Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Photometric redshifts and intrinsic alignments: Degeneracies and biases in the 3×2pt analysis

C. Danielle Leonard, Markus Michael Rau and Rachel Mandelbaum
Physical Review D 109 (8) (2024)
https://doi.org/10.1103/PhysRevD.109.083528

Intrinsic alignment from multiple shear estimates: a first application to data and forecasts for stage IV

Charlie MacMahon-Gellér and C Danielle Leonard
Monthly Notices of the Royal Astronomical Society 528 (2) 2980 (2024)
https://doi.org/10.1093/mnras/stae054

Predicting the ages of galaxies with an artificial neural network

Laura J Hunt, Kevin A Pimbblet and David M Benoit
Monthly Notices of the Royal Astronomical Society 529 (1) 479 (2024)
https://doi.org/10.1093/mnras/stae479

Dealing with imbalanced regression problem for large dataset using scalable Artificial Neural Network

Snigdha Sen, Krishna Pratap Singh and Pavan Chakraborty
New Astronomy 99 101959 (2023)
https://doi.org/10.1016/j.newast.2022.101959

The miniJPAS survey

M. Maturi, A. Finoguenov, P. A. A. Lopes, R. M. González Delgado, R. A. Dupke, E. S. Cypriano, E. R. Carrasco, J. M. Diego, M. Penna-Lima, L. Doubrawa, J. M. Vílchez, L. Moscardini, V. Marra, S. Bonoli, J. E. Rodríguez-Martín, A. Zitrin, I. Márquez, A. Hernán-Caballero, Y. Jiménez-Teja, R. Abramo, J. Alcaniz, N. Benitez, S. Carneiro, J. Cenarro, D. Cristóbal-Hornillos, et al.
Astronomy & Astrophysics 678 A145 (2023)
https://doi.org/10.1051/0004-6361/202245323

KiDS-1000: Combined halo-model cosmology constraints from galaxy abundance, galaxy clustering, and galaxy-galaxy lensing

Andrej Dvornik, Catherine Heymans, Marika Asgari, Constance Mahony, Benjamin Joachimi, Maciej Bilicki, Elisa Chisari, Hendrik Hildebrandt, Henk Hoekstra, Harry Johnston, Konrad Kuijken, Alexander Mead, Hironao Miyatake, Takahiro Nishimichi, Robert Reischke, Sandra Unruh and Angus H. Wright
Astronomy & Astrophysics 675 A189 (2023)
https://doi.org/10.1051/0004-6361/202245158

Measuring photometric redshifts for high-redshift radio source surveys

K. J. Luken, R. P. Norris, X. R. Wang, L. A. F. Park, Y. Guo and M. D. Filipović
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2023.39

Measuring the Hubble constant with cosmic chronometers: a machine learning approach

Carlos Bengaly, Maria Aldinez Dantas, Luciano Casarini and Jailson Alcaniz
The European Physical Journal C 83 (6) (2023)
https://doi.org/10.1140/epjc/s10052-023-11734-1

Fuzzy and SVM Based Classification Model to Classify Spectral Objects in Sloan Digital Sky

Arodh Lal Karn, Carlos Andres Tavera Romero, Sudhakar Sengan, Abolfazl Mehbodniya, Julian L. Webber, Denis A. Pustokhin and Frank-Detlef Wende
IEEE Access 10 101276 (2022)
https://doi.org/10.1109/ACCESS.2022.3207480

Inferring galaxy dark halo properties from visible matter with machine learning

Rodrigo von Marttens, Luciano Casarini, Nicola R Napolitano, et al.
Monthly Notices of the Royal Astronomical Society 516 (3) 3924 (2022)
https://doi.org/10.1093/mnras/stac2449

Galaxy Light Profile Convolutional Neural Networks (GaLNets). I. Fast and Accurate Structural Parameters for Billion-galaxy Samples

R. Li, N. R. Napolitano, N. Roy, C. Tortora, F. La Barbera, A. Sonnenfeld, C. Qiu and S. Liu
The Astrophysical Journal 929 (2) 152 (2022)
https://doi.org/10.3847/1538-4357/ac5ea0

On the application of machine learning in astronomy and astrophysics: A text‐mining‐based scientometric analysis

José‐Víctor Rodríguez, Ignacio Rodríguez‐Rodríguez and Wai Lok Woo
WIREs Data Mining and Knowledge Discovery 12 (5) (2022)
https://doi.org/10.1002/widm.1476

Improving Photometric Redshifts by Merging Probability Density Functions from Template-Based and Machine Learning Algorithms*

Ishaq Y. K. Alshuaili, John Y. H. Soo, Mohd. Zubir Mat Jafri and Yasmin Rafid
Astronomy Letters 48 (11) 665 (2022)
https://doi.org/10.1134/S1063773722110019

