The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Application of Convolutional Neural Networks to time domain astrophysics. 2D image analysis of OGLE light curves
N. Monsalves, M. Jaque Arancibia, A. Bayo, P. Sánchez-Sáez, R. Angeloni, G. Damke and J. Segura Van de Perre Astronomy & Astrophysics 691 A106 (2024) https://doi.org/10.1051/0004-6361/202449995
Classification of Variable Star Light Curves with Convolutional Neural Network
Almat Akhmetali, Timur Namazbayev, Gulnur Subebekova, Marat Zaidyn, Aigerim Akniyazova, Yeskendyr Ashimov and Nurzhan Ussipov Galaxies 12(6) 75 (2024) https://doi.org/10.3390/galaxies12060075
A Classification Catalog of Periodic Variable Stars for LAMOST DR9 Based on Machine Learning
Peiyun 佩云 Qiao 乔, Tingting 婷婷 Xu 许, Feng 锋 Wang 王, Ying 盈 Mei 梅, Hui 辉 Deng 邓, Lei 磊 Tan 谈 and Chao 超 Liu 刘 The Astrophysical Journal Supplement Series 272(1) 1 (2024) https://doi.org/10.3847/1538-4365/ad3452
An Automated Catalog of Long Period Variables using Infrared Lightcurves from Palomar Gattini-IR
Aswin Suresh, Viraj Karambelkar, Mansi M. Kasliwal, Michael C. B. Ashley, Kishalay De, Matthew J. Hankins, Anna M. Moore, Jamie Soon, Roberto Soria, Tony Travouillon and Kayton K. Truong Publications of the Astronomical Society of the Pacific 136(8) 084203 (2024) https://doi.org/10.1088/1538-3873/ad68a4
Catalog of Variable Stars in the WD 0009$$\boldsymbol{+}$$501 and GRW $$\boldsymbol{+}$$708247 Fields Based on Photometric Survey Data on Transiting Exoplanets
O. Ya. Yakovlev, A. F. Valeev, G. G. Valyavin, V. N. Aitov, G. Sh. Mitiani, T. A. Fathullin, G. M. Beskin, A. V. Tavrov, O. I. Korablev, G. A. Galazutdinov, V. V. Vlasyuk, E. V. Emelianov, V. V. Sasyuk, A. V. Perkov, S. F. Bondar, T. E. Burlakova, S. N. Fabrika and I. I. Romanyuk Astrophysical Bulletin 79(1) 126 (2024) https://doi.org/10.1134/S1990341323600400
Discovery of delta Scuti variables in eclipsing binary systems II. Southern TESS field search
F Kahraman Aliçavuş, Ç G Çoban, E Çelik, D S Dogan, O Ekinci and F Aliçavuş Monthly Notices of the Royal Astronomical Society 524(1) 619 (2023) https://doi.org/10.1093/mnras/stad1898
New variable sources revealed by DECam toward the LMC: The first 15 deg2
Semi-supervised classification and clustering analysis for variable stars
R Pantoja, M Catelan, K Pichara and P Protopapas Monthly Notices of the Royal Astronomical Society 517(3) 3660 (2022) https://doi.org/10.1093/mnras/stac2715
A New Period Determination Method for Periodic Variable Stars
Xiao-Hui Xu, Qing-Feng Zhu, Xu-Zhi Li, et al. Publications of the Astronomical Society of the Pacific 134(1041) 114507 (2022) https://doi.org/10.1088/1538-3873/ac9e1b
YOUNG Star detrending for Transiting Exoplanet Recovery (YOUNGSTER) – II. Using self-organizing maps to explore young star variability in sectors 1–13 of TESS data
Matthew P Battley, David J Armstrong and Don Pollacco Monthly Notices of the Royal Astronomical Society 511(3) 4285 (2022) https://doi.org/10.1093/mnras/stac278
Magnetic braking saturates: evidence from the orbital period distribution of low-mass detached eclipsing binaries from ZTF
Kareem El-Badry, Charlie Conroy, Jim Fuller, Rocio Kiman, Jan van Roestel, Antonio C Rodriguez and Kevin B Burdge Monthly Notices of the Royal Astronomical Society 517(4) 4916 (2022) https://doi.org/10.1093/mnras/stac2945
Finding Fast Transients in Real Time Using a Novel Light-curve Analysis Algorithm
Robert Strausbaugh, Antonino Cucchiara, Michael Dow Jr., Sara Webb, Jielai Zhang, Simon Goode and Jeff Cooke The Astronomical Journal 163(2) 95 (2022) https://doi.org/10.3847/1538-3881/ac441b
A survey on machine learning based light curve analysis for variable astronomical sources
Ce Yu, Kun Li, Yanxia Zhang, Jian Xiao, Chenzhou Cui, Yihan Tao, Shanjiang Tang, Chao Sun and Chongke Bi WIREs Data Mining and Knowledge Discovery 11(5) (2021) https://doi.org/10.1002/widm.1425
