Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Application of Convolutional Neural Networks to time domain astrophysics. 2D image analysis of OGLE light curves

N. Monsalves, M. Jaque Arancibia, A. Bayo, P. Sánchez-Sáez, R. Angeloni, G. Damke and J. Segura Van de Perre
Astronomy & Astrophysics 691 A106 (2024)
https://doi.org/10.1051/0004-6361/202449995

Classification of Variable Star Light Curves with Convolutional Neural Network

Almat Akhmetali, Timur Namazbayev, Gulnur Subebekova, Marat Zaidyn, Aigerim Akniyazova, Yeskendyr Ashimov and Nurzhan Ussipov
Galaxies 12 (6) 75 (2024)
https://doi.org/10.3390/galaxies12060075

A Classification Catalog of Periodic Variable Stars for LAMOST DR9 Based on Machine Learning

Peiyun 佩云 Qiao 乔, Tingting 婷婷 Xu 许, Feng 锋 Wang 王, Ying 盈 Mei 梅, Hui 辉 Deng 邓, Lei 磊 Tan 谈 and Chao 超 Liu 刘
The Astrophysical Journal Supplement Series 272 (1) 1 (2024)
https://doi.org/10.3847/1538-4365/ad3452

An Automated Catalog of Long Period Variables using Infrared Lightcurves from Palomar Gattini-IR

Aswin Suresh, Viraj Karambelkar, Mansi M. Kasliwal, Michael C. B. Ashley, Kishalay De, Matthew J. Hankins, Anna M. Moore, Jamie Soon, Roberto Soria, Tony Travouillon and Kayton K. Truong
Publications of the Astronomical Society of the Pacific 136 (8) 084203 (2024)
https://doi.org/10.1088/1538-3873/ad68a4

Catalog of Variable Stars in the WD 0009$$\boldsymbol{+}$$501 and GRW $$\boldsymbol{+}$$708247 Fields Based on Photometric Survey Data on Transiting Exoplanets

O. Ya. Yakovlev, A. F. Valeev, G. G. Valyavin, V. N. Aitov, G. Sh. Mitiani, T. A. Fathullin, G. M. Beskin, A. V. Tavrov, O. I. Korablev, G. A. Galazutdinov, V. V. Vlasyuk, E. V. Emelianov, V. V. Sasyuk, A. V. Perkov, S. F. Bondar, T. E. Burlakova, S. N. Fabrika and I. I. Romanyuk
Astrophysical Bulletin 79 (1) 126 (2024)
https://doi.org/10.1134/S1990341323600400

Discovery of delta Scuti variables in eclipsing binary systems II. Southern TESS field search

F Kahraman Aliçavuş, Ç G Çoban, E Çelik, D S Dogan, O Ekinci and F Aliçavuş
Monthly Notices of the Royal Astronomical Society 524 (1) 619 (2023)
https://doi.org/10.1093/mnras/stad1898

An innovative tool for automating classification of stellar variability through nonlinear data analytics

R. Syiemlieh, P.R. Saleh, D. Hazarika and E. Saikia
Astronomy and Computing 100763 (2023)
https://doi.org/10.1016/j.ascom.2023.100763

Informative regularization for a multi-layer perceptron RR Lyrae classifier under data shift

F. Pérez-Galarce, K. Pichara, P. Huijse, M. Catelan and D. Mery
Astronomy and Computing 43 100694 (2023)
https://doi.org/10.1016/j.ascom.2023.100694

Discovery of a Short Period Pulsator from Istanbul University Observatory

Mustafa Turan SAĞLAM, Meryem ÇÖRDÜK, Sinan ALİŞ, Görkem ÖZGÜL, Olcaytuğ ÖZGÜLLÜ, Fatih Erkam GÖKTÜRK, Rahmi GÜNDÜZ, Süleyman FİŞEK, Fuat Korhan YELKENCİ, Eyüp Kaan ÜLGEN and Tolga GÜVER
Turkish Journal of Astronomy and Astrophysics 3 (1) 8 (2022)
https://doi.org/10.55064/tjaa.1103590

