The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Deconvolution of JWST/MIRI Images: Applications to an Active Galactic Nucleus Model and GATOS Observations of NGC 5728
M. T. Leist, C. Packham, D. J. V. Rosario, D. A. Hope, A. Alonso-Herrero, E. K. S. Hicks, S. Hönig, L. Zhang, R. Davies, T. Díaz-Santos, O. González-Martín, E. Bellocchi, P. G. Boorman, F. Combes, I. García-Bernete, S. García-Burillo, B. García-Lorenzo, H. Haidar, K. Ichikawa, M. Imanishi, S. M. Jefferies, Á. Labiano, N. A. Levenson, R. Nikutta, M. Pereira-Santaella, et al. The Astronomical Journal 167(3) 96 (2024) https://doi.org/10.3847/1538-3881/ad1886
Galaxy image deconvolution for weak gravitational lensing with unrolled plug-and-play ADMM
Utsav Akhaury, Jean-Luc Starck, Pascale Jablonka, Frédéric Courbin and Kevin Michalewicz Frontiers in Astronomy and Space Sciences 9 (2022) https://doi.org/10.3389/fspas.2022.1001043
An approach to characterizing spatial aspects of image system blur
Jesse Adams, Jessica Pillow, Kevin Joyce, Michael Brennan, Malena I. Español, Matthias Morzfeld, Sean Breckling, Daniel Champion, Eric Clarkson, Ryan Coffee, Amanda Gehring, Margaret Lund, Duane Smalley, Ajanae Williams, Jacob Zier, Daniel Frayer, Marylesa Howard and Eric Machorro Statistical Analysis and Data Mining: The ASA Data Science Journal 14(6) 583 (2021) https://doi.org/10.1002/sam.11501
Galaxy Image Restoration with Shape Constraint
Fadi Nammour, Morgan A. Schmitz, Fred Maurice Ngolè Mboula, Jean-Luc Starck and Julien N. Girard Journal of Fourier Analysis and Applications 27(6) (2021) https://doi.org/10.1007/s00041-021-09880-9
Learning to do multiframe wavefront sensing unsupervised: Applications to blind deconvolution