The ZTF Source Classification Project. I. Methods and Infrastructure
Jan van Roestel, Dmitry A. Duev, Ashish A. Mahabal, Michael W. Coughlin, Przemek Mróz, Kevin Burdge, Andrew Drake, Matthew J. Graham, Lynne Hillenbrand, Eric C. Bellm, Thomas Kupfer, Alexandre Delacroix, C. Fremling, V. Zach Golkhou, David Hale, Russ R. Laher, Frank J. Masci, Reed Riddle, Philippe Rosnet, Ben Rusholme, Roger Smith, Maayane T. Soumagnac, Richard Walters, Thomas A. Prince and S. R. Kulkarni The Astronomical Journal 161(6) 267 (2021) https://doi.org/10.3847/1538-3881/abe853
Machine learning technique for morphological classification of galaxies from the SDSS
Variability, periodicity, and contact binaries in WISE
Evan Petrosky, Hsiang-Chih Hwang, Nadia L Zakamska, Vedant Chandra and Matthew J Hill Monthly Notices of the Royal Astronomical Society 503(3) 3975 (2021) https://doi.org/10.1093/mnras/stab592
Harnessing the power of CNNs for unevenly-sampled light-curves using Markov Transition Field
The Automatic Learning for the Rapid Classification of Events (ALeRCE) Alert Broker
F. Förster, G. Cabrera-Vives, E. Castillo-Navarrete, P. A. Estévez, P. Sánchez-Sáez, J. Arredondo, F. E. Bauer, R. Carrasco-Davis, M. Catelan, F. Elorrieta, S. Eyheramendy, P. Huijse, G. Pignata, E. Reyes, I. Reyes, D. Rodríguez-Mancini, D. Ruz-Mieres, C. Valenzuela, I. Álvarez-Maldonado, N. Astorga, J. Borissova, A. Clocchiatti, D. De Cicco, C. Donoso-Oliva, L. Hernández-García, et al. The Astronomical Journal 161(5) 242 (2021) https://doi.org/10.3847/1538-3881/abe9bc
TESS Data for Asteroseismology (T’DA) Stellar Variability Classification Pipeline: Setup and Application to the Kepler Q9 Data
J. Audenaert, J. S. Kuszlewicz, R. Handberg, A. Tkachenko, D. J. Armstrong, M. Hon, R. Kgoadi, M. N. Lund, K. J. Bell, L. Bugnet, D. M. Bowman, C. Johnston, R. A. García, D. Stello, L. Molnár, E. Plachy, D. Buzasi and C. Aerts The Astronomical Journal 162(5) 209 (2021) https://doi.org/10.3847/1538-3881/ac166a
Classification of periodic variable stars with novel cyclic-permutation invariant neural networks
LTD064402+245919: A Subgiant with a 1–3 M
⊙ Undetected Companion Identified from LAMOST-TD Data
Fan Yang, Bo Zhang, Richard J. Long, You-Jun Lu, Su-Su Shan, Xing Wei, Jian-Ning Fu, Xian-Fei Zhang, Zhi-Chao Zhao, Yu Bai, Tuan Yi, Ling-Lin Zheng, Ze-Ming Zhou and Ji-Feng Liu The Astrophysical Journal 923(2) 226 (2021) https://doi.org/10.3847/1538-4357/ac31b3
Informative Bayesian model selection for RR Lyrae star classifiers
F Pérez-Galarce, K Pichara, P Huijse, M Catelan and D Mery Monthly Notices of the Royal Astronomical Society 503(1) 484 (2021) https://doi.org/10.1093/mnras/stab320
Alert Classification for the ALeRCE Broker System: The Light Curve Classifier
P. Sánchez-Sáez, I. Reyes, C. Valenzuela, F. Förster, S. Eyheramendy, F. Elorrieta, F. E. Bauer, G. Cabrera-Vives, P. A. Estévez, M. Catelan, G. Pignata, P. Huijse, D. De Cicco, P. Arévalo, R. Carrasco-Davis, J. Abril, R. Kurtev, J. Borissova, J. Arredondo, E. Castillo-Navarrete, D. Rodriguez, D. Ruz-Mieres, A. Moya, L. Sabatini-Gacitúa, C. Sepúlveda-Cobo and E. Camacho-Iñiguez The Astronomical Journal 161(3) 141 (2021) https://doi.org/10.3847/1538-3881/abd5c1
Milky Way archaeology using RR Lyrae and type II Cepheids
Unsupervised machine learning for transient discovery in deeper, wider, faster light curves
Sara Webb, Michelle Lochner, Daniel Muthukrishna, et al. Monthly Notices of the Royal Astronomical Society 498(3) 3077 (2020) https://doi.org/10.1093/mnras/staa2395
The ASAS-SN catalogue of variable stars – V. Variables in the Southern hemisphere
T Jayasinghe, K Z Stanek, C S Kochanek, et al. Monthly Notices of the Royal Astronomical Society 491(1) 13 (2020) https://doi.org/10.1093/mnras/stz2711