Variable Star Classification with a Multiple-input Neural Network

T. Szklenár, A. Bódi, D. Tarczay-Nehéz, K. Vida, Gy. Mező and R. Szabó
The Astrophysical Journal 938 (1) 37 (2022)
https://doi.org/10.3847/1538-4357/ac8df3

Semi-supervised classification and clustering analysis for variable stars

R Pantoja, M Catelan, K Pichara and P Protopapas
Monthly Notices of the Royal Astronomical Society 517 (3) 3660 (2022)
https://doi.org/10.1093/mnras/stac2715

A New Period Determination Method for Periodic Variable Stars

Xiao-Hui Xu, Qing-Feng Zhu, Xu-Zhi Li, et al.
Publications of the Astronomical Society of the Pacific 134 (1041) 114507 (2022)
https://doi.org/10.1088/1538-3873/ac9e1b

YOUNG Star detrending for Transiting Exoplanet Recovery (YOUNGSTER) – II. Using self-organizing maps to explore young star variability in sectors 1–13 of TESS data

Matthew P Battley, David J Armstrong and Don Pollacco
Monthly Notices of the Royal Astronomical Society 511 (3) 4285 (2022)
https://doi.org/10.1093/mnras/stac278

Magnetic braking saturates: evidence from the orbital period distribution of low-mass detached eclipsing binaries from ZTF

Kareem El-Badry, Charlie Conroy, Jim Fuller, Rocio Kiman, Jan van Roestel, Antonio C Rodriguez and Kevin B Burdge
Monthly Notices of the Royal Astronomical Society 517 (4) 4916 (2022)
https://doi.org/10.1093/mnras/stac2945

Finding Fast Transients in Real Time Using a Novel Light-curve Analysis Algorithm

Robert Strausbaugh, Antonino Cucchiara, Michael Dow Jr., Sara Webb, Jielai Zhang, Simon Goode and Jeff Cooke
The Astronomical Journal 163 (2) 95 (2022)
https://doi.org/10.3847/1538-3881/ac441b

A survey on machine learning based light curve analysis for variable astronomical sources

Ce Yu, Kun Li, Yanxia Zhang, Jian Xiao, Chenzhou Cui, Yihan Tao, Shanjiang Tang, Chao Sun and Chongke Bi
WIREs Data Mining and Knowledge Discovery 11 (5) (2021)
https://doi.org/10.1002/widm.1425

The ZTF Source Classification Project. I. Methods and Infrastructure

Jan van Roestel, Dmitry A. Duev, Ashish A. Mahabal, Michael W. Coughlin, Przemek Mróz, Kevin Burdge, Andrew Drake, Matthew J. Graham, Lynne Hillenbrand, Eric C. Bellm, Thomas Kupfer, Alexandre Delacroix, C. Fremling, V. Zach Golkhou, David Hale, Russ R. Laher, Frank J. Masci, Reed Riddle, Philippe Rosnet, Ben Rusholme, Roger Smith, Maayane T. Soumagnac, Richard Walters, Thomas A. Prince and S. R. Kulkarni
The Astronomical Journal 161 (6) 267 (2021)
https://doi.org/10.3847/1538-3881/abe853

Machine learning technique for morphological classification of galaxies from the SDSS

I. B. Vavilova, D. V. Dobrycheva, M. Yu. Vasylenko, et al.
Astronomy & Astrophysics 648 A122 (2021)
https://doi.org/10.1051/0004-6361/202038981

Classification of Variable Stars Light Curves Using Long Short Term Memory Network

Saksham Bassi, Kaushal Sharma and Atharva Gomekar
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.718139