Identification of BASS DR3 sources as stars, galaxies, and quasars by XGBoost

Changhua Li, Yanxia Zhang, Chenzhou Cui, et al.
Monthly Notices of the Royal Astronomical Society 506 (2) 1651 (2021)
https://doi.org/10.1093/mnras/stab1650

Estimation of Photometric Redshifts. I. Machine-learning Inference for Pan-STARRS1 Galaxies Using Neural Networks

Joongoo Lee and Min-Su Shin
The Astronomical Journal 162 (6) 297 (2021)
https://doi.org/10.3847/1538-3881/ac2e96

Z-Sequence: photometric redshift predictions for galaxy clusters with sequential random k-nearest neighbours

Matthew C Chan and John P Stott
Monthly Notices of the Royal Astronomical Society 503 (4) 6078 (2021)
https://doi.org/10.1093/mnras/stab858

The PAU Survey: narrow-band photometric redshifts using Gaussian processes

John Y H Soo, Benjamin Joachimi, Martin Eriksen, et al.
Monthly Notices of the Royal Astronomical Society 503 (3) 4118 (2021)
https://doi.org/10.1093/mnras/stab711

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

Protocluster detection in simulations of HSC–SSP and the 10-yr LSST forecast, using PCcones

Pablo Araya-Araya, Marcelo C Vicentin, Laerte Sodré, Roderik A Overzier and Hector Cuevas
Monthly Notices of the Royal Astronomical Society 504 (4) 5054 (2021)
https://doi.org/10.1093/mnras/stab1133

Comparison of Observed Galaxy Properties with Semianalytic Model Predictions Using Machine Learning

Melanie Simet, Nima Chartab, Yu Lu and Bahram Mobasher
The Astrophysical Journal 908 (1) 47 (2021)
https://doi.org/10.3847/1538-4357/abd179

Halo shapes constrained from a pure sample of central galaxies in KiDS-1000

Christos Georgiou, Henk Hoekstra, Konrad Kuijken, et al.
Astronomy & Astrophysics 647 A185 (2021)
https://doi.org/10.1051/0004-6361/201937405

The weak lensing radial acceleration relation: Constraining modified gravity and cold dark matter theories with KiDS-1000

Margot M. Brouwer, Kyle A. Oman, Edwin A. Valentijn, et al.
Astronomy & Astrophysics 650 A113 (2021)
https://doi.org/10.1051/0004-6361/202040108

Searching for AGN and pulsar candidates in 4FGL unassociated sources using machine learning

Ke-Rui Zhu, Shi-Ju Kang and Yong-Gang Zheng
Research in Astronomy and Astrophysics 21 (1) 015 (2021)
https://doi.org/10.1088/1674-4527/21/1/15

Improving the reliability of photometric redshift with machine learning

Oleksandra Razim, Stefano Cavuoti, Massimo Brescia, et al.
Monthly Notices of the Royal Astronomical Society 507 (4) 5034 (2021)
https://doi.org/10.1093/mnras/stab2334

The PAU survey: estimating galaxy photometry with deep learning

L Cabayol, M Eriksen, A Amara, et al.
Monthly Notices of the Royal Astronomical Society 506 (3) 4048 (2021)
https://doi.org/10.1093/mnras/stab1909

Predicting bulge to total luminosity ratio of galaxies using deep learning

Harsh Grover, Omkar Bait, Yogesh Wadadekar and Preetish K Mishra
Monthly Notices of the Royal Astronomical Society 506 (3) 3313 (2021)
https://doi.org/10.1093/mnras/stab1935

Organised randoms: Learning and correcting for systematic galaxy clustering patterns in KiDS using self-organising maps

Harry Johnston, Angus H. Wright, Benjamin Joachimi, et al.
Astronomy & Astrophysics 648 A98 (2021)
https://doi.org/10.1051/0004-6361/202040136

The PAU Survey: Photometric redshifts using transfer learning from simulations

M Eriksen, A Alarcon, L Cabayol, et al.
Monthly Notices of the Royal Astronomical Society 497 (4) 4565 (2020)
https://doi.org/10.1093/mnras/staa2265

PS1-STRM: neural network source classification and photometric redshift catalogue for PS1 3π DR1

Róbert Beck, István Szapudi, Heather Flewelling, et al.
Monthly Notices of the Royal Astronomical Society 500 (2) 1633 (2020)
https://doi.org/10.1093/mnras/staa2587

Improved photometric redshifts with colour-constrained galaxy templates for future wide-area surveys

Bomee Lee and Ranga-Ram Chary
Monthly Notices of the Royal Astronomical Society 497 (2) 1935 (2020)
https://doi.org/10.1093/mnras/staa2100