Imbalance learning for variable star classification
Vanessa McBride, Arrykrishna Mootoovaloo, Benjamin Stappers, Robert Lyon and Zafiirah Hosenie Monthly Notices of the Royal Astronomical Society 493(4) 6050 (2020) https://doi.org/10.1093/mnras/staa642
On Neural Architectures for Astronomical Time-series Classification with Application to Variable Stars
Variable star classification using multiview metric learning
K B Johnston, S M Caballero-Nieves, V Petit, A M Peter and R Haber Monthly Notices of the Royal Astronomical Society 491(3) 3805 (2020) https://doi.org/10.1093/mnras/stz3165
Image-based Classification of Variable Stars: First Results from Optical Gravitational Lensing Experiment Data
T. Szklenár, A. Bódi, D. Tarczay-Nehéz, K. Vida, G. Marton, Gy. Mező, A. Forró and R. Szabó The Astrophysical Journal Letters 897(1) L12 (2020) https://doi.org/10.3847/2041-8213/ab9ca4
Rare Object Search From Low-S/N Stellar Spectra in SDSS
Machine Learning for the Zwicky Transient Facility
Ashish Mahabal, Umaa Rebbapragada, Richard Walters, et al. Publications of the Astronomical Society of the Pacific 131(997) 038002 (2019) https://doi.org/10.1088/1538-3873/aaf3fa
Classifying Periodic Astrophysical Phenomena from non-survey optimized variable-cadence observational data
Paul R. McWhirter, Abir Hussain, Dhiya Al-Jumeily, Iain A. Steele and Marley M.B.R. Vellasco Expert Systems with Applications 131 94 (2019) https://doi.org/10.1016/j.eswa.2019.04.035
Comparing Multiclass, Binary, and Hierarchical Machine Learning Classification schemes for variable stars
Zafiirah Hosenie, Robert J Lyon, Benjamin W Stappers and Arrykrishna Mootoovaloo Monthly Notices of the Royal Astronomical Society 488(4) 4858 (2019) https://doi.org/10.1093/mnras/stz1999
Identifying Complex Sources in Large Astronomical Data Sets Using a Coarse-grained Complexity Measure
Gary Segal, David Parkinson, Ray P Norris and Jesse Swan Publications of the Astronomical Society of the Pacific 131(1004) 108007 (2019) https://doi.org/10.1088/1538-3873/ab0068
Deep Neural Network Classifier for Variable Stars with Novelty Detection Capability
Variability search in M 31 using principal component analysis and the Hubble Source Catalogue
M I Moretti, D Hatzidimitriou, A Karampelas, et al. Monthly Notices of the Royal Astronomical Society 477(2) 2664 (2018) https://doi.org/10.1093/mnras/sty758
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning
ASAS-SN Discovery of 4880 Bright RR Lyrae Variable Stars
T. Jayasinghe, C. S. Kochanek, K. Z. Stanek, B. J. Shappee, T. W. -S. Holoien, T. A. Thompson, J. L. Prieto, Subo Dong, C. A. Britt and D. Will Research Notes of the AAS 2(1) 18 (2018) https://doi.org/10.3847/2515-5172/aaaa20
Machine learning search for variable stars
Ilya N Pashchenko, Kirill V Sokolovsky and Panagiotis Gavras Monthly Notices of the Royal Astronomical Society 475(2) 2326 (2018) https://doi.org/10.1093/mnras/stx3222
Detecting Variability in Massive Astronomical Time-series Data. III. Variable Candidates in the SuperWASP DR1 Found by Multiple Clustering Algorithms and a Consensus Clustering Method
Comparative performance of selected variability detection techniques in photometric time series data
K. V. Sokolovsky, P. Gavras, A. Karampelas, et al. Monthly Notices of the Royal Astronomical Society 464(1) 274 (2017) https://doi.org/10.1093/mnras/stw2262
A recurrent neural network for classification of unevenly sampled variable stars
A CATALOG OF ECLIPSING BINARIES AND VARIABLE STARS OBSERVED WITH ASTEP 400 FROM DOME C, ANTARCTICA
E. Chapellier, D. Mékarnia, L. Abe, T. Guillot, K. Agabi, J.-P. Rivet, F.-X. Schmider, N. Crouzet and E. Aristidi The Astrophysical Journal Supplement Series 226(2) 21 (2016) https://doi.org/10.3847/0067-0049/226/2/21