Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Neural Networks for Postprocessing Ensemble Weather Forecasts

Stephan Rasp and Sebastian Lerch
Monthly Weather Review 146 (11) 3885 (2018)
DOI: 10.1175/MWR-D-18-0187.1
See this article

Augmenting machine learning photometric redshifts with Gaussian mixture models

P W Hatfield, I A Almosallam, M J Jarvis, N Adams, R A A Bowler, Z Gomes, S J Roberts and C Schreiber
Monthly Notices of the Royal Astronomical Society 498 (4) 5498 (2020)
DOI: 10.1093/mnras/staa2741
See this article

On Neural Architectures for Astronomical Time-series Classification with Application to Variable Stars

Sara Jamal and Joshua S. Bloom
The Astrophysical Journal Supplement Series 250 (2) 30 (2020)
DOI: 10.3847/1538-4365/aba8ff
See this article

GeneticKNN: a weighted KNN approach supported by genetic algorithm for photometric redshift estimation of quasars

Bo Han, Li-Na Qiao, Jing-Lin Chen, Xian-Da Zhang, Yan-Xia Zhang and Yong-Heng Zhao
Research in Astronomy and Astrophysics 21 (1) 017 (2021)
DOI: 10.1088/1674-4527/21/1/17
See this article

Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies

V Amaro, S Cavuoti, M Brescia, C Vellucci, G Longo, M Bilicki, J T A de Jong, C Tortora, M Radovich, N R Napolitano and H Buddelmeijer
Monthly Notices of the Royal Astronomical Society 482 (3) 3116 (2019)
DOI: 10.1093/mnras/sty2922
See this article

Euclid preparation

G. Desprez, S. Paltani, J. Coupon, I. Almosallam, A. Alvarez-Ayllon, V. Amaro, M. Brescia, M. Brodwin, S. Cavuoti, J. De Vicente-Albendea, S. Fotopoulou, P. W. Hatfield, W. G. Hartley, O. Ilbert, M. J. Jarvis, G. Longo, M. M. Rau, R. Saha, J. S. Speagle, A. Tramacere, M. Castellano, F. Dubath, A. Galametz, M. Kuemmel, C. Laigle, E. Merlin, J. J. Mohr, S. Pilo, M. Salvato, S. Andreon, N. Auricchio, C. Baccigalupi, A. Balaguera-Antolínez, M. Baldi, S. Bardelli, R. Bender, A. Biviano, C. Bodendorf, D. Bonino, E. Bozzo, E. Branchini, J. Brinchmann, C. Burigana, R. Cabanac, S. Camera, V. Capobianco, A. Cappi, C. Carbone, J. Carretero, C. S. Carvalho, R. Casas, S. Casas, F. J. Castander, G. Castignani, A. Cimatti, R. Cledassou, C. Colodro-Conde, G. Congedo, C. J. Conselice, L. Conversi, Y. Copin, L. Corcione, H. M. Courtois, J.-G. Cuby, A. Da Silva, S. de la Torre, H. Degaudenzi, D. Di Ferdinando, M. Douspis, C. A. J. Duncan, X. Dupac, A. Ealet, G. Fabbian, M. Fabricius, S. Farrens, P. G. Ferreira, F. Finelli, P. Fosalba, N. Fourmanoit, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Garilli, W. Gillard, B. Gillis, C. Giocoli, G. Gozaliasl, J. Graciá-Carpio, F. Grupp, L. Guzzo, M. Hailey, S. V. H. Haugan, W. Holmes, F. Hormuth, A. Humphrey, K. Jahnke, E. Keihanen, S. Kermiche, M. Kilbinger, C. C. Kirkpatrick, T. D. Kitching, R. Kohley, B. Kubik, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, D. Maino, E. Maiorano, O. Marggraf, K. Markovic, N. Martinet, F. Marulli, R. Massey, M. Maturi, N. Mauri, S. Maurogordato, E. Medinaceli, S. Mei, M. Meneghetti, R. Benton Metcalf, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. Niemi, C. Padilla, F. Pasian, L. Patrizii, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. Popa, D. Potter, L. Pozzetti, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Rossetti, R. Saglia, D. Sapone, P. Schneider, V. Scottez, A. Secroun, S. Serrano, C. Sirignano, G. Sirri, L. Stanco, D. Stern, F. Sureau, P. Tallada Crespí, D. Tavagnacco, A. N. Taylor, M. Tenti, I. Tereno, R. Toledo-Moreo, F. Torradeflot, L. Valenziano, J. Valiviita, T. Vassallo, M. Viel, Y. Wang, N. Welikala, L. Whittaker, A. Zacchei, G. Zamorani, J. Zoubian and E. Zucca
Astronomy & Astrophysics 644 A31 (2020)
DOI: 10.1051/0004-6361/202039403
See this article

Conditional density estimation tools in python and R with applications to photometric redshifts and likelihood-free cosmological inference

N. Dalmasso, T. Pospisil, A.B. Lee, R. Izbicki, P.E. Freeman and A.I. Malz
Astronomy and Computing 30 100362 (2020)
DOI: 10.1016/j.ascom.2019.100362
See this article