Variability, periodicity, and contact binaries in WISE

Evan Petrosky, Hsiang-Chih Hwang, Nadia L Zakamska, Vedant Chandra and Matthew J Hill
Monthly Notices of the Royal Astronomical Society 503 (3) 3975 (2021)
https://doi.org/10.1093/mnras/stab592

Harnessing the power of CNNs for unevenly-sampled light-curves using Markov Transition Field

M. Bugueño, G. Molina, F. Mena, P. Olivares and M. Araya
Astronomy and Computing 35 100461 (2021)
https://doi.org/10.1016/j.ascom.2021.100461

Deep transfer learning for the classification of variable sources

Dae-Won Kim, Doyeob Yeo, Coryn A. L. Bailer-Jones and Giyoung Lee
Astronomy & Astrophysics 653 A22 (2021)
https://doi.org/10.1051/0004-6361/202140369

The Automatic Learning for the Rapid Classification of Events (ALeRCE) Alert Broker

F. Förster, G. Cabrera-Vives, E. Castillo-Navarrete, P. A. Estévez, P. Sánchez-Sáez, J. Arredondo, F. E. Bauer, R. Carrasco-Davis, M. Catelan, F. Elorrieta, S. Eyheramendy, P. Huijse, G. Pignata, E. Reyes, I. Reyes, D. Rodríguez-Mancini, D. Ruz-Mieres, C. Valenzuela, I. Álvarez-Maldonado, N. Astorga, J. Borissova, A. Clocchiatti, D. De Cicco, C. Donoso-Oliva, L. Hernández-García, et al.
The Astronomical Journal 161 (5) 242 (2021)
https://doi.org/10.3847/1538-3881/abe9bc

TESS Data for Asteroseismology (T’DA) Stellar Variability Classification Pipeline: Setup and Application to the Kepler Q9 Data

J. Audenaert, J. S. Kuszlewicz, R. Handberg, A. Tkachenko, D. J. Armstrong, M. Hon, R. Kgoadi, M. N. Lund, K. J. Bell, L. Bugnet, D. M. Bowman, C. Johnston, R. A. García, D. Stello, L. Molnár, E. Plachy, D. Buzasi and C. Aerts
The Astronomical Journal 162 (5) 209 (2021)
https://doi.org/10.3847/1538-3881/ac166a

Classification of periodic variable stars with novel cyclic-permutation invariant neural networks

Keming Zhang and Joshua S Bloom
Monthly Notices of the Royal Astronomical Society 505 (1) 515 (2021)
https://doi.org/10.1093/mnras/stab1248

LTD064402+245919: A Subgiant with a 1–3 M ⊙ Undetected Companion Identified from LAMOST-TD Data

Fan Yang, Bo Zhang, Richard J. Long, You-Jun Lu, Su-Su Shan, Xing Wei, Jian-Ning Fu, Xian-Fei Zhang, Zhi-Chao Zhao, Yu Bai, Tuan Yi, Ling-Lin Zheng, Ze-Ming Zhou and Ji-Feng Liu
The Astrophysical Journal 923 (2) 226 (2021)
https://doi.org/10.3847/1538-4357/ac31b3

Informative Bayesian model selection for RR Lyrae star classifiers

F Pérez-Galarce, K Pichara, P Huijse, M Catelan and D Mery
Monthly Notices of the Royal Astronomical Society 503 (1) 484 (2021)
https://doi.org/10.1093/mnras/stab320

Alert Classification for the ALeRCE Broker System: The Light Curve Classifier

P. Sánchez-Sáez, I. Reyes, C. Valenzuela, F. Förster, S. Eyheramendy, F. Elorrieta, F. E. Bauer, G. Cabrera-Vives, P. A. Estévez, M. Catelan, G. Pignata, P. Huijse, D. De Cicco, P. Arévalo, R. Carrasco-Davis, J. Abril, R. Kurtev, J. Borissova, J. Arredondo, E. Castillo-Navarrete, D. Rodriguez, D. Ruz-Mieres, A. Moya, L. Sabatini-Gacitúa, C. Sepúlveda-Cobo and E. Camacho-Iñiguez
The Astronomical Journal 161 (3) 141 (2021)
https://doi.org/10.3847/1538-3881/abd5c1

