and understanding galaxies with two parameters

Suchetha Cooray, Tsutomu T Takeuchi, Daichi Kashino, Shuntaro A Yoshida, Hai-Xia Ma and Kai T Kono
Monthly Notices of the Royal Astronomical Society 524 (4) 4976 (2023)
https://doi.org/10.1093/mnras/stad2129

In pursuit of giants

D. Donevski, I. Damjanov, A. Nanni, A. Man, M. Giulietti, M. Romano, A. Lapi, D. Narayanan, R. Davé, I. Shivaei, J. Sohn, Junais, L. Pantoni and Q. Li
Astronomy & Astrophysics 678 A35 (2023)
https://doi.org/10.1051/0004-6361/202346066

The first catalogue of spectroscopically confirmed red nuggets at z ∼ 0.7 from the VIPERS survey

Krzysztof Lisiecki, Katarzyna Małek, Małgorzata Siudek, et al.
Astronomy & Astrophysics 669 A95 (2023)
https://doi.org/10.1051/0004-6361/202243616

Environments of red nuggets at z ∼ 0.7 from the VIPERS survey

M Siudek, K Lisiecki, J Krywult, D Donevski, C P Haines, A Karska, K Małek, T Moutard and A Pollo
Monthly Notices of the Royal Astronomical Society 523 (3) 4294 (2023)
https://doi.org/10.1093/mnras/stad1685

Across the green valley with HST grisms: colour evolution, crossing time-scales, and the growth of the red sequence at z = 1.0–1.8

Gaël Noirot, Marcin Sawicki, Roberto Abraham, Maruša Bradač, Kartheik Iyer, Thibaud Moutard, Camilla Pacifici, Swara Ravindranath and Chris J Willott
Monthly Notices of the Royal Astronomical Society 512 (3) 3566 (2022)
https://doi.org/10.1093/mnras/stac668

The environment of AGN dwarf galaxies at z ∼ 0.7 from the VIPERS survey

M Siudek, M Mezcua and J Krywult
Monthly Notices of the Royal Astronomical Society 518 (1) 724 (2022)
https://doi.org/10.1093/mnras/stac3092

COSMOS2020: Manifold learning to estimate physical parameters in large galaxy surveys

I. Davidzon, K. Jegatheesan, O. Ilbert, et al.
Astronomy & Astrophysics 665 A34 (2022)
https://doi.org/10.1051/0004-6361/202243249

The PAU survey: measurements of the 4000 Å spectral break with narrow-band photometry

Pablo Renard, Malgorzata Siudek, Martin B Eriksen, et al.
Monthly Notices of the Royal Astronomical Society 515 (1) 146 (2022)
https://doi.org/10.1093/mnras/stac1730

Lessons learned from the two largest Galaxy morphological classification catalogues built by convolutional neural networks

T-Y Cheng, H Domínguez Sánchez, J Vega-Ferrero, et al.
Monthly Notices of the Royal Astronomical Society 518 (2) 2794 (2022)
https://doi.org/10.1093/mnras/stac3228

The PAU survey: measurement of narrow-band galaxy properties with approximate bayesian computation

Luca Tortorelli, Malgorzata Siudek, Beatrice Moser, et al.
Journal of Cosmology and Astroparticle Physics 2021 (12) 013 (2021)
https://doi.org/10.1088/1475-7516/2021/12/013

Deep extragalactic visible legacy survey (DEVILS): stellar mass growth by morphological type since z = 1

Abdolhosein Hashemizadeh, Simon P Driver, Luke J M Davies, et al.
Monthly Notices of the Royal Astronomical Society 505 (1) 136 (2021)
https://doi.org/10.1093/mnras/stab600

Pushing automated morphological classifications to their limits with the Dark Energy Survey

J Vega-Ferrero, H Domínguez Sánchez, M Bernardi, et al.
Monthly Notices of the Royal Astronomical Society 506 (2) 1927 (2021)
https://doi.org/10.1093/mnras/stab594

The PAU Survey: Intrinsic alignments and clustering of narrow-band photometric galaxies

Harry Johnston, Benjamin Joachimi, Peder Norberg, et al.
Astronomy & Astrophysics 646 A147 (2021)
https://doi.org/10.1051/0004-6361/202039682

Beyond the hubble sequence – exploring galaxy morphology with unsupervised machine learning

Ting-Yun Cheng, Marc Huertas-Company, Christopher J Conselice, et al.
Monthly Notices of the Royal Astronomical Society 503 (3) 4446 (2021)
https://doi.org/10.1093/mnras/stab734

Synergies between low- and intermediate-redshift galaxy populations revealed with unsupervised machine learning

Sebastian Turner, Malgorzata Siudek, Samir Salim, et al.
Monthly Notices of the Royal Astronomical Society 503 (2) 3010 (2021)
https://doi.org/10.1093/mnras/stab653

Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks

Ting-Yun Cheng, Christopher J Conselice, Alfonso Aragón-Salamanca, et al.
Monthly Notices of the Royal Astronomical Society 507 (3) 4425 (2021)
https://doi.org/10.1093/mnras/stab2142

Identifying strong lenses with unsupervised machine learning using convolutional autoencoder

Robert B Metcalf, Simon Dye, Alfonso Aragón-Salamanca, et al.
Monthly Notices of the Royal Astronomical Society 494 (3) 3750 (2020)
https://doi.org/10.1093/mnras/staa1015

A Method to Distinguish Quiescent and Dusty Star-forming Galaxies with Machine Learning

Charles L. Steinhardt, John R. Weaver, Jack Maxfield, Iary Davidzon, Andreas L. Faisst, Dan Masters, Madeline Schemel and Sune Toft
The Astrophysical Journal 891 (2) 136 (2020)
https://doi.org/10.3847/1538-4357/ab76be

On the slow quenching of ℳ* galaxies: heavily obscured AGNs clarify the picture

Shruti Tripathi, Stéphane Arnouts, Marcin Sawicki, Nicola Malavasi and Thibaud Moutard
Monthly Notices of the Royal Astronomical Society 495 (4) 4237 (2020)
https://doi.org/10.1093/mnras/staa1434

Galaxy morphological classification in deep-wide surveys via unsupervised machine learning

G Martin, S Kaviraj, A Hocking, S C Read and J E Geach
Monthly Notices of the Royal Astronomical Society 491 (1) 1408 (2020)
https://doi.org/10.1093/mnras/stz3006

Galaxy classification: A machine learning analysis of GAMA catalogue data

Aleke Nolte, Lingyu Wang, Maciej Bilicki, Benne Holwerda and Michael Biehl
Neurocomputing 342 172 (2019)
https://doi.org/10.1016/j.neucom.2018.12.076

Automatic classification of sources in large astronomical catalogs

Agnieszka Pollo, Aleksandra Solarz, Małgorzata Siudek, et al.
Proceedings of the International Astronomical Union 15 (S341) 109 (2019)
https://doi.org/10.1017/S1743921319002576

How to Find Variable Active Galactic Nuclei with Machine Learning

Andreas L. Faisst, Abhishek Prakash, Peter L. Capak and Bomee Lee
The Astrophysical Journal Letters 881 (1) L9 (2019)
https://doi.org/10.3847/2041-8213/ab3581