Identifying Mg ii narrow absorption lines with deep learning

Yinan Zhao, Jian Ge, Xiaoyong Yuan, Tiffany Zhao, Cindy Wang and Xiaolin Li
Monthly Notices of the Royal Astronomical Society 487 (1) 801 (2019)
DOI: 10.1093/mnras/stz1197
See this article

Assessing the performance of LTE and NLTE synthetic stellar spectra in a machine learning framework

Spencer Bialek, Sébastien Fabbro, Kim A Venn, Nripesh Kumar, Teaghan O’Briain and Kwang Moo Yi
Monthly Notices of the Royal Astronomical Society 498 (3) 3817 (2020)
DOI: 10.1093/mnras/staa2582
See this article

Morpho-photometric redshifts

Kristen Menou
Monthly Notices of the Royal Astronomical Society 489 (4) 4802 (2019)
DOI: 10.1093/mnras/stz2477
See this article

Galaxy morphological classification in deep-wide surveys via unsupervised machine learning

G Martin, S Kaviraj, A Hocking, S C Read and J E Geach
Monthly Notices of the Royal Astronomical Society 491 (1) 1408 (2020)
DOI: 10.1093/mnras/stz3006
See this article

The many flavours of photometric redshifts

Mara Salvato, Olivier Ilbert and Ben Hoyle
Nature Astronomy 3 (3) 212 (2019)
DOI: 10.1038/s41550-018-0478-0
See this article

Deblending and classifying astronomical sources with Mask R-CNN deep learning

Colin J Burke, Patrick D Aleo, Yu-Ching Chen, Xin Liu, John R Peterson, Glenn H Sembroski and Joshua Yao-Yu Lin
Monthly Notices of the Royal Astronomical Society 490 (3) 3952 (2019)
DOI: 10.1093/mnras/stz2845
See this article

Gaussian mixture models for blended photometric redshifts

Daniel M Jones and Alan F Heavens
Monthly Notices of the Royal Astronomical Society 490 (3) 3966 (2019)
DOI: 10.1093/mnras/stz2687
See this article

Using convolutional neural networks to predict galaxy metallicity from three-colour images

John F Wu and Steven Boada
Monthly Notices of the Royal Astronomical Society 484 (4) 4683 (2019)
DOI: 10.1093/mnras/stz333
See this article

A machine learning approach to galaxy properties: joint redshift–stellar mass probability distributions with Random Forest

S Mucesh, W G Hartley, A Palmese, O Lahav, L Whiteway, A F L Bluck, A Alarcon, A Amon, K Bechtol, G M Bernstein, A Carnero Rosell, M Carrasco Kind, A Choi, K Eckert, S Everett, D Gruen, R A Gruendl, I Harrison, E M Huff, N Kuropatkin, I Sevilla-Noarbe, E Sheldon, B Yanny, M Aguena, S Allam, D Bacon, E Bertin, S Bhargava, D Brooks, J Carretero, F J Castander, C Conselice, M Costanzi, M Crocce, L N da Costa, M E S Pereira, J De Vicente, S Desai, H T Diehl, A Drlica-Wagner, A E Evrard, I Ferrero, B Flaugher, P Fosalba, J Frieman, J García-Bellido, E Gaztanaga, D W Gerdes, J Gschwend, G Gutierrez, S R Hinton, D L Hollowood, K Honscheid, D J James, K Kuehn, M Lima, H Lin, M A G Maia, P Melchior, F Menanteau, R Miquel, R Morgan, F Paz-Chinchón, A A Plazas, E Sanchez, V Scarpine, M Schubnell, S Serrano, M Smith, E Suchyta, G Tarle, D Thomas, C To, T N Varga and R D Wilkinson
Monthly Notices of the Royal Astronomical Society 502 (2) 2770 (2021)
DOI: 10.1093/mnras/stab164
See this article

A new strategy for estimating photometric redshifts of quasars

Yan-Xia Zhang, Jing-Yi Zhang, Xin Jin and Yong-Heng Zhao
Research in Astronomy and Astrophysics 19 (12) 175 (2019)
DOI: 10.1088/1674-4527/19/12/175
See this article

The Extremely Luminous Quasar Survey in the Pan-STARRS 1 Footprint (PS-ELQS)

Jan-Torge Schindler, Xiaohui Fan, Yun-Hsin Huang, Minghao Yue, Jinyi Yang, Patrick B. Hall, Lukas Wenzl, Allison Hughes, Katrina C. Litke and Jon M. Rees
The Astrophysical Journal Supplement Series 243 (1) 5 (2019)
DOI: 10.3847/1538-4365/ab20d0
See this article

Photometric redshift estimation using ExtraTreesRegressor: Galaxies and quasars from low to very high redshifts

Moonzarin Reza and Mohammad Ariful Haque
Astrophysics and Space Science 365 (3) (2020)
DOI: 10.1007/s10509-020-03758-w
See this article

Probabilistic neural networks for fluid flow surrogate modeling and data recovery

Romit Maulik, Kai Fukami, Nesar Ramachandra, Koji Fukagata and Kunihiko Taira
Physical Review Fluids 5 (10) (2020)
DOI: 10.1103/PhysRevFluids.5.104401
See this article