Unsupervised machine learning for transient discovery in deeper, wider, faster light curves

Sara Webb, Michelle Lochner, Daniel Muthukrishna, et al.
Monthly Notices of the Royal Astronomical Society 498 (3) 3077 (2020)
https://doi.org/10.1093/mnras/staa2395

Near-infrared Search for Fundamental-mode RR Lyrae Stars toward the Inner Bulge by Deep Learning

István Dékány and Eva K. Grebel
The Astrophysical Journal 898 (1) 46 (2020)
https://doi.org/10.3847/1538-4357/ab9d87

The ASAS-SN catalogue of variable stars – V. Variables in the Southern hemisphere

T Jayasinghe, K Z Stanek, C S Kochanek, et al.
Monthly Notices of the Royal Astronomical Society 491 (1) 13 (2020)
https://doi.org/10.1093/mnras/stz2711

Imbalance learning for variable star classification

Vanessa McBride, Arrykrishna Mootoovaloo, Benjamin Stappers, Robert Lyon and Zafiirah Hosenie
Monthly Notices of the Royal Astronomical Society 493 (4) 6050 (2020)
https://doi.org/10.1093/mnras/staa642

On Neural Architectures for Astronomical Time-series Classification with Application to Variable Stars

Sara Jamal and Joshua S. Bloom
The Astrophysical Journal Supplement Series 250 (2) 30 (2020)
https://doi.org/10.3847/1538-4365/aba8ff

Variable star classification using multiview metric learning

K B Johnston, S M Caballero-Nieves, V Petit, A M Peter and R Haber
Monthly Notices of the Royal Astronomical Society 491 (3) 3805 (2020)
https://doi.org/10.1093/mnras/stz3165

Image-based Classification of Variable Stars: First Results from Optical Gravitational Lensing Experiment Data

T. Szklenár, A. Bódi, D. Tarczay-Nehéz, K. Vida, G. Marton, Gy. Mező, A. Forró and R. Szabó
The Astrophysical Journal Letters 897 (1) L12 (2020)
https://doi.org/10.3847/2041-8213/ab9ca4

Scalable end-to-end recurrent neural network for variable star classification

F Nikzat, C Aguirre, P Protopapas, et al.
Monthly Notices of the Royal Astronomical Society 493 (2) 2981 (2020)
https://doi.org/10.1093/mnras/staa350

Deep multi-survey classification of variable stars

C Aguirre, K Pichara and I Becker
Monthly Notices of the Royal Astronomical Society 482 (4) 5078 (2019)
https://doi.org/10.1093/mnras/sty2836

Machine Learning for the Zwicky Transient Facility

Ashish Mahabal, Umaa Rebbapragada, Richard Walters, et al.
Publications of the Astronomical Society of the Pacific 131 (997) 038002 (2019)
https://doi.org/10.1088/1538-3873/aaf3fa

Classifying Periodic Astrophysical Phenomena from non-survey optimized variable-cadence observational data

Paul R. McWhirter, Abir Hussain, Dhiya Al-Jumeily, Iain A. Steele and Marley M.B.R. Vellasco
Expert Systems with Applications 131 94 (2019)
https://doi.org/10.1016/j.eswa.2019.04.035

Comparing Multiclass, Binary, and Hierarchical Machine Learning Classification schemes for variable stars

Zafiirah Hosenie, Robert J Lyon, Benjamin W Stappers and Arrykrishna Mootoovaloo
Monthly Notices of the Royal Astronomical Society 488 (4) 4858 (2019)
https://doi.org/10.1093/mnras/stz1999

Identifying Complex Sources in Large Astronomical Data Sets Using a Coarse-grained Complexity Measure

