Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Euclid preparation

A. Fumagalli, A. Saro, S. Borgani, T. Castro, M. Costanzi, P. Monaco, E. Munari, E. Sefusatti, A. M. C. Le Brun, N. Aghanim, N. Auricchio, M. Baldi, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, F. J. Castander, M. Castellano, S. Cavuoti, R. Cledassou, et al.
Astronomy & Astrophysics 683 A253 (2024)
https://doi.org/10.1051/0004-6361/202245540

Methodological refinement of the submillimeter galaxy magnification bias

M. M. Cueli, J. González-Nuevo, L. Bonavera, A. Lapi, D. Crespo and J. M. Casas
Astronomy & Astrophysics 686 A190 (2024)
https://doi.org/10.1051/0004-6361/202347876

The Kullback–Leibler Divergence and the Convergence Rate of Fast Covariance Matrix Estimators in Galaxy Clustering Analysis

Zhigang Li, Zhejie Ding, Yu Yu and Pengjie Zhang
The Astrophysical Journal 965 (2) 125 (2024)
https://doi.org/10.3847/1538-4357/ad3215

Minkowski functionals of large-scale structure as a probe of modified gravity

Aoxiang Jiang, Wei Liu, Wenjuan Fang, Baojiu Li, Cristian Barrera-Hinojosa and Yufei Zhang
Physical Review D 109 (8) (2024)
https://doi.org/10.1103/PhysRevD.109.083537

Methodological refinement of the submillimeter galaxy magnification bias

L. Bonavera, M. M. Cueli, J. González-Nuevo, J. M. Casas and D. Crespo
Astronomy & Astrophysics 686 A191 (2024)
https://doi.org/10.1051/0004-6361/202347002

Enhancing Morphological Measurements of the Cosmic Web with Delaunay Tessellation Field Estimation

Yu Liu, Yu Yu, Pengjie Zhang and Hao-Ran Yu
The Astrophysical Journal Supplement Series 273 (2) 33 (2024)
https://doi.org/10.3847/1538-4365/ad5559

The two-point correlation function covariance with fewer mocks

Svyatoslav Trusov, Pauline Zarrouk, Shaun Cole, Peder Norberg, Cheng Zhao, Jessica Nicole Aguilar, Steven Ahlen, David Brooks, Axel de la Macorra, Peter Doel, Andreu Font-Ribera, Klaus Honscheid, Theodore Kisner, Martin Landriau, Christophe Magneville, Ramon Miquel, Jundan Nie, Claire Poppett, Michael Schubnell, Gregory Tarlé and Zhimin Zhou
Monthly Notices of the Royal Astronomical Society 527 (3) 9048 (2023)
https://doi.org/10.1093/mnras/stad3710

Efficient computation of the super-sample covariance for stage IV galaxy surveys

Fabien Lacasa, Marie Aubert, Philippe Baratta, et al.
Astronomy & Astrophysics 671 A115 (2023)
https://doi.org/10.1051/0004-6361/202245148

Impact of survey geometry and super-sample covariance on future photometric galaxy surveys

S. Gouyou Beauchamps, F. Lacasa, I. Tutusaus, et al.
Astronomy & Astrophysics 659 A128 (2022)
https://doi.org/10.1051/0004-6361/202142052

Debiasing inference with approximate covariance matrices and other unidentified biases

Elena Sellentin and Jean-Luc Starck
Journal of Cosmology and Astroparticle Physics 2019 (08) 021 (2019)
https://doi.org/10.1088/1475-7516/2019/08/021

Cosmological constraints from noisy convergence maps through deep learning

Janis Fluri, Tomasz Kacprzak, Alexandre Refregier, et al.
Physical Review D 98 (12) (2018)
https://doi.org/10.1103/PhysRevD.98.123518

The skewed weak lensing likelihood: why biases arise, despite data and theory being sound

Elena Sellentin, Catherine Heymans and Joachim Harnois-Déraps
Monthly Notices of the Royal Astronomical Society 477 (4) 4879 (2018)
https://doi.org/10.1093/mnras/sty988