Surveying the reach and maturity of machine learning and artificial intelligence in astronomy

Christopher J. Fluke and Colin Jacobs
WIREs Data Mining and Knowledge Discovery 10 (2) (2020)
https://doi.org/10.1002/widm.1349

An adapted filter function for density split statistics in weak lensing

Pierre Burger, Peter Schneider, Vasiliy Demchenko, et al.
Astronomy & Astrophysics 642 A161 (2020)
https://doi.org/10.1051/0004-6361/202038694

The PAU Survey: background light estimation with deep learning techniques

L Cabayol-Garcia, M Eriksen, A Alarcón, et al.
Monthly Notices of the Royal Astronomical Society 491 (4) 5392 (2020)
https://doi.org/10.1093/mnras/stz3274

Galaxy And Mass Assembly (GAMA): assimilation of KiDS into the GAMA database

Sabine Bellstedt, Simon P Driver, Aaron S G Robotham, et al.
Monthly Notices of the Royal Astronomical Society 496 (3) 3235 (2020)
https://doi.org/10.1093/mnras/staa1466

Galaxy and Mass Assembly (GAMA): A WISE Study of the Activity of Emission-line Systems in G23

H. F. M. Yao, T. H. Jarrett, M. E. Cluver, L. Marchetti, Edward N. Taylor, M. G. Santos, Matt S. Owers, Angel R. Lopez-Sanchez, Y. A. Gordon, M. J. I. Brown, S. Brough, S. Phillipps, B. W. Holwerda, A. M. Hopkins and L. Wang
The Astrophysical Journal 903 (2) 91 (2020)
https://doi.org/10.3847/1538-4357/abba1a

amico galaxy clusters in KiDS-DR3: sample properties and selection function

Matteo Maturi, Fabio Bellagamba, Mario Radovich, et al.
Monthly Notices of the Royal Astronomical Society 485 (1) 498 (2019)
https://doi.org/10.1093/mnras/stz294

Radio–optical galaxy shape and shear correlations in the COSMOS field using 3 GHz VLA observations

Tom Hillier, Michael L Brown, Ian Harrison and Lee Whittaker
Monthly Notices of the Royal Astronomical Society 488 (4) 5420 (2019)
https://doi.org/10.1093/mnras/stz2098

Self-calibration method for II and GI types of intrinsic alignments of galaxies

Ji Yao, Mustapha Ishak and M A Troxel
Monthly Notices of the Royal Astronomical Society 483 (1) 276 (2019)
https://doi.org/10.1093/mnras/sty3188

The Galaxy Cluster Mass Scale and Its Impact on Cosmological Constraints from the Cluster Population

G. W. Pratt, M. Arnaud, A. Biviano, et al.
Space Science Reviews 215 (2) (2019)
https://doi.org/10.1007/s11214-019-0591-0

Luminous red galaxies in the Kilo-Degree Survey: selection with broad-band photometry and weak lensing measurements

Mohammadjavad Vakili, Maciej Bilicki, Henk Hoekstra, et al.
Monthly Notices of the Royal Astronomical Society 487 (3) 3715 (2019)
https://doi.org/10.1093/mnras/stz1249

The fourth data release of the Kilo-Degree Survey: ugri imaging and nine-band optical-IR photometry over 1000 square degrees

K. Kuijken, C. Heymans, A. Dvornik, et al.
Astronomy & Astrophysics 625 A2 (2019)
https://doi.org/10.1051/0004-6361/201834918

Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies

V Amaro, S Cavuoti, M Brescia, et al.
Monthly Notices of the Royal Astronomical Society 482 (3) 3116 (2019)
https://doi.org/10.1093/mnras/sty2922

Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope

Brant E. Robertson, Manda Banerji, Sarah Brough, et al.
Nature Reviews Physics 1 (7) 450 (2019)
https://doi.org/10.1038/s42254-019-0067-x

First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

M. Soares-Santos, A. Palmese, W. Hartley, J. Annis, J. Garcia-Bellido, O. Lahav, Z. Doctor, M. Fishbach, D. E. Holz, H. Lin, M. E. S. Pereira, A. Garcia, K. Herner, R. Kessler, H. V. Peiris, M. Sako, S. Allam, D. Brout, A. Carnero Rosell, H. Y. Chen, C. Conselice, J. deRose, J. deVicente, H. T. Diehl, M. S. S. Gill, et al.
The Astrophysical Journal Letters 876 (1) L7 (2019)
https://doi.org/10.3847/2041-8213/ab14f1

Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey

Margot M Brouwer, Vasiliy Demchenko, Joachim Harnois-Déraps, et al.
Monthly Notices of the Royal Astronomical Society 481 (4) 5189 (2018)
https://doi.org/10.1093/mnras/sty2589