Gary Segal, David Parkinson, Ray P Norris and Jesse Swan
Publications of the Astronomical Society of the Pacific 131 (1004) 108007 (2019)
https://doi.org/10.1088/1538-3873/ab0068

Deep Neural Network Classifier for Variable Stars with Novelty Detection Capability

Benny T.-H. Tsang and William C. Schultz
The Astrophysical Journal Letters 877 (2) L14 (2019)
https://doi.org/10.3847/2041-8213/ab212c

The ASAS-SN catalogue of variable stars III: variables in the southern TESS continuous viewing zone

T Jayasinghe, K Z Stanek, C S Kochanek, et al.
Monthly Notices of the Royal Astronomical Society 485 (1) 961 (2019)
https://doi.org/10.1093/mnras/stz444

Into the Darkness: Classical and Type II Cepheids in the Zona Galactica Incognita

István Dékány, Gergely Hajdu, Eva K. Grebel and Márcio Catelan
The Astrophysical Journal 883 (1) 58 (2019)
https://doi.org/10.3847/1538-4357/ab3b60

Variability search in M 31 using principal component analysis and the Hubble Source Catalogue

M I Moretti, D Hatzidimitriou, A Karampelas, et al.
Monthly Notices of the Royal Astronomical Society 477 (2) 2664 (2018)
https://doi.org/10.1093/mnras/sty758

From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning

J.B. Cabral, B. Sánchez, F. Ramos, et al.
Astronomy and Computing 25 213 (2018)
https://doi.org/10.1016/j.ascom.2018.09.005

ASAS-SN Discovery of 4880 Bright RR Lyrae Variable Stars

T. Jayasinghe, C. S. Kochanek, K. Z. Stanek, B. J. Shappee, T. W. -S. Holoien, T. A. Thompson, J. L. Prieto, Subo Dong, C. A. Britt and D. Will
Research Notes of the AAS 2 (1) 18 (2018)
https://doi.org/10.3847/2515-5172/aaaa20

Machine learning search for variable stars

Ilya N Pashchenko, Kirill V Sokolovsky and Panagiotis Gavras
Monthly Notices of the Royal Astronomical Society 475 (2) 2326 (2018)
https://doi.org/10.1093/mnras/stx3222

Detecting Variability in Massive Astronomical Time-series Data. III. Variable Candidates in the SuperWASP DR1 Found by Multiple Clustering Algorithms and a Consensus Clustering Method

Min-Su Shin, Seo-Won Chang, Hahn Yi, et al.
The Astronomical Journal 156 (5) 201 (2018)
https://doi.org/10.3847/1538-3881/aae263

The ASAS-SN catalogue of variable stars I: The Serendipitous Survey

T Jayasinghe, C S Kochanek, K Z Stanek, et al.
Monthly Notices of the Royal Astronomical Society 477 (3) 3145 (2018)
https://doi.org/10.1093/mnras/sty838

Comparative performance of selected variability detection techniques in photometric time series data

K. V. Sokolovsky, P. Gavras, A. Karampelas, et al.
Monthly Notices of the Royal Astronomical Society 464 (1) 274 (2017)
https://doi.org/10.1093/mnras/stw2262

A recurrent neural network for classification of unevenly sampled variable stars

Brett Naul, Joshua S. Bloom, Fernando Pérez and Stéfan van der Walt
Nature Astronomy 2 (2) 151 (2017)
https://doi.org/10.1038/s41550-017-0321-z

A CATALOG OF ECLIPSING BINARIES AND VARIABLE STARS OBSERVED WITH ASTEP 400 FROM DOME C, ANTARCTICA

E. Chapellier, D. Mékarnia, L. Abe, T. Guillot, K. Agabi, J.-P. Rivet, F.-X. Schmider, N. Crouzet and E. Aristidi
The Astrophysical Journal Supplement Series 226 (2) 21 (2016)
https://doi.org/10.3847/0067-0049/226/2/21