Probabilistic Random Forest: A Machine Learning Algorithm for Noisy Data Sets

Itamar Reis, Dalya Baron and Sahar Shahaf
The Astronomical Journal 157 (1) 16 (2018)
DOI: 10.3847/1538-3881/aaf101
See this article

Twenty-First-Century Statistical and Computational Challenges in Astrophysics

Eric D. Feigelson, Rafael S. de Souza, Emille E.O. Ishida and Gutti Jogesh Babu
Annual Review of Statistics and Its Application 8 (1) 493 (2021)
DOI: 10.1146/annurev-statistics-042720-112045
See this article

The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs

Jorge Martínez-Palomera, Francisco Förster, Pavlos Protopapas, Juan Carlos Maureira, Paulina Lira, Guillermo Cabrera-Vives, Pablo Huijse, Lluis Galbany, Thomas de Jaeger, Santiago González-Gaitán, Gustavo Medina, Giuliano Pignata, Jaime San Martín, Mario Hamuy and Ricardo R. Muñoz
The Astronomical Journal 156 (5) 186 (2018)
DOI: 10.3847/1538-3881/aadfd8
See this article

AstroVaDEr: astronomical variational deep embedder for unsupervised morphological classification of galaxies and synthetic image generation

Ashley Spindler, James E Geach and Michael J Smith
Monthly Notices of the Royal Astronomical Society 502 (1) 985 (2021)
DOI: 10.1093/mnras/staa3670
See this article

Quantifying uncertainties on fission fragment mass yields with mixture density networks

A E Lovell, A T Mohan and P Talou
Journal of Physics G: Nuclear and Particle Physics 47 (11) 114001 (2020)
DOI: 10.1088/1361-6471/ab9f58
See this article

The PAU Survey: background light estimation with deep learning techniques

L Cabayol-Garcia, M Eriksen, A Alarcón, A Amara, J Carretero, R Casas, F J Castander, E Fernández, J García-Bellido, E Gaztanaga, H Hoekstra, R Miquel, C Neissner, C Padilla, E Sánchez, S Serrano, I Sevilla-Noarbe, M Siudek, P Tallada and L Tortorelli
Monthly Notices of the Royal Astronomical Society 491 (4) 5392 (2020)
DOI: 10.1093/mnras/stz3274
See this article

QSO photometric redshifts using machine learning and neural networks

S J Curran, J P Moss and Y C Perrott
Monthly Notices of the Royal Astronomical Society 503 (2) 2639 (2021)
DOI: 10.1093/mnras/stab485
See this article

Return of the features

A. D’Isanto, S. Cavuoti, F. Gieseke and K. L. Polsterer
Astronomy & Astrophysics 616 A97 (2018)
DOI: 10.1051/0004-6361/201833103
See this article

Photometric redshifts from SDSS images using a convolutional neural network

Johanna Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez
Astronomy & Astrophysics 621 A26 (2019)
DOI: 10.1051/0004-6361/201833617
See this article

Photometric redshifts for the Kilo-Degree Survey

M. Bilicki, H. Hoekstra, M. J. I. Brown, V. Amaro, C. Blake, S. Cavuoti, J. T. A. de Jong, C. Georgiou, H. Hildebrandt, C. Wolf, A. Amon, M. Brescia, S. Brough, M. V. Costa-Duarte, T. Erben, K. Glazebrook, A. Grado, C. Heymans, T. Jarrett, S. Joudaki, K. Kuijken, G. Longo, N. Napolitano, D. Parkinson, C. Vellucci, G. A. Verdoes Kleijn and L. Wang
Astronomy & Astrophysics 616 A69 (2018)
DOI: 10.1051/0004-6361/201731942
See this article

XMMPZCAT: A catalogue of photometric redshifts for X-ray sources

A. Ruiz, A. Corral, G. Mountrichas and I. Georgantopoulos
Astronomy & Astrophysics 618 A52 (2018)
DOI: 10.1051/0004-6361/201833117
See this article

PhotoWeb redshift: boosting photometric redshift accuracy with large spectroscopic surveys

M. Shuntov, J. Pasquet, S. Arnouts, O. Ilbert, M. Treyer, E. Bertin, S. de la Torre, Y. Dubois, D. Fouchez, K. Kraljic, C. Laigle, C. Pichon and D. Vibert
Astronomy & Astrophysics 636 A90 (2020)
DOI: 10.1051/0004-6361/201937382
See this article

Weak-lensing shear measurement with machine learning

M. Tewes, T. Kuntzer, R. Nakajima, F. Courbin, H. Hildebrandt and T. Schrabback
Astronomy & Astrophysics 621 A36 (2019)
DOI: 10.1051/0004-6361/201833775
See this article

Machine-learning computation of distance modulus for local galaxies

A. A. Elyiv, O. V. Melnyk, I. B. Vavilova, D. V. Dobrycheva and V. E. Karachentseva
Astronomy & Astrophysics 635 A124 (2020)
DOI: 10.1051/0004-6361/201936